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A previously developed method for self-consistent-field density-functional calculations
involving a variational fit to the charge density is generalized to the case in which the to-
tal (electronic plus nuclear) Coulomb potential is fit. Previously the total energy E(p,p)
was viewed as a functional of the exact p and fitted p charge density. The energy expres-
sion was modified to be correct when p=p while at the same time allowing p to be ob-
tained variationally through BE(p,p)/Bp=O. Herein an expression for E(p, V), where V
is the fit to the Coulomb potential, is derived with similar properties. In particular, V
can be determined variationally through BE(p, V)/B V=0. In various linear-
combination-of-atomic-orbitals calculations on atomic neon, the superiority of variational
over conventional least-squares-fitting methods is demonstrated.

I. INTRODUCTION

Due to the nonanalytic nature of the depen-
dence' of the exchange correlation energy func-
tional on the electronic density in all density-
functional (DF) methods, at least this part of the
electronic potential is fit to analytic functions in
all linear-combination-of-atomic-orbitals (LCAO)
DF calculations on molecules and solids. Further-
more, for computational advantages, the entire po-
tential (Coulomb plus exchange and correlation) is

fit, except where Hartree-Fock methodology is
used. ' In fact, the most widely used DF method
for molecules, the multiple scattering (MS) Xa,
and solids, the augmented plane wave (APW), can
be viewed as involving a fit to the total potential,
where that fit is obtained by muffin-tin averaging
the potential.

Recently, a molecular DF method has been

developed based on the method of Sambe and Fel-
ton but in which the fit to the electronic charge
density, and consequently, to the electronic
Coulomb potential, is determined variationally.
As a result, the error introduced by fitting in the
computation of the total energy appears only in
second order. Thus, total energy and related quan-
tities such as dissociation energies can be obtained
reliably within the Xa approximation. ' Herein,

we extend this work to the cases in which the total
Coulomb potential, electronic plus nuclear, is fit.
Fitting the entire Coulomb potential rather than

just the electronic part is a much more widely used

approach, particularly in treating solids. The ad-

vantage is that the potential generated by a neutral

charge distribution is short-ranged, whereas for a
charge distribution with a net charge the potential
decays as the reciprocal of the distance.

Our approach is to examine the functional form
of the proposed fit to the potential and in order to
deal with nonsingular potentials subtract off the
nuclear contribution. We then use Poisson's equa-
tion to fit variationally the charge density to a fit-
ted charge distribution which generates the desired
form of the fitted potential. The resulting equa-
tions can then be rearranged to preserve the short-

range nature of the various integrals. In Sec. II we
review the LCAO approach to Slater's Xa equa-
tions. In Sec. III we discuss several variational
and nonvariational methods for fitting the poten-
tial. These various fitting procedures are com-
pared in Sec. IV for various LCAO basis sets used
in calculations on atomic neon.

II. THE Xa MODEL

In the Xa model' the one-electron orbitals P;(r)
are determined by variationally minimizing the to-
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tal energy given by the expression

E» =gn; ——, f P';(r)V P;(r)dr —[p, ~ pz]

1/3

+ —,'[p,
~ p, ]——a f p,"'(r)dr

determines the integrals needed for the usual secu-
lar equation via a numerical integration procedure.

Several authors ' ' have introduced methods for
solving the Xa equations using an LCAO ap-
proach, where the orbitals P;(r ) are expressed us-

ing an analytic basis set of functions U„(r),

1+ , [pn —I pn ] (2.1)

P;(r) =g c„;U„(r), (2.5)

where p~ is the nuclear charge density (represented
as a sum of Dirac delta functions) and p, ( r ) is the
electronic density,

p, (r ) =g n;P';(r )P;(r ), (2.2)

with n; being the occupation of th ith orbital P;.
We use the notation [p~ ~ pq] to represent the classical
interaction of two charge distributions, p&( r ) and

p&( r ): viz. ,

which leads to the secular equation

g Hmn cni ei g Smn cni i (2.6)

S „=f dr U'(r)U„(r),

mn
= mn+ mn+ Vinn+Xmn

(2.'7)

(2.8)

where T „ is the kinetic energy matrix elements

where S „and H „are the overlap and effective
Hamiltonian matrix elements, respectively:

[pi I pe]= f dry f "r &pi(ri)pz(~z)/r12 T „=——,
' f dr U'(r)V U„(r) . (2.9)

with the understanding that the self-interaction of
point nuclear charges is not to be included.

The resulting one-electron equations are thus of
the form

The matrix elements Z~„and V~„are the nuclear
attraction and electron repulsion Coulomb in-

tegrals, respectively:

e;P;(r, )= ——,V

1/3
81—CX

8n.
p' '(r ) t));(r, ),

—f drp[pn(rp) —p, (rp)]/r)p

(2.4)

Z .= —[U' U.
l p ]

V „=[U' U„ ip, ),
(2.10)

(2.11)

X „=f d r U'(r)U„(r)p'~ (r) . (2.12)

and the matrix elements X „are exchange terms
of the form

and are normally solved using a self-consistent
field (SCF) iterative scheme.

We note several points about this model. First,
for atoms the solutions of Eq. (2.4) can be reduced
to a one-dimensional problem and the resulting
equations solved numerically using the Herman-
Skillman program. ' For molecules and solids,
however, the numerical solution of this equation
will in general require the use of a three-
dimensional numerical integration except where the
muffin-tin approximation is used. Such a pro-
cedure can become prohibitive due to the large
number of points involved, necessitating additional
approximations such as the use of analytic basis
sets. The use of such basis sets enables smooth in-
terpolation between the three-dimensional grid
points (in particular with respect to the kinetic en-
ergy terms). This is the basic approach introduced
in the discrete variational (DV) method' which

It can be easily demonstrated that all terms in the
effective Hamiltonian matrix elements may be cal-
culated using integrals in the analytic form except
for the exchange integrals X „ in Eq. (2.12).
Sambe and Felton have suggested that p' be fit
to a linear combination of auxiliary basis functions
G;(r),

p'r'(r)=p'r'(r ) =g g, G;(r ), (2.13)

p(r)=p(r)=g fF;(r) . (2.14)

The rationale for fitting the charge density is that
of reducing the total number of analytic integrals
that must be evaluated, thus saving computational

in order to treat this difficulty. In addition, Sambe
and Felton suggested fitting the charge density us-

ing least-squares-fitting techniques to a different
auxiliary basis set,
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time. It is to be noted that pi/3 does not equal
[P]'~ since these are determined independently us-

ing separate basis sets.
Recently, a method which is variational in the

electrostatic repulsion energy, and thus the total
energy, has been introduced for fitting the charge
density to a linear combination of Gaussian-type
orbitals (GTO's). Due to the positive definite na-
ture of the mathematical expression for the

Coulomb interaction, the following inequality
holds:

[Pe l pe] &2[Pe lPel [Pe lPe] ~ (2.15)

with the equality holding only for p, equal to p, .
We may then define a new energy functional Ex
as an approximation to the original functional E~
where Ex is a functional of both the one-electron
orbitals P; and the approximate electron density p, :

T

Ex~(p„pe) = ——, g n; I P;'(r)V P;(r)dr —[p, ~ p~]+ [p,
~ p, ]——,[p, ~ p, ]

' 1/3
3 81——a
4 8m.

I

p, (r)p,' (r)dr + i [pjv l pw] . (2.16)

This approach allows a certain consistency in the
manner in which orbital coefficients c„; and the
fitting coefficients f; are determined. The orbital
coefficients are chosen by requiring the variation
of E~~ with respect to variations of the orbital
coefficients equal zero; in the same way the fitting
coefficients are chosen by requiring that the varia-
tion of E~ with respect to variations in the fitting
coefficients also equal zero. That is, the (('i; are de-

fined implicitly by

BE(p,p) BE(p,p) Bp

a((),
=

ap ay,
=

and p is defined implicitly by

BE(p,p)
Bp

(Throughout this work we neglect the small errors
that arise due to the inadequacy of the basis set
and numerical procedures used to obtain the fit

p,
' and thus the exchange energy. )

Thus we see at least two alternative methods
which may be used to choose the fitting coeffi-
cients f~ in Eq. (2.14), one method being variation-
al in the total energy. Other authors have suggest-
ed fitting the total (electronic plus nuclear) poten-
tial instead of fitting just the electronic charge den-

sity, to an expansion of the form (for the atomic
case)

I

F;(r ) are some well-behaved and usually exponen-
tially decreasing functions such as Gaussian func-
tions. We may express the potential resulting from
merely the electrons, if the expansion in Eq. (2.17)
is taken to be that of the total nuclear and elec-
tronic potential, to be

V, (r)=gf F(r)+—(1—e s"
) . (2.18)

Appelbaum, Hamann, and co-workers' ' use a
method similar to the above in their calculations
on surface systems, where the fitting procedure
used to choose the fitting coefficients f, in Eqs.
(2.17) and (2.18) is a least-squares-fitting (LSF)
procedure. In the following section we introduce a
new approach to fitting this form of the potential
extending the energy variational approach
described above.

III. FITTING METHODS

We wish to review briefly some of the basic
techniques available for approximating the
Coulomb potential using fitting methods. We shall
first describe two methods which fit the electron
density to an expansion of the form given in Eq.
(2.14). One method results from minimizing the
quantity

V(r)=g fF;(r) —e—(2.17) I [p, (r)—p, (r)] dr, (3.1)

where Z is the nuclear charge and the functions
while requiring the charge conserving constraint
condition



25 FITTING THE COULOMB POTENTIAL VARIATIONALLY IN. . . 91

f p, (r)dr= f p, (r)dr . (3.2)

P~ijfj =g iik g Cmkenk~imn +~ i
k m, n

which must be solved subject to the constraint
equation

(3.3)

This procedure is the conventional LSF method
and yields the algebraic equations

(3.13)

is minimized results in the algebraic equations

g f)ijfi =g &k g Cmk~nkRimn Vi

k m, n

(3.14)

We can likewise fit the electrostatic potential
due to the electronic charge density to an expan-
sion of the form given in Eq. (2.18). Using the
LSF technique where the quantity

f ~
V, (r) —V, (r)~'dr

gfP;=N, (3.4)
where

9,1.=f F;(r)FJ(r)dr, .

S; „=-f F; ( r ) U' ( r ) U„( r )d r,
(3.5)

(3.6)

where N is the total number of electrons, nk are
the orbital occupation numbers from Eq. (2.2), and
c k and c„k are the orbital expansion coefficients
defined in Eq. (2.5). The assorted algebraic terms
in Eqs. (3.3) and (3.4) are

V;=Z f [F;(r)(l —e "
) jr]dr . (3.15)

V2V, (r) = —4irp, (r) . (3.16)

Thus, Eq. (2.18) can be reinterpreted

However, we may consider any potential fitting
techniques using the expansion in Eq. (2.18) to be a
charge-density-fitting technique. This may be seen

by using Poisson's equation,

and

P;=f F;(r)dr . (3.7)
&x.(p„p, ) =~x [p. V.(p, )]=Fx.(p. , V.»

and a variational V, is obtained via

The variational fitting techniques are based on
minimizing the quantity

+2 [Pe Pe I Pe Pe]

This procedure yields the algebraic equations

g Dij fj =g nk g Cmk CnkRimn +~~i
k m, n

(3.8)

(3.9)

As in the case of the fit to the charge density this

V, also minimized E2 (Eq. 3.8). However, this
minimization is over all allowed variations of V, .
Specifically,

if the charge conserving constraint condition de-
fined in Eq. (3.4) is invoked. Both sets of equa-
tions may also be solved without invoking the con-
straint condition by deleting the last term in Eq.
(3.9) which contains the undetermined Lagrange
multiplier A, . The new algebraic terms contained in

Eq. (3.9) are defined

where

and

F;(r)= — V F;(r)
4n.

p, ( r )=p ( r ) =g fF; ( r ) +p (r0), (3.17)

(3.18)

and

D,J [F; iFJ]—— (3.10) —Sr 2Z, 1 —e-'"
4~ T

(3.19)

R; „=[F;
i

U' U„] . (3.11)

We see that the electron repulsion energy terms
contained in Eq. (2.16) may thus be expressed as

[pe ~ pe ] 2 [pe i pe ]=g fi g iik g cmkcnkRimn
i k m, n

——, g f;AD,i, (3.12)

g Qjifj =P rik g Cmkenk imn ~i
k m, n

where

(3.20)

We may use our previous variational fitting
methods to select a set of coefficients f; which is
the solution of the algebraic equations

which contains the same analytic integrals required
for the fitting process, Eq. (3.9).

QJ=[F

IFFY]

G; „=[F; i

U' U„],

(3.21)

(3.22)
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and

W; =[no I

F", ] . (3.23)

Whenever V, (r) is fit, exponentially decaying
F;(r ) are used. The corresponding charge distribu-
tion F;(r) [c.f. Eq. (3.18)] is neutral:

IV. DISCUSSION

In LCAO calculations on atomic neon, we have
tested the following four methods for fitting the
Coulomb potential described above.

(1) Least-squares fit (LSF) to p using Eq. (3 ~ 3)
and the charge preserving constraint Eq. (3.4).

(2) Variational fit to p using Eq. (3.9) and the
constraint Eq. (3.4).

(3) LSF to VEq. (3.14). [Actually in this work
we use the essentially equivalent and much more
practical method of Ref. 17 in which first the den-

sity is fit via Eqs. (3.3) and (3.4) and the result fit
via Eq. (3.14) using a common set of fitting func-
tions. The advantage of this procedure is that a
common set of integrals is used in the construction
of the Hamiltonian matrix and in the fitting pro-
cess.]

(4) Variational fit to V Eq. (3.20).

These tests are compared with each other and the
exact results of a Herman-Skillman calculation in
Tables I—III. These calculations used three dif-

f F;(r)dr= — f 7 F;(r)dr=0. (3.24)
4~

Thus, the condition that V be generated by a neu-

tral charge distribution is automatically satisfied,
and there is no need to impose such a constraint in

fitting V.

ferent Gaussian basis sets—the Ss/3p, 115/6p, and
14s/9s basis sets for neon given by van Duijne-
veldt.

The most direct method of testing these various
fitting methods is to simply fit some given elec-
tronic density. We chose instead to perform com-
plete SCF calculations using various bases exactly
as they would be used in practical calculations.
This has the disadvantage of introducing second-
order errors due to the fact that inexact fits intro-
duce errors into the SCF orbitals. However, from
these calculations we find that Eq. (4.4) (below) is
always satisfied. Thus, even in full SCF calcula-
tions Eq is minimized over the appropriate varia-
tional space when either variational method is em-

ployed and we conclude this will be the case in all
SCF calculations.

The Coulomb potential fitting basis sets were
chosen so that each s-type orbital function generat-
ed an 5-type fitting function with an exponent
twice that of the orbital function; each p-type orbi-
tal function generated a fitting function of the
form r exp[ 13r ] whe—re P is twice the orbital ex-

ponent. In both cases in which V is fit an addi-
tional exponent is needed for the term

(1
—5r

)
r

in Eq. (2.18) describing the variation of the field
near the origin. That exponent was chosen to be
1.0 bohr

For fitting p', Eq. (2.13), in the exchange ener-

gy we use the same basis set as above but with ex-
1

ponents reduced by —, . The fit is performed by nu-

rnerical LSF procedures using every point of the
Herman-Skillman grid. We chose +=0.7 for this
work. The exchange potential is quite a smooth
function of r and the particular methods used to

TABLE I. Comparison of Herman-Skillman (HS) results with various LCAO energies (in hartrees) using van

Duijneveldt's 5s/3p Gaussian basis set for atomic neon.

Variational p LSF p Variational V LSF V HS

Error
(ED+El +Ep —EHs)

&ls

&Zs

E'pp

—127.486 234
—0.019708

0.000 247

0.541 981
—30.230 417
—1.122 596
—0.331 321

—127.420 902
—0.076 154

0.000445

0.542 064
—30.220 894
—1.114430
—0.323 940

—127.746 884
0.018 808
0.235 225

0.545 024
—30.419 647
—1.114235
—0.347 766

—127.417 525
—0.713211

0.634 267

0.542 207
—30.206 875
—1 ~ 107 363
—0.322 096

—128.038 676

—30.351 150
—1.291 325
—0.465 110
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TABLE II. Comparison of Herman-Skillman (HS) results with various LCAO energies (in hartrees) using van

Duijneveldt's 11s/6p Gaussian basis set for atomic neon.

Variational p LSF p Variational V LSF V HS

Eo

E2
Error

(Eo+El +E2 —EHs)
&ls

2s

E'2p

—128.031 412 64
—0.001 652 34

0.000 003 50

0.005 614
—30.343 769
—1.284 919
—0.458 272

0.005 615
—30.341 687
—1.282 608
—0.456 024

0.005 614
—30.346 278
—1.287 406
—0.460 758

0.005 615
—30.341 690
—1.282 608
—0.456030

—30.351 150
—1.291 325
—0.465 110

—128.017 11336 —128.043 930 55 —128.017 146 55 —128.038 675 75
—0.015 966 04 0.010675 54 0.016 811 41

0.000 018 56 0.000 193 53 0.000 897 11

Eo ———, f p, (r)V, (r)dr= —,[p, ip, ] .

The first-order, in p, —p„correction energy is

Ei = , lP. I p. -p.1—
f V, (r)p, (r)dr

(4.&)

+ f V, (r)V' V, (r)dr
4~

The second-order correction is

(4.2)

1E2= , lp, p, I p, P—,l—-
f p, (r)V, (r)dr —f p(r)V, (r)dr

f V, (r)V V, (r)dr . (4.3)

treat it are irrelevant to the following discussion.
In the tables Eo is the total energy without

corrections for fitting the Coulombic energy, i.e.,
the interelectronic Coulombic energy is approxi-
mated by

In calculations on atoms and molecules, the com-
putation of the second-order correction would in-

volve four center terms, and thus its direct compu-
tation would defeat the purpose of fitting. Howev-

er, we compute it in this work to compare its mag-
nitude with that of the first-order correction and to
facilitate comparison with the exact Herman-
Skillman results. The error, AE =Eo+Ei+E2
—EHs, where EHs is the Herman-Skillman total

energy, is exclusively due to orbital basis set in-

completeness and the indirect effect which is that
the errors in fitting the potential induce slight vari-
ations in the SCF orbitals. This latter effect is
quite small as shown by the near independence of
hE on the fitting method for a given orbital basis
set. (A multiple precision computer code was
developed to eliminate any numerical errors. ) Also
included in the tables are the one-electron orbital
eigenvalues, e;.

One caveat must be mentioned. W'e did not op-
timize the fitting basis sets. Our prescription for
choosing these sets is most appropriate to fitting
the charge density —it allows an exact fit to the di-

TABLE III. Comparison of Herman-Skillman (HS) results with various LCAO energies (in hartrees) using van
Duijneveldt's 14s/9p Gaussian basis set for atomic neon.

Variational p LSF p Variational V LSF V HS

Eo
El
Ep

Error
«o+El +Ex —EHs)

&ls

E'2p

—128.038 699 21
0.000 307 30
0.000 000 12

0.000 284
—30.350 949
—1.291 142
—0.464 929

—128.040 406 09
0.002 183 95
0.000 000 36

0.000 284
—30.351 230
—1.291 441
—0.465 223

—128.037 965 04
—0.000 428 87

0.000 002 15

0.000 284
—30.350 800
—1.290 994
—0.464 780

0.000 284
—30.351 230
—1.291 442
—0.465 223

—30.351 150
—1.291 325
—0.465 110

—128.040 410 59 —128.038 675 75
0.002 11709
0.000 007 09
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agonal, in the orbital basis set, terms in p, . Thus,

there is a slight bias in favor of charge-density fit-

ting relative to fitting the potential directly, partic-

ularly for the 5s/3p basis. However, for the two

larger basis sets we expect the results of optimiza-

tion to be insignificant. Thus, we focus on the

results of the calculation involving the larger basis

sets. For our neon results the relationships,

and

~

E~( Variational p)
~

&
~

E~( Variational V)
~

&
~
E, ( LSF p)

~

&
~

E, ( LSF V)
~

(4.4)

0&E2( Variational p) &Et( LSF p) &Ez( Variational V) &E2( LSF V), (4.5)

are usually obeyed. We suspect that for optimized
basis sets of equivalent sizes these inequalities al-

ways hold. Furthermore, the variational fitting
procedures use a common set of integrals in both
the computation of the total energy and of the fit
to the potential. However, this latter advantage of
variational over LSF methodologies is lost if the
two-step process of fitting first the charge density
and then the potential to a common set of fitting
functions is used. ' Nevertheless, we recommend
variational fitting methods.

In any truly variational LCAO calculation the
total energy will be higher than the total energy of
an exact calculation. Thus, one of our goals in us-

ing variational fitting procedures is that the errors
in the energy due to the fitting procedure are negli-

gible compared to the energy difference mentioned
above due to using a finite orbital basis. As shown
in Eq. (4.5) and our data we find the variational
methods are superior to their corresponding LSF
methods in this respect. For the simple atomic
calculations reported here the differences in E2 be-

tween the variational p fit and the LSF p fit are
small in magnitude. We have noted in molecular
calculations that the differences between these two
methods are more pronounced and are manifested
directly in a slower rate of convergence of the SCF
procedure for the LSF p fitting procedure. We
suspect these differences (in E2 and convergence
behavior) between the variational and LSF V fit-
ting techniques will also be more pronounced in

the more complicated molecular applications.
A final point that we wish to make is that unless

a grossly inadequate basis set is used (such as we

used to fit V in our Ss/3p calculations) E~ will be
of order E&. Thus, without computing E2, one
still has an excellent estimate of its magnitude pro-
vided E& is computed. We feel that a further ar-

gument for computing E& (a computationally
economical proposition) is that its magnitude can-

not be predicted a priori and in our earlier calcula-

tions on molecules we find that it can often be a
significant fraction of the binding energy. Furth-
ermore, in molecular potential-energy curve calcu-
lations using fixed basis sets it invariably changes

sign as the internuclear distance is varied.

V. CONCLUSION

We have extended earlier work that introduced
variational fitting methods in density-functional
calculations to include the more prevalent case in

which the potential rather than the charge density

is fit. The variational fitting methods have been

shown to be more accurate and more economical
than nonvariational fitting methods in various

LCAO calculations on atomic neon.
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