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Recently the measured proton-induced C K-shell ionization probability was found to

vary significantly near the 0.461-MeV j=—+ elastic resonance in ' C. Since the reso-

nance was so wide that time-delay effects on E-shell ionization should be very small, it
was hypothesized that this effect was due to the exchange of angular momentum between

the projectile motion and electron. Assuming a potential description of the nuclear

scattering, we make a completely quantum-mechanical calculation of the ionization pro-

bability in the distorted-wave Born approximation and show that angular momentum ef-

fects do not account for these results. We also show how the amplitude for monopole ex-

citation is augmented by the "shake-off" or "sticking" term found in the semiclassical

theory of Ciocchetti and Molinari, and display the formal correspondence between the

semiclassical and quantum-mechanical theories. Numerical calculations of the ionization

probability show only a slight dip at the minimum in the p-C elastic cross section, oppo-
site in sign and of much smaller magnitude than the reported variation.

I. INTRODUCTION

In most atomic-collision studies, nuclear physics
plays no role. Some years ago, however, Ciocchetti
and Molinari' pointed out that a semiclassical
description of K-shell ionization leads to a modi-
fied ionization probability P~ when there is a non-

negligible nuclear reaction time or time delay to.
A similar modification results when a completely
quantum-mechanical description of the ionization
is made; from this point of view, for there to be an

appreciable variation in P~(,8, E), it is necessary
that the reaction amplitude vary sufficiently rapid-

ly with incident center-of-mass energy E.
To test these predictions, one naturally thinks of

measuring the ionization probability in the vicinity
of a nuclear resonance. For P~ to vary significant-

ly across a resonance, the width I of the resonance
should be of the order of or smaller than the K-
shell binding energy Uz, or equivalently, the time
delay to(-h/1 ) should be of the order of or
greater than the K-shell orbiting period. Signifi-
cant variations in the K-shell ionization probability
have been observed in the elastic scattering of pro-
tons from Ni across the s&&2 resonance at

Ep (lab) =3.15 MeV (Ref. 2) and from Sr near the

d5~2 isobaric analog resonance at 5.06 MeV (Ref.
3), reactions for which I and U~ are of compar-
able magnitude.

In the light of the above, the recent measure-
ments of Duinker et al. who found a strongly
varying Pz(0, E) in p-' C scattering near the
0.461-MeV s&~2 resonance, whose width I ( =38
keV) was much greater than Uz( =0.284 keV), are
very surprising. Duinker et al. hypothesized that
this variation was due to the angular-momentum
exchange between the projectile and the electron.
Conceivably this enters in because when K elec-

are excited into p-wave continuum states, the pro-
jectile must lose one unit of orbital angular
momentum. Therefore, to excite an l =0 nuclear
resonance and to excite the electron on the way
into the collision, the incoming projectile wave

must be an l = 1 wave; to excite the electron on the
way out, the incoming projectile wave must be an s
wave.

The effect of the exchange of angular momentum
on the K-shell ionization probability near a nuclear
resonance is a leading concern of this paper. We
calculate the K-shell ionization probability in the
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distorted-wave Born approximation (DWBA), mak-

ing a partial-wave expansion of the incoming and

outgoing projectile waves, and taking explicit ac-

count of the coupling between the electronic and

projectile angular momenta. A slightly corrected
version of Eq. (l) in Ref. 2 is derived. We shall

find that when I » U», P»(8, E) should be al-

most independent of E, in disagreement with

Duinker's hypothesis.
In Sec. II the ingredients of the DWBA calcula-

tion are described. The relative projectile space is

separated into an exterior and an interior region

and an approximate evaluation of the exterior con-

tribution to the ionization amplitude is made in

Sec. III. The corrections to this coming from the

interior region are considered in Sec. IV; only the

inner contribution of monopole excitation is found

to be important. Our present expressions are com-

pared to those of previous quantum-mechanical

and semiclassical descriptions in Sec. V. The for-

mulas are specialized to sub-Coulomb resonant

scattering and numerical calculations are described

for the case of p-' C scattering in Sec. VI. Details

concerning the various semiclassical theories are
given in the Appendix.

II. DWBA AMPLITUDE

get nucleus of mass M2 and charge Z2e from
which the projectile scatters elastically, and an

electron initially bound to the target nucleus in the
K-shell orbit. We assume that the nuclear scatter-

ing is described by a spherically symmetric poten-

tial V~(R) which is the sum of the Coulomb and a

specifically nuclear term (which may be complex).

Such a potential description does not suffice to
describe most nuclear resonances; however, for
p+' C scattering it is a rather good approximation

to consider the 461-keV s i~2 resonance as a slightly

unbound 2s single-particle state. The virtues of the

potential model are: (1) the familiar procedures of
the distorted-wave Born approximation may be

used to calculate the amplitudes for ionization dur-

ing a nuclear scattering and (2) the wave function

of the nuclear system, even when the projectile is

in the interior of the target nucleus, is then only a
function of the internuclear coordinate R and is

calculable. This permits us to examine explicitly
the contributions to the ionization when the projec-
tile and target nuclei overlap.

In the distorted-wave Born approximation, the
differential cross section for the ionization of a K-
shell electron by projectiles of center-of-mass ener-

gy E scattering to the angle 8 is given by

As a model of the ionization process, we consid-

er the three-body system comprised of an incident

nuclear projectile with charge Zie, a spin-zero tar-
where e~, A, , and p are the energy and orbital

quantum numbers for the ionized electron

(2)

and
—Zie 2

H'= +Hg .
/r —R/

Here K and K' are the initial and final center-of-
mass momenta, u is the initial velocity of the pro-
jectile relative to the target nucleus, r is the elec-
tron coordinate relative to the target and P, x„andp

(()i, are the final and initial electronic wave func-
tions.

It follows from a straightforward calculation
that the recoil Hamiltonian H~ for the present
choice of coordinates has the form'

or"

2

Hg —— R.r
M2

(4b)

Hg —— Vg V~(R) r,
M2

where

(4c)

I

and R, respectively. Assuming that there is a
long-range convergence factor in the R coordinate
and using the Ehrenfest theorem, one finds that
the matrix elements of Hz above are equivalent to
those of the form

pPH
M2

where p and P are the momenta conjugate to r

(4a) ~=—~:—U~+e~

is the energy transferred to the electron, M is the
reduced mass of the projectile and target nuclei,
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and m is the reduced mass of the electron-target
nucleus system.

The nuclear distorted wave 7+ may be given by
the partial-wave expansion

g+(K,R) =4m gi 'Y(~ (K)Y(~ (R )(KR)
lm

on R is conveniently written as
1/2

Y~(R ),

)&e 'a I(ER),

lim P ~(KR)-R ~+'
R -+0

and the normalization condition

(6a)

lim a ~ (KR ) =sin KR —g ln(2KR )
R~oo

where WI is the exact radial wave function for the
nuclear Hamiltonian H~ ——TN+ V~, subject to the
boundary condition

with 6~ =C~+ W~. Here, C~ is the matrix ele-
ment originating from the Coulomb potential part
of H' in Eq. (3), and W~ originates from the recoil
contribution Eq. (4). Explicitly we have

—Z)8 2 A,

Cg(R)= —(2A +1) ' f r dr% ~A„ f)

and

lm
+51(E) (6b)

Wg(R)=5g~ (Mco R) dr r 9F, gM~, ,
fiuM2 3 p

(10)
Here g=Z&Z2e /Av and 5I{E)is the sum of the
Coulomb and specifically nuclear (possibly com-
plex) phase shifts for the lth partial wave. The
logarithmic term in the argument in Eq. (6b) is a
ubiquitous consequence of the long-range nature of
Coulomb distortion. Except for obvious changes
in notation, the final-state distorted-wave function
corresponding to energy E'=E —hE, 7 {K',R)',
is also given by Eq. (5) when use is made of the
property

(K', R)'=X+( —K', R) . {7)

The matrix elements of the electronic wave func-
tions can readily be evaluated. ' Their dependence

where A', ~ and A~, are the radial electronic wave

functions. As mentioned earlier, an equivalent ma-
trix element for W~(R) is obtained by replacing
(~~'R) with (a V /aR).

We take the quantization axis to be along E so
that

1/2

YI' (K)=5 p
21 +1

4m

Inserting Eqs. (5) and (8) into Eq. (2) and carrying
out the integration over R, we obtain the following
basic formula for the ionization amplitude in the
distorted-wave Born approximation:

1/2

x J dR a I (K'R)W((KR)Gg(R) . (12)

III. ASYMPTOTIC EVALUATION

As a preliminary to the evaluation of the radial
integrals in Eq. (12) let us consider the various
lengths which characterize the electronic-nuclear
system. The most important parameters govern-
ing the electronic ionization are the E-shell radius
for the target

a (Z2 ) =(fP/Z2e m )

and the inverse of the minimum momentum
transfer

(1/q) =1/(E —E') =(v/co) .

The nuclear scattering is characterized by three
distances: D=z~z2e /E, the distance of closest
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I'( )l' —l b* l' l
( )l —l'

(14)
I

approach for a head-on Coulomb internuclear colli-
sion; (1/K), the wavelength for relative nuclear
motion; and R~, a radius parameter for the specifi-
cally nuclear potential. The ratio of (D/2) to (1/q)
is the familiar'o dimensionless parameter g, which

here is a measure of the importance of nuclear

Coulomb distortion.
It is crucial to our approximate evaluation of the

radial matrix elements that there exist a "matching
radius" R between the electronic and nuclear dis-

tances, such that

(1/q), a(Z2) »R »D, (1/K), and R~ . (13)

For K-shell ionization of ' C by 0.461-MeV pro-

tons, the length parameters have the approximate
values (1/q)-2(10 ) cm, a (Z2)-0.9(10 ) cm,
while D-2.0(10 '2) cm, (1/K)-0. 7(10 '

) cm,
and R~ -0.4(10 '

) cm. Thus a choice R
-40(10 '

) cm amply satisfies these inequalities.

Our evaluation of the radial integrals proceeds

by splitting the radial integral into two contribu-

tions, one exterior to R, the other interior to R
The virtue of this procedure is that, provided the
inequalities above are satisfied, the asymptotic ex-

pression for the radial wave functions, Eq. (6b),
can be used in the exterior integral.

With the asymptotic approximation, the exterior
radial integral in Eq. (12) is the sum of four terms.
Two of these, however contain the rapidly oscillat-

ing factors e+-" + '", so that their integrals may
be neglected. (This neglect corresponds to the in-

tuitively obvious observation that electron ioniza-

tion will not reverse the direction of relative nu-

clear motion. ) The remaining two terms give

4f dR P((K'R)P((KR)G(, (R)

where

bg = f„dR G(„(R)exp(iqR) (15)

and

qR:—qR —g ln2KR +g' 1n2K'R

=qR g ln2—KR. (16)

' 1/2
4n ~ 2(s( (21+1)
2K ((, (21'+ 1)4n.

XC(IA I'000}C(IAI'OI(I(, , }b(„, (17)

' 1/2
(21 + 1) Y+ (K, )

2K ((, (21'+ 1)4(r

X C(li, l'000)C(lA, l'Opp)bg .

At first glance these expressions still appear fairly
cumbersome, in spite of the elimination of the ra-
dial integral. Exploiting some lore" concerning
angular momentum, however, we shall see that
these expressions collapse to simple formulas
which have direct physical interpretation.

For A i it is convenient first to make the rear-
rangement

It is important to note that the "exterior atomic
amplitude" b~ is independent of l and l'.

Equation (12) can now be written as the sum of
two terms Ai and A2, where

4~y 2(s(

2K
4~

2A, +1

1/2 ' 1/2
2l+1

b
4m

' 1/2
(2l + 1)(2A,+ 1)

(2l'+ 1)4m
C(li, l'000)C(lA, l Opp)Yr (K

(19)

4n ~ 2(s,

2K
4m

2A, +1

The index I' occurs only in the last bracket. When
summed over l', this bracket is just the coupling
rule for spherical harmonics. "We thus obtain

' 1/2 ' 1/2
2l +1

4m

I

where"

Dpp(0, 8,0)=
2X+1

' 1/2

F~(K'), (21)

X Y(o(K ) F~(K )bz

=if(g, E)D„o(K')bx, (20)
f (H, E)=(2iK) 'g(21 + 1)P((cosO)e

l
(22)
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The sum f (8, E) is the nuclear scattering ampli-

tude for spinless projectiles' provided the scatter-

ing angle does not equal zero. Here, the scattering

is assumed to lie in the xz plane so that the direc-

tion K' is specified solely by the scattering angle 0.
I

For the A2 term, we note first that by conserva-

tion of parity the factor (—l) ' may be written

as ( —1 }",independent of the nuclear angular-

momentum quantum numbers. Inverting the order
in the Clebsch-Gordan coefficients, "

I'
C(1k 1'000)C(ill'Op@) = ( —l ) "C(l'A 1000}C(l'A l —ppO),2l+1

(23)

we have
1/2

g( —l) "e ' y('„(E')bg[C(l'A1000)C(1'Al —ppO)] .
ll' 4m

(24)

QC(l'A, 1000)C(l'l, l —ppO) =5 „p .
l

We therefore find

(25)

A =5 g( —l) "e ' [4'(21'+ 1)]'"'2E,,

x ~(p(&')bg

=if(H, E')( —l) 5„pbg . (26)

The index l occurs only in the last bracket; this
latter quantity, when summed over l, is one of the
orthogonality relations" for Clebsch-Gordan coef-

ficients

A, ~=i[f(H,E)D„o(0,8,0)bq

+( —1 )"5„pf(H, E bE)b~]—. (27)

This equation has a simple interpretation. If ioni-
zation occurs on the way into the nuclear collision
with an atomic amplitude b~, only JM =0 electronic
states can be populated and the projectile loses an

energy 4E before encountering the nuclear poten-
tial; hence the nuclear scattering amplitude is to be
evaluated at the reduced energy E—AE. If ioniza-
tion occurs on the way out with an amplitude b~,
the scattering has already occured at the incoming
projectile energy and so f must be evaluated at the
initial energy E. The D function takes account of
the direction of the projectile on its way out.

The ionization probability is defined by

d CTlr.,
Pg(H, E)= /~ f(H, E) ~'. (28)

The complete expression for the exterior contri-

bution to the E-shell ionization amplitude is there-

fore given by

Using the exterior ionization amplitude of Eq. (27)
we have

Pg(H, E)=I dcyg ~D„o(8)bz+( —l) 5„o[f(H,E ~E)&f(8 E)]b~ I

Ap

(29)

When the variation in in f(8, E) is such that

f (H, E)—f(8, E —~, the ionization probability

collapses to

Px(H, E)=fd~yg ~
D„'o(8)b~+( &)'5„ob~—

~

' .
Ap

(30)

which is the semiclassical prediction' for a "fast"
nuclear collision.

Without further elaboration, Eqs. (29) and (30)
suffice to demonstrate a leading contention of this

I

paper: Angular-momentum transfer (i.e., A, ) 1)
does not alter the structure of the ionization proba-
bility from that indicated in Ref. 2; as a special
case, when the reduction in effective bombarding
energy hE makes a negligible change in the nu-
clear scattering amplitude, one anticipates that
there will be little variation in the ionization proba-
bility with changing incident energy.

It remains to ask whether consideration of the
interior contributions to the radial integrals will
alter these conclusions. These correction terms are
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examined in the next section but we state here the
main conclusions. We will find that there is an
important correction to the monopole Q, =O)
Coulomb ionization probability but this will only
append the so-called "sticking" or shake-off
term" to the monopole atomic amplitude bo and
will not change the structure of Eq. (27). Further,
the interior contributions for A, & 1 will be found to
be of the order (qR ) or less and are thus negligi-
ble under our stated assumptions.

The evaluation of the recoil contribution to b~
deserves special attention since the result obtained
will be needed later in discussing corrections and
alternative calculations for the recoil contribution.
Using Eqs. (10) and (15), and neglecting the loga-
rithmic contribution to qR in Eq. (16), we have

00

dR R e's" = — (1 iq—R } ."m 2

For (qR ) « 1, this may be expanded

f dRRe'r = ——1+ qR
q

Thus dropping terms of order (qR }~, we have

f dR R e'~"= dR R e'ii"
"m 0

1 v

CO

so that

(32)

(33)

(34}

Clearly, the last integral is not well behaved, but
with a long-range convergence factor, it becomes

mMa)
(35)

(31) or equivalently,

00 mE
&m

dRPi(K'R)&i(KR)Wx(R)= —5&i dr r 9P, i9Pi, cos 5i —5i —(I—l')—
iiluMiv 3 2

(36)

IV. INTERIOR CORRECTIONS

A. Monopole Coulomb

Of the various terms correcting the asymptotic results, we consider first the contribution to the monopole
Coulomb term from the interior region, R &R, since this will prove to be the only term for which the
correction is important.

For small values of R, the electronic matrix element of the monopole Coulomb potential is conveniently
rewritten

—Z)e co
2 R R

Co(R)= f drrR, ~„+ —f drr 9F, &/Pi, —f drr9P, ~i, (37}

When R «a(Zi), the last two terms will be less than the first by a factor [R/a (Zz)]~; since it has been
our assumption that R «a (Zq) and we are here considering only values of R &R~, it is thus a good ap-
proximation to take

—Z)e oo
2

Co(R)=CO(R =0)= f drr9P, p9ti, . (38)

(39)

With this, the interior contribution to the monopole raidal matrix element is

4f dR Wi(K'R)w i(KR)CO(R) =—4CO(0) f dR P i(K'R)P i(KR) .

At first glance, it appears that this term will be sensitive to details of the interior wave function but closer
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examination shows this is not so; rather, we shall find that nuclear physics enters only through a difference

in scattering phase shifts.
Since the radial functions a I satisfy the radial wave equation

d2

2M dR2 2M
+ V~(R)+ P ((KR) =EWI(KR),

we may rewrite the radial integral

(40)

f dR a ((K'R)a ((KR)= — f "dR a I(K'R) a I(KR) —w ((K'R) a I(KR)
dR dR

Integrating by parts, we have

~ I(K'R) ~ )(KR)— ~ I(K'R) ~ I(KR)
d d

(41)

(42)

By assumption, the radial functions are well approximated by their asymptotic form at R; further, the

difference (K —K')R —=qR is assumed to be much less than unity. Consequently,

4CO(0) f dR a ~(K'R)a ~(KR) =4CO(0) sin[5&(E) —5&(E')] . (43)

Thus, the interior monopole integral may be written in the form of Eq. (14),

(44)

where

bp(int) = Cp(0) = — Cp(0) .
lN q

Since the interior monopole integral has the same structure as the exterior integral, we may append

bp(int) to the bp already obtained for the exterior region to form the total monopole atomic amplitude

bp(tot):—bp+bp(int) .

(45)

(46)

Clearly, Eqs. (27) and (29) still result provided we replace bp with bp(tot).

It should be noted that, because it is purely imaginary, bp(int) will not contribute to the ionization ampli-

tude, Eq. (27), in a fast nuclear elastic scattering where fast is defined by the requirement that f(8, E hE)—
=f(8, E). This result is consistent with the designation of bo(int) as the sticking or shake-off term. "

B. Dipole Coulomb and recoil

The electronic matrix element of the dipole Coulomb potential is conveniently regrouped

Z]e ao
2 R R

C&(R)= — R f dr9F, &A~, + R f drr 9P, ~9P~, R f—dr9F, &SF~, (47)

When R &&a (Z2), as it is for the interior region R &R, the products of the radial functions (here assumed

to be nonrelativistic) occurring in the last two integrals may be approximated, A, &A~, =-c, iR so that the

quantity in parentheses in Eq. (47) becomes [(—„)c,&R ]. In contrast, the first integral in Eq. (47) will be of
10

the order [ c, ~R [a (Zz)] I. Consequently, it is permissible to drop the last two terms of Eq. (47) in

evaluating the interior contribution for the dipole Coulomb term, and thus obtain the approximate dipole ra-

dial matrix element
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R Z 8f dR P ~
(K'R)P q(KR)C~(R) = — f dr 9F, ~98~, f dR RP q(K'R}P ~(KR) . (48)

We now observe that the last integral over R in Eq. (48) is identical to that encountered in the evaluation

of the interior contribution of the recoil term 8't ~(R}. The parallel between these two interior radial ma-

trix elements of the dipole Coulomb and recoil terms is heightened when we apply the Ehrenfest theorem to
the electronic matrix element occurring in Eq. (48):

oo 1 00 Zp8 2

e dr A', i%i, —— drr
Zp o r

me@

Z o
drr A, iA), . (49)

With this, these two interior radial matrix elements may be combined' to give

R

f dR a ( (K'R)a ((KR)[W)(R)+C)(R)]

M Zi ~ R

f dr r'9', ,8'„ f dR Ra ( (K'R)a )(KR) . (50)

An immediate corollary' worth noting is that this sum of the interior contributions vanishes when the
charge-mass ratios of target and (relative} projectile are the same. Further, even when these ratios are not

equal, as is the case for proton scattering, the magnitude of this combined term will be less than that of the
recoil term by itself.

We have found that the most expeditious way for estimating the importance of this interior matrix ele-

ment proceeds from the Ehrenfest theorem and the following identities:

Mro f dRRP((K'R)W((KR)=I=Mco f + f„

=I;„,+I,„,= dR a
& (K R)a i(KR) =J .av

0 BR
(51)

Here, I;„, is the integral in question while the approximate evaluation of I,„„using Eqs. (10) and (36) gives

I,„,=- —Ecos 5i —5i —(l —I')—
2

(52)

apart from terms of order qR
Since the integral J is yet unkown, it is not obvious that anything has been gained by this rearrangement;

indeed, it appears at first sight that J will depend on details of nuclear physics, since V is the sum of the nu-

clear and Coulomb potentials and the integral includes the nuclear interior. To see that this is not the case,
we appeal to a little known theorem due to Gerjuoy' which, in our notation, may be written

BV 7T
lim dR ~ ~ (KR)~ ~(KR) = —E cos 5~ —5~ —(l —I')—

2
(S3)

In other words, in the limit K'~K the integral
over all space equals the approximate evaluation of
the exterior integral I,„„Eq.(52).

Since the wave numbers occurring in the Ger-
jouy theorem are equal, this integral is not quite
the same as our integral J. Apart from terms of
order (qR ) and (D/R ), however, it is equivalent
to our interior integral

J;„,=f dR M((K'R)P((KR)

Further, an approximate evaluation of J„„which
involves only asymptotic wave functions and the
(1/R ) term of the Coulomb force, shows that J,„,
is negligible in comparison to J;„,. (We note
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parenthetically that the Ehrenfest theorem inter-

changes the roles of the exterior and interior re-

gions. )

Consequently, we have that the terms in I;„, are

of order (qR ) and (D/R ), or less, times E. In

view of our assumed inequalities, Eq. (13), I;„t may

therefore be neglected.
The result, that the interior A, =1 term may be

dropped while the interior monopole contribution

is significant, is not unexpected since the in-

tegrands of the A, =1 matrix elements bear an addi-

tional factor of R, suppressing the interior, which

is not present in the monopole integrand.

C. Higher Coulomb mulitpoles

In the analysis of most experiments, only mono-

pole and dipole excitations need be considered.

Further, if the higher multipoles are considered at

all, only the exterior contributions will be signifi-

cant, since additional powers of R suppress the in-

terior.
For example, an analysis similar to that given at

the beginning of Sec. IV B shows that the leading

term in the electronic matrix element of the qua-

drupole Coulomb potential for small values of R is

Z e
Cz(R)= — R J dr r '9P, 298» .

Auv 5

(54)

respects but which used an S-matrix description to

match the interior to the exterior nuclear wave

functions at R . The notation of Ref. 2 was defi-

cient in not indicatin~ that the coefficient B(e, l, m)

[which equaled (bxD&p) of the present paper] was

also to be considered a function of 0. In addition,

an error was made in their numerical computations

in that the sign factor ( —1)"was omitted in the

coefficient A(e, l, m) (=[bi( —l) 5&p] of the

present paper). This omission had little effect on

the results of Ref. 2, however, since the Ni exper-

iment was peformed at 8=90; consequently, there

was negligible interference for the dipole (A, =l =1)
contributions.

Further, it should be noted that the monopole

atomic amplitude of Ref. 2 included the internal

contribution to bo given by Eq. (45). In that S-

matrix formulation the interior contribution bo(int)

emerged as a consequence of the matching condi-

tions at R
There is a close correspondence between the

quantum-mechanical expression for Pz, i.e., the

amended Eq. (29), and that given by the semiclassi-

cal theory of Ciocchetti and Molinari, ' Px(CM).
In Appendix A we show that for scattering of the

projectile to substantial angles and for cases where

qD « 1, the latter ionization probability can be

written as

Px(CM) = Jde/g ~
D&p(8)bx(tot)

A,p,

Consequently, the interior radial matrix element

will be reduced, relative to the exterior, by addi-

tional factors of (qR ) or [R /a(Zq)] over what

was just found for dipole excitation.

V. RELATION TO PREVOUS RESULTS
AND TO SEMICLASSICAL THEORY

The conclusion to be drawn from Sec. IV is that

the ionization probability is still well approximated

by Eq. (29) with the amendment that the monopole

atomic amplitude to be used is the bo(tot) of Eq.

(46), which is a sum of exterior and interior contri-

butions.
An expression nearly equivalent to the amended

Eq. (29) was given by Blair et al. in their analysis

of K-shell ionization in proton scattering from

Ni, their (e, l, m) corresponding to the present

(E'y, k,p). Their formula was based on a derivation

which overlapped the present treatment in several

(55)

Here the real parameter to is the classical nuclear

time delay while bi (tot) is the sum of the previous

external and interior atomic amplitudes, Eqs. (14)

and (45), respectively, evaluated in the limit that

qR is approximated by qR and the lower limit of
the integral in Eq. (15), R, is extended in to 0.
[In obtaining this expression, we have divided the

amplitude of Eq. (A7) by the phase factor e so

that e ' multiplies the "incoming" ionization

amplitude bi.]
Comparing Eq. (55) to the amended Eq. (29), we

see that the semiclassical and quantum-mechanical

theories differ only in that the phase factor of the

semiclassical theory exp( —into), is replaced by the

ratio of scattering amplitudes f (H, E hE)/f (0, —
F.) in a completely quantum-mechanical formula-

tion.
The correspondence between the two formula-

tions may be pursued further when to is so small
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and, similarly, the energy variation of the scatter-
ing is sufficiently small so that

f (H, E)
f(8,E ~)/f (H, E)= 1 —hc0

Recalling the quantum-mechanical definition of
time delay'

rg~(E, H) = ih —lnf (H,E),8
(58)

we see that the latter ratio may be written as

f(H, E ~)/f (H, E)=1 icorg~(E—, H) .

Yet while there is now a precise formal correspon-
dence between the two expressions Eqs. (56) and
(59) and, consequently, between the CM and QM
formulas for P& to first order in m, we note that
vg~ is, in general, a complex function of E and 8,
in contrast to the implied real constant to of the
semiclassical theory. Thus, evaluations of the
semiclassical formulas for the ionization probabili-
ty will not resemble even qualitatively the quan-
tum-mechanical predicitons, even when the linear
approximations are justified. %hile it is fair to
speak figuratively of the role of nuclear "time de-
lay" in modifying thc atomic ionization probabili-
ty, any precise discussion of time delay must be
cast in terms of the energy dependence of the nu-
clear reaction amplitudes.

After carrying out the derivation of Eq. (29) we
became aware of an older paper which bears on
this subject. Pursuing the concern of Breit, '

that atomic excitations might possibly alter the
low-energy p-p cross section, de VA't et al. ' ob-
tained expressions for the nuclear scattering ampli-
tude when simultaneously there is atomic dipole
excitation. The detailed distorted-wave calculation
was carried out only for the special case of nuclear
Coulomb scattering plus S-wave potential scatter-
ing, where the further loss of energy to the atomic
excitation was assumed not to alter the nuclear
amplitudes. Inspection indicates that the ampli-
tudes they obtained may be cast in the form of Eq.
(27), i.e., there is a factorization of nuclear and
atomic amplitudes, with no alteration in form duc
to angular-momentum exchange. %'e have also

that a linear expansion suffices for the phase factor been recently informed of two independent deriva-
tions ' ' of the exterior DWBA ionization ampli-
tudes, which reach conclusions similar to our own.

VI. SUB-COULOMB RESONANT
SCATTERING

In the time-delay experiments which have so far
been performed, the incident proton energies have
been below or near the Coulomb barrier. Thus the
nuclear scattering amplitudes entering Eqs. (27}
and (29) are well approximated as the sum of pure
Coulomb plus Breit-%igner resonance amplitudes.
For the s-wave resonances of Refs. 2 and 4, we
need consider only the single spin-independent am-
plitude

f(8 E}=fc+f,'
where

(60)

fc (D/4)c——sc— 8
2

Xexpj irlln[csc (8/2)]+2ioo )

(61)

and

fo„=(2Jt) 'exp(2ioo+i5'0 )sin5'0

Ip=(2J ) 'exp(2ioo}

(62)

Here 0.
~ is the Coulomb phase shift for partial

wave l, 50 ——50—oo is the resonance phase shift,
I z is the partial width for the elastic channel, I is
the total width, and Ez is the resonance energy.

%'hen a proton scattering resonance occurs in a
state of tota1 angular momentum J with orbital an-

gular momentum L different from zero, it is neces-
sary to take the proton spin into account. In gen-
eral, the nuclear waves are labeled by the spin pro-
jection along the incident direction v and are ex-
panded in partial waves of total angular momen-
tum j as well as orbital angular momentum l. Re-
tracing the steps of Secs. II and III with spin-orbit
distorted ~aves, we find that the joint cross section
for K-shell ionization and nuclear scattering when
there is a J, L+0 resonance becomes
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d 0'g a)=f defang l f '«(8,E)DIsobg+f„„(8,E —M)( —1) 5„obq ~

A, ,p v
(63)

where

J,Lfv'v =fc6«v'+f res, v'v

with a resonant nonspin-flip amplitude

f,' =(2E) 'exp(2ioL )(J+—, )

r,
(E„E)—i 1 /—2

PL(cos8)

and a resonant spin-flip amplitude

f„~„+(2K)——'exp(2ioL )( —1) + +'~

X . PL (cos8) .

(64)

(65)

(66)

l

no average over the particle detector angular aper-
ture was made.

We see in Fig. 1 that Pz is practically indepen-
dent of Ez. There is a slight dip near 450 keV,
amounting to about 3%. The dip is due to the in-
terference between the incoming and outgoing in-
elastic scattering amplitudes for monopole and di-
pole JM =0 ionization. For monopole ionization
alone the ionization at the dip is 0.96 and for di-
pole ionization it is 0.975. Since dipole ionization
is dominant, the total ionization probability is
-0.97 at the minimum.

VII. SUMMARY

When 6 && /2, which is the case for ionization
in p-' C scattering near the 0.461-MeV resonance,
there will be little difference in the resonance am-
plitudes at the two energies E and E —~. Conse-
quently, we anticipate that there will be only a
small variation in the ionization probability as one
varies the incident energy through the resonance.
In Fig. 1 we show the calculated cross section and
ionization probability, relative to that obtained in
the absence of a resonance, as a function of in-
cident energy for p-' C scattering near the s&&2

resonance.
In this calculation the atomic amplitudes b~ and

b~ have been evaluated using one-electron Dirac
wave functions. Only monopole and dipole contri-
butions were included; excitation into A, =2 contin-
uum states contributes less than 1% to the total
ionization probability. It should be emphasized
that the monopole amplitudes of this calculation
include both the exterior and interior contributions.
The atomic amplitudes were calculated for
E~ =460 keV, and were assuaged to be independent
of Ez between 380 and 530 keV. We verified that
the monopole amplitude varies by less than 2%
over this energy range. The dipole ionization pro-
bability increases roughly linearly with Ez, and
thus varies by -30% over this energy span. This
variation is not included in the present calcula-
tions.

The scattering amplitude entering this calcula-
tion is the sum of the background and resonance
terms given by Duinker et al., which provide a
best fit to the differential cross section. The calcu-
lation of P~ and der/dQ& was done at 0&

——125';

Assuming that a potential model suffices to
describe the nuclear scattering, we have made a
DWBA calculation of the probability for ionizing
the E shell while the projectile undergoes nuclear
scattering. Crucial in our development is the
separation of the relative projectile space into an
exterior and interior region; the boundary between
these lies at a radius R which is assumed to be
large compared to nuclear distances and small
compared to the two atomic lengths, the target E-

I I I
I

I

2.0—
I I I I I I I I

I
I I I I

I2C (p p) I2C

o I 5

I.O

a
b

I I I I I I I I I I I I I I I I I I

400 450 500 550
Ep (k8V )

FIG. 1. Calculated and measured (Ref. 4) differential
cross section der/dQ& and ionization probability P~ re-
lative to that obtained in the absence of a resonance, as
a function of incident energy for p-' C scattering near
the s&&2 resonance at 0.461 MeV. The scattering ampli-
tudes use the parametrization of Duinker et al. (Ref. 4).
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shell radius, a (Z2), and the inverse of the
minimum momentum transfer (1/q).

The exterior contribution to the E-shell ioniza-
tion amplitude is found to have the simple form
reported previously, which resulted from an alter-
native S-matrix theory. In view of the suggestion
of Duinker et al. that angular-momentum ex-
change would alter that form, it is of particular in-
terest that the factorization of this amplitude, as
given in Eq. {27),holds for atomic excitations of
arbitrary multipolarity. Of the interior contribu-
tions, only the monopole term is found to be signi-
ficant and this merely appends the sticking term of
Ciocchetti and Molinari' to the exterior monopole
atomic amplitude. Computations of the ionization
probability predicted by our theory for p-' C
scattering at 8=125' yield only a slight dip at the
minimum of the cross section, in contrast to the
large increase reported in Ref. 4.

This work is supported in part by the U. S.
Department of Energy and the U. S. National Sci-
ence Foundation, Grant No. PHY 8015348.

APPENDIX A: RELATION BETWEEN OUR
QUANTUM-MECHANICAL THEORY AND

VARIOUS SEMICLASSICAL THEORIES

In the semiclassical approximation (SCA), one
typically writes the amplitude for exciting E-shell
electrons into continuum states with energy ey and
orbital quantum numbers A, and p, as'

a& — —iu f dt e'"'G x(R)D&o(8(R)),

(A 1)

where we have used the fact that only the mono-
pole matrix element Gp(0) is nonzero at R =0.

If one calculates a~ in coordinate system A, as
shown in Fig. 2, takes b =0, and approximates the
Coulomb trajectory by two straight lines, as indi-
cated by coordinate system A' of Fig. 2, one has

Dqp{8) t ) tp

D„p(8(R))= '( 1)x~ (A3)

Performing the elementary integral from t =0 to
i =to, we may then rewrite Eq. (A2) as

where D&p(8(R)) =D„o(0,8(R),0), and 8{R(t)) is
the time-dependent angle between the internuclear
axis and the z axis. The integral over t in this
equation is normally done along a Coulomb trajec-
tory with an impact parameter b, classically related
to the center-of-mass scattering angle 8 and the
distance to closest approach for a head-on collision
D by the equation b =(D/2) cot(8/2).

When a compound nucleus is formed at R =0
for a time tp, the integral over t can be written as

p

(iax„/u ) =f dt e'"'G~ ( R) D& p( 8( R) )

f(

+f dt e'"'G
p( 0)5 xp

+ f, dt e'"'G~(R)D&p(8(R)),

(A2)

00 Go{0) .
r, Gp(0)(ia~/u)=D„o(8) f dk Gx{R)e'"'+~go . e ' +(—1)~g„o f dr G&(R)e'"' b~o-tp lCO 00 LN

(A4)

Consistent with taking b =0, and neglecting
Coulomb deflection effects (valid if qD « 1), we
can write

u f, dte'"'Gi(R)=e "'f dR e'e"G~(R)

1COtp
(A6)

u f dt e'"'Gi(R) =f dR e 'e"Gq(R) Thus we obtain the result, equivalent to that of
Ciocchetti and Molinari, '

—= f„dR e 'e"Gx(R) =bi,

(AS)

a~ ———i [D„p(8)b~(tot)e

+( —1)'b x(tot) j, (A7)

since R = —Ut for negative values of t and, by our
assumptions, qD «qR~ &&1. Similarly for
t & tp for which R =U(t —tp), we can put

where b~(tot) is given by

bx(tot) =bi+5&obp(int), (A8)
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Coordinate System A

Z

f =+CO
8(R) = 8

Coordinote System A'

Z

f =+Co

Coordinate System 8

FIG. 2. Relative coordinate systems used in various
semiclassical theories. In coordinate system A the pro-
jectile enters at an impact parameter b, parallel to the z
axis, then scatters to an angle 8. In coordinate system
A' we approximate the ion trajectory by two straight
lines so that 8(R)=m for t &0 and 0(R)=8 for t &0.
In coordinate system B the trajectory is assumed to be
symmetric about the x axis, in the xz plane.

which is the same as Eq. (46). In this derivation,
the internal contribution to bo comes about from
considering the contribution to a~& during the life-
time of the compound nucleus (0 & t & to). The K-
shell ionization probability is given by the absolute

square of at„, which is the same as Eq. (55}.
Several semiclassical calculations for coto ——0 ap-

pear in the literature which use different coordi-
nate systems. Amundsen uses coordinate system

B shown in Fig. 2 for which the Coulomb trajecto-

ry is assumed to be in the xz plane and to be sym-
metric about the x axis. He parametrizes the
Coulomb trajectory using'

cos8(R }= (e —1}sinhw —e—coshw

e(e coshw + 1)

sin8(R) =
e ecoshw+1

(A11)

It is straightforward to show that here 8(R)~n
for w =—ao and 8(R)=8 for w = + &x&.

Finally, we note the connection to the calcula-
tions of Pauli and Trautman based on the stat-
ionary-phase approximation to the QM ionization
amplitudes. In terms of our notation, their expres-
sion for the ionization amplitude has the form

aiz ~ gD 0(0,n/2, 0)

AAXD ~+8
2

s a/2 s a /2 Igm

where

Ix ~ I dte'"'Gi(R)

(A12)

'm

X
coshw +e+i(e 1)' sinhw-

1+ecoshw

Alder et al.,
' which are similar to our system B

but the x, y, and z axes are interchanged, and thus
the definition of cos8(R) and sin8(R) are inter-
changed. It is clear that with type-8 coordinate
systems, 8(R)+mat . t =—ao (w = —oo). Hence
although

Ap

is the same in coordinate systems A and B, the am-
plitudes a~ are different.

One can still use the Coulomb trajectory pa-
rametrization of Eq. (A6) in coordinate system A if
one defines

and

R =—(e coshw + 1)
D
2

t =—(esinhw+w),D
2U

(A9)

(A13)

Consistent with the neglect of Coulomb deflection
we can put

coshw +e+i(e I)'~ sinhw —1 i (e I)'~—
1+@coshw E

cose(R) =(e —1)'
(e coshw+ 1)

~

g(g )
coshw +

e coshw + 1)
(A10)

Various other coordinate systems are defined by

where e '=sin (8/2). In this coordinate system (A14)

where one uses the plus sign for t & 0 and the
minus sign for t &0. Using Eqs. (A5) and (A6) for
the time integral and inserting the values of the ro-
tation matrix elements, one finds that Eq. (A12)
reduces to Eq. (A7) with to set equal to 0. Hence
we conclude that for b =0, and qD « 1, the Pauli
SCA gives the same result as our QM evaluation in
the absence of time delay.
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