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A theory investigating collision-induced absorption in dense rare-gas mixtures is
presented. The basic assumption of the theory is that the collision-induced dipole mo-
ment of a pair of dissimilar atoms is proportional to the force acting between them. It is
then shown that the relevant dynamical variable is the interdiffusion current fluctuation,

NA N~J =(1-x) g,.
"

v; —xg, v;, in the fluid mixture. The correlation function and absorp-
tion spectrum are generated by the Zwanzig-Mori theory of Brownian motion. Two
modes are theoretically predicted. A diffusive mode, due to the mutual diffusion of
rare-gas atoms, produces a low-frequency dip-in the line shape whereas an oscillatory
mode, due to the oscillations of atoms in the local structure of the fluid, generates a cag-
ing spike in the wing of the spectrum. Spectral behavior is shown to depend on density,
concentration, and atomic masses of the two components of the mixture and is discussed
in detail.

I. INTRODUCTION

The far infrared absorption by rare-gas mixtures
has been one of the most explored collision-induced
processes in the last twenty years. A large number
of theories have been proposed, but each deals with
restricted aspects of the problem and none of them
is applicable in all circumstances. '

The theoretical analysis has first been developed
for low-density mixtures. Using quantum-
mechanical methods, several authors have at-
tempted to compute the absorption coefficient; re-
cent work is particularly accurate. Some other au-
thors ' have made classical calculations in which
the trajectory of the colliding pair is described on
different levels of approximation. The line shape
has also been investigated through moment ana-
lyses' '; semiempirical expressions for the ab-
sorption coefficient have been proposed. However,
the number of theoretical studies is much more
limited for dense rare-gas mixtures. Four types of
theory may be distinguished: (i) Van Kranendonk
and Lewis' have proposed a kinetic theory
based on the assumption of the temporal superposi-
tion of dipoles induced in successive collisions.
This theory has predicted a low-frequency dip in
the spectral density produced by the interference

between successive collisions; its validity is restrict-
ed to moderate densities. (ii) Lewis and Tijon
have simulated a two-dimensional Lorentz gas by
computer calculations. The system consists of an
assembly of fixed scatterers, randomly distributed,
through which a light particle moves. The theory
generates the line shapes but the limitations of the
two-dimensional model are difficult to ascertain.
(iii) Buontempo et al. ' have interpreted their
data on dilute solutions of He, Ne, and Kr in
liquid Ar with the help of a model involving an
impurity-doped crystal. Alternatively, they applied
a memory-function technique to analyze the trans-
lational motion of an impurity isolated in the
liquid. liv) Finally, Gray et al. have calculated
for liquid mixtures the first two classical moments
of the absorption spectrum. Their formalism,
where only two- and three-body interactions are
considered, has led to expressions which have been
evaluated with the help of a computer. Although
a quantitative theory of the spectrum at low densi-
ties is available and a phenomenological one at
moderate densities has been advanced, dense rare-
gas mixtures require new developments.

The purpose of the present paper is to calculate
the collision-induced absorption spectrum in rare-
gas mixtures for a wide range of densities, concen-
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trations, and masses of the two components. The
basic assumption of the theory is that the
collision-induced dipole moment of a pair of dis-
similar atoms is proportional to the force acting
between them. The spectrum is then analyzed by
adopting the interdiffusion current fluctuation as
the basic dynamical variable and by treating its
temporal evolution with the help of the Zwanzig-
Mori method. The parameters of this theory are
calculated analytically whereas some integrals are
estimated by applying a lattice-gas model. A sim-

ple interpretation of the spectrum is given and the
evolution of the profile with density, concentration,
and atomic masses are discussed in detail.

II. THEORY

A. Collision-induced absorption

The absorption coefficient a(m) can be obtained
either from the golden rule of quantum mechanics
or, equivalently, from the linear response theory.
One finds

(l tts"}I— dte '"'4(t),
3ficV

where 4(t) =(M(t) M(0)) is the autocorrelation
function associated with the total dipole moment
of the fluid mixture. In the theory of collision-
induced absorption one frequently uses the spectral
density G(co) given by

G(co) = co tanh
4n Pfuu

3fic V 2

=I dt e '"'4+(t) . (2)

In this equation the correlation function is written
in its Hermitian form

4+(t)= —, (M(0)M(t)+M(t)M(0) },
and in what follows, 4+(t) will be calculated
within the framework of classical mechanics. For
a binary mixture of rare-gas atoms, the macroscop-
ic dipole moment may conveniently be decomposed
in pair contributions involving dissimilar atoms,
triplet contributions involving similar and dis-
similar atoms, and high-order contributions. In
this context, it is sufficient to consider only the
Ng XN~ pair contributions,

N~, Ng

M= g pii' t

l, l

with N& atoms of species A and Nq atoms of
species B T. o each pseudomolecule (i,i'),
corresponds an induced dipole moment

dv;

N~, N~

M=c g fs

where r; is the position vector of atom i, r; that
of atom i', and r;; = r; —r;. It has been recog-
nized earlier that the dipole moment y, (r;; ) is basi-
cally a short-range function of r (Ref. 29} due to
the existence of overlap forces during collisions.
However, further investigations based on
quantum-chemical calculations ' ' have shown
that the dispersions forces play some role too and
contribute to the long-range part of the induced di-

pole. One thus adopts the analytical form
Jll(r) —pQe + c7 /r, where po, A, , and c7 are
constants which may be evaluated by a moment or
line-shape analysis of low-density data, or, obtained
from ab initio quantum calculations. Alternative-
ly, one may assume that the induced dipole mo-
ment associated with a pair of dissimilar atoms is
proportional to the force acting between them,
namely, p;; =c f;;, c being a constant. This as-
sumption is roughly supported by comparisons in
the gas phase between the expression of p(r) and
that of the force derived from commonly used po-
tential, and the observation that the range of the
overlap induced dipole and the force are approxi-
mately proportional. ' It is nevertheless useful to
assume this proportionality, in which case the ex-
pression of the total dipole moment M may be de-

duced in the following way. The equations of mo-
tion of the atom i of species A and the atom i' of
species B are, respectively,

dv;
(3a)

mg

N~ N~

g f;J +g f;;, (3b)
dt m~

where mz and m~ represent the mass of the atoms
and the indices i,j run over all atoms of species A

and i ',j' run over all atoms of species B. Then, us-

ing the action-reaction law f;; = —f;;, letting
x =N& l(N& +Nz) be the concentration of species
A, introducing the interdiffusion current density
fluctuation j (r, t) as well as its zero k Fourier
component J(t) (Refs. 35 and 36), and writing
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one finds

j (r, t) = (1 x)g—v; (t)5(r r; (—t))

N~
—xg v; (t)5(r —r; (t)),

J(t)= j -„,(t)
N~ N~

=(1—x)g v;(t) —xgv; (t),
J l

d J(t)
dt

1 —x x+
mz m&

M=c

(4)

The presence of the interdiffusion current fluctua-
tion J in this problem emphasizes that collision-
induced absorption spectra of rare-gas mixtures
describe the mutual diffusion of atoms in these
mixtures.

B. Equation of motion

d 8(t) =i08(t) —I ds K(s)8(t —s),
dt

(7)

I

The calculation of the autocorrelation function
associated with the total dipole moment is thus re-

duced to that of the correlation function which de-

scribes the interdiffusion current fluctuation in the
mixture. To obtain a theoretical expression for
this function which is not well known in the litera-

ture, we use the Zwanzig-Mori theory of Brownian
motion. The correlation matrix 8(t) constructed
on an appropriate set of basic dynamical variables
thus satisfies the generalized Langevin equation

where 0 and E(s) represent the frequency and

memory matrix, respectively. When the mechan-

ism involved is essentially diffusive, a convenient

way to solve this equation is to use the Kivelson-

Keyes successive approximation procedure, which

is briefly discussed in the Appendix. This pro-
cedure consists in generating, from a relevant

dynamical variable, a basic set of correlated
dynamical variables which have similar time scales.
Then the generalized Langevin equation is solved

in the subspace described by the basic set which

contains these so-called slow variables. The useful-

ness of the method is insured when the dimension

of the basic set required by the phenomenon is not

too high, which is the case for diffusive-type mo-

tion (see Ref. 38).
In the present case, the method is used as fol-

lows. The basic set of dynamical variables is
formed by the interdiffusion current fluctuation J
and by its first and second time derivatives at time
t=O, i.e., J and J . No significant improve-

~ (i) (2)

ment is obtained by including J' ' to the basic set.
In the Kivelson-Keyes approximation, the memory
matrix K(t) is written K(t) =K5(t), with

K=21im I dte "K(t) .
z p

The projected Liouville operator (1 P)L is elim--

inated from the transport matrix I = —i 0+K, a
step which is accomplished in a rigorous way
without approximation. Once Eq. (7) has been
solved by applying the procedure outlined above,
the correlation function (M(t) M(0) ) may be
determined. One obtains

(M(t).M(0)) =c +
mz m~

(8)

(M(t) M(0))
(M(0) M(0) )

2A. ,A,2e
—A,pf

(A, )
—A,2) +A,3 (A, )

—A,2) +A, 3
2 2 2 2

(~2+ A 3
—A f )sink 3t +{A f +A 2+ A 3 )cosA 3t

A3

In this expression A, &, A.2+i X,3, A,2
—iA, 3 represent

the real and complex conjugate roots, respectively,
of the transport matrix I . They satisfy the secular
equation depending on three parameters,

4 4 4
CO i 2 &

CO i—1 +A, 2
—COP~ 2

—1
(cop) cop (cop)

( J(t) J(0)) 2 ( J' (0).J"'(0))dt, COp
———

( J(0) J(0)) ( J(0) J(0))

The spectral density 6 (ar), given by Eq. (2), may
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then be derived by Fonrier transforming Eq. (7).
This result does not need the solution of the secu-

lar equation, which is required to obtain the corre-
lation function, and may be directly expressed with

the help of the three parameters just mentioned.

By either method one readily obtains

The problem which remains is to estimate the
parameters w, mo, and co].2

C. Estimation of parameters
2

M(0)
COO

1 —-2
QPO

N]1—
( 2)2

2
6) +co% 1—

2

In the Zwanzig-Mori method, the physics is con-
tained in the parameters of the transport matrix I .
Thus, any ad hoe approximation or fitting pro-
cedure employed to estimate these parameters can
hide the reality of the physical processes involved.
Fortunately, analytical expressions for ~, coo, and

co] may be established in classical mechanics
without approximation, namely,

D~a 1 —x x+
k T Ptlg P?tg

4mp 1 —x x d
Q)o = + «» g~a(r» )

3 1tlg Plg df ]]&

BQ 1]'

~~]]'

4 4' 1 —x x BQ»
N]= + «»kg~a(&ii ) 2

3???,gg ply pal g
L

2 )2I
~ Q11'

+?']]'
P]]'

(1—x)p 1 —x x+ + dr&i dr&2 g~'aa(r'»rl ~r2)
37?1g ??lg Nl g

2 2

+ 2 + ~ 2~»'~]2' ~? ]]' Bf12' ? ]]' 3P']] ~?']2 F']2 ~?']2 ~P]]

(riI ri2)'
+

»' ]2'

BQ]]' 3 Q]]~
2

~]]' ~~]]' 2

1 ~Q ]2t 9 Q]2e
2

~]2' ~~]2' 2

2xp 1 —x+ + «]]'dr2Ãma(r] r2 r])
3l?Tg ??j,g

1 ~Q]]' ~Q2]' 1 ~Q]]' ~ Q21' j, ~Q2]' ~ Q11'2 2

+ 2 + 2~]]'?2]' ~? ]]' ~~2]' ~]]' ~~]]' ~?'2]' ? 2]' ~? 2]'

2

+ 2 2?'1]'?'2]'

1 BQ]]~
2

P2]' BP2]' Q? 2]'
2

Here Dg g represents the mutual diffusion coeffi-
cient, p the number density of the fluid mixture,

mz& the reduced mass of a colliding pair and

Q]] ——Q {r]]) the pair potential between the two
dissimilar atoms (11').

The value of the correlation time r depends on
that of the mutual diffusion coefficient which at

I

the present time is not accurately known (see Ref.
39). It is worth noticing that w is nothing but the
correlation time of the interdiffusion current Auc-

tuation J (see Ref. 36).
The calculation of coo and m] involves the two-

and three-particle distributions functions gz~, gzzz,
and gggg, whose evaluation for fiuid mixtures is a
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problem in itself and has only been investigated in

the last few years. The molecular-dynamic re-

sults, based on different type of approximations in

simulating the rare-gas mixture, are as yet qualita-
tive. Nevertheless, the integrals involved in Eqs.
{9b) and (9c) may be estimated by emphasizing the
following points. The short-range contributions to
the integrals are largely dominant due to the over-

lap character of the induced dipole. g„~(r) may
—pu&3(r)

then be replaced by its limit e ",which is

valid for small r or very low densities. Vfhen the
calculations are performed with the help of com- .

puter generated g„z(r), the results are only changed

by a few percent even at liquid densities. The
three-body integrals which appear in ei are es-

timated from a lattice-gas model developed else-

where for pure fluids and are extended to mix-

tures as follows. In agreement with conformal

solution theory, a one-component fluid is substi-

tuted for the Quid mixture and the integration pro-

cedure is then the same than that described in Ref.
44. Moreover, the reference density po now

depends on the concentration of each component in

the real fluid. By applying this simplified model,

mi becomes

4 4n. 1 —x x
QPi= P +

3 mg 7??g

(1—x) ~ x
2

J «&i !4a('r» )

Pffft

Po Pl g Po Bfi i~

3 Qi&~
2

+r»
Br»

It must be pointed out that the value of po is not
entirely fixed by the lattice-gas model. po may
conveniently be identified with the close-packing
density, namely, po ——~2/rro, where oo is the effec-
tive diameter in the substituted Quid, given by the
van der %aals mixing rule (see Ref. 40). Actually,
one would expect the value of po to be contained

between the close-packing density and the solid

density of the mixture.
The quantum corrections to these results can be

evaluated by using the method given in Ref. 18.
The lowest-order quantum corrections of coo and

co~ amount to less than 10/o for the heavy mix-

tures like Kr-Ar but are greater in the lighter mix-

tures. A further investigation indicates that the
contribution for heavy mixtures of these correc-
tions to the spectra obtained by the theory is small

and leads to no essential improvement of the re-

sults.

III. ABSORPTION SPECTRA

Contrary to the low-pressure gas phase where

extensive experimental data are available, systemat-

ic investigations at higher densities, and, particu-

larly at liquid densities, have only been undertaken

recent1y. Although some discrepencies appear by
comparing different experimental data, due to the
intrinsic difficulties of experiment, the following
conclusions may be reached: (i) At liquid densities,
and for dilute solution of He, Ne, and Kr in liquid

Ar, ' ' ' the profile G{~)presents a low-

frequency dip (6&&2) 10 cm ') as well as a high-

I

frequency wing. Although not yet experimentally
detectable, G(0), the minimum of the dip, could be
close to zero. (ii) At lower densities, e.g., in highly

or moderately compressed mixtures of noble

gases, 7 s3 the dip narrows (6~~2 & 10 cm ') and

eventually escapes experimental detection. (iii) At
high frequencies the band shape is non-I. orentzian
and is weakly density dependent. (iv) In dilute

solutions, the maximum of G(m) shifts to lower

frequencies and the width of the high-frequency

wing decreases when the mass of the dissolved

atom increases.

Applying the theory described in this paper, the
experimental data [Fig. 1(a)], may be interpreted as

follows [Fig. 1(b)]. (i) Two modes are theoretically

predicted, a dissipative mode due to the mutual

diffusion of atoms and an oscillatory mode associ-

ated with their oscillations around a given site in

the Auid. These two modes correspond to the real

root A, i and to the complex conjugate root A,2+ii,3,

respectively, of the transport matrix I . (ii) Their
spectral behavior may conveniently be illustrated

by Fourier transforming the first and the second

terms of the correlation function (8) (Fig. 2). The
oscillatory mode, obtained from the second term,
generates the wing at medium and high frequen-

cies. At liquid densities its spectral behavior is

governed essentially by mo, a quantity simi1ar to
the Einstein frequency

cus p/3m J dr g——(r)r) u(r)/r)r

of an atom in a cell of a solid and which charac-
terizes the rattling motion between dissimilar
atoms. In turn, the dissipative mode, obtained
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EXPT. THEOR.
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IV. DISCUSSION
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FIG. 4. Theoretical spectra;, ¹Arwith

xA, ——0.989, T=130 K, p=597 amagat; ———,¹Ar
with xA, ——0.989, T= 130 K, p=280 amagat. All spec-
tra are normalized.

sible for the dip. In turn, the caging spike col-
lapses, reflecting the disappearance of the cage ef-
fect and only simple binary collisions contribute to
the wing of the spectrum. Consequently, the
correlation function exhibits an overdamped oscil-
lation (Fig. 3). However, the far wing of the spec-
trum is only qualitatively given by the theory be-
cause the free motion responsible for this far wing
is not well described by the method used for solv-

ing the generalized Langevin equation (7).

G g)l

1.0

0.5

I I I I

0 20 40 60 SO 100 120 140 ae lCIII i)

FIG. 5. Spectral contributions to the profile.¹Arwith xA, ——0.989, T= 130 K, p =597 amagat;
———,¹Arwith xA, ——0.989, T=130 K, p=280
amagat.

The present theory emphasizes the crucial role
played in the description of collision-induced ab-
sorption of atomic mixtures at high densities by
two modes of atomic motions, the diffusive mode
due to the mutual diffusion of atoms, and the os-
cillatory mode due to oscillations in the local struc-
ture of the fluid. This fact had already been
recognized in the study of depolarized light scat-
tered by dense rare-gas fluids (see Ref. 44). The
three-variable Zwanzig-Mori theory thus appears to
be a powerful tool for providing an estimate of the
spectrum provided its parameters are available. In
this sense, the description of the total dipole mo-
ment in terms of the interdiffusion current fluctua-
tion turns out to be a useful element of the in-

terpretation.
The proportionality between the microscopic di-

pole moment and the microscopic force requires
that the dip goes to zero at zero frequency. This
latter feature exhibited by the theory seems to be
supported by considering the incomplete low-

frequency data on atomic mixtures. If this propor-
tionality does not hold, the dip does not go to zero
and can have, as found in a previous theoretical in-

vestigation (unpublished), several shapes which
depend on the relative values of the parameters in-
volved. Clearly, available experimental data at low

enough frequencies are crucial for the investigation
of this matter.

The differences observed between theory and ex-
periment are due to deficiencies in this theory,
which we summarize here. A primary cause is
likely to be the truncation of the Zwanzig-Mori ex-
pansion. Also, the parameters v, coo and co& may be
inaccurate because of uncertainty in the value of po
and in the choice of the potential. Finally, a com-
plete quantum treatment important for the far
wing, requires a new development outside the scope
of this work.

It is interesting to compare this theory with that
of Van Kranendonk. ' The latter is based on
kinetic considerations where the temporal superpo-
sition of dipoles induced in successive collisions in-
terfere and produce a dip in the spectrum. The
function describing the shape of the dip is convo-
luted with that describing the remainder of the line
to obtain an estimate of the complete spectrum. In
the present work, the dip results basically from the
mutual diffusion of the atoms although its shape is
determined, at high densities, by the contribution
of the diffusive mode and by the contribution of
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the oscillatory mode. The latter is the counterpart
at low densities of the binary-collision portion of
the van Kranendonk spectral density. The present
theory thus extends the calculation of the infrared
absorption in rare-gas mixtures to high densities by
treating the many-body interactions explicitly, and

gives the density dependence of the complete spec-
trum.

This work was supported in part by a grant
given by the Scientific Affairs Division of NATO.

APPENDIX

The Zwanzig-Mori theory ' is well known and

only a few comments should be sufficient here.
According to this theory, the correlation matrix
8{t}=(A{t)A (0})of a dynamical quantity
A =(A i,A2, ...,A„) obeys the generalized Langevin
equation,

dynamical variables generated by

(
J' ', J"',..., J'"', ..., I. (ii) Successive approxima-

tions for ( J (t) J (0) ) are obtained by constructing

8(t) on the successive subspaces I J I,(O)

I
J'oi, J'"J, , [ J+', ..., J'"'J, and by assigning to

the corresponding n &(n memory matrix the analyt-

ical form Jt'"'(t)=K'"'5(t} with

K'"'=2 lim f dt e ~K'"'(t) .
z~o

The approximations of this sequence are called the
one-variable, the two-variables, etc., and the n-

variable theory, respectively. (iii) By eliminating in

a rigorous way the projected Liouville operator ap-
pearing in the memory matrix, the transport ma-
trix of the n-variable theory r'"'= —in'"'+ I|.""',
can be explicitly given in terms of the time integral
of ( J (t) J (0) ), and its first (2n) even time deriva-

tives. Practically, in the frame of the three-
variable theory, the transport matrix may be ex-

pressed as

d8(t)
dt

=iQ8(t) —f ds It (s)8(t —s),

(A1)

0 0

4
CO)

2
—coo 0

COO

where 0 is the n Xn frequency matrix and E the
corresponding n X n memory matrix. This equa-
tion can be solved by successive approximations
which converge, in principle, to the exact solution.

In the present case, the method involves the fol-
lowing steps. (i) The interdiffusion current fluc-
tuation J (pq;t) is expandable in a Taylor series in

0 0
+ 0 0

4

0 0 —1
(to('))'

(A3)

n

J(pq;t) = g —J'"'(pq;0) .
5 On

This equation is reinterpreted in terms of the
Zwanzig-Mori theory by stating that J (pq;t) is
contained in that part of the Hilbert space of

(A2)

where v, coo, and co& are defined in Sec. II B. By
considering the expression (A3), the solution of the
Langevin equation (A1) is straightforward and
yields the expression (8) for the element of the
correlation matrix

822(t)=( J '(t) J"'(0)) .

'Equipe associee au Centre National de la Recherche
St:ientifique.
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