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A general expression is derived for the energy-loss, or stopping, cross section for parti-

cles incident on linear or symmetric-top molecules, within the context of the adiabatic-

nuclei approximation for vibration and rotation, or only rotation. The derivation is an al-

ternative to that of Shimamura, and confirms his proof that the cross section is, when

summed over all final rotor states, independent of the initial rotor state. It involves a

sum rule for Clebsch-Gordan coefficients that, if not newly derived here, is certainly un-

familiar. The expression relating body-frame (fixed-nuclei) and laboratory-frame cross

sections for linear and symmetric-top molecules is generalized to the asymmetric-top mol-

ecule, and it is shown that for this case the cross section for transitions between any rota-

tional states can be written as a simple linear combination of the cross sections for the

ground rotational state only in special circumstances. Application of Shimamura's

theorem to this case leads to a general expression, applicable to all three classes of mol-

ecules, that is ideally suited to use with the results of standard fixed-nuclei scattering cal-

culations. Applications near threshold and/or for polar molecules are discussed and illus-

trated for electron collisions with CO.

The energy-loss cross section for an inelastic col-
lision is the product of the usual differential cross
sation and the energy lost ior gained) by the pro-
jectile. The stopping cross section is the energy-
loss cross section integrated over all scattering an-

gles. The energy loss per unit path length is this
cross section multiplied by the number density of
gas molecules, and the energy loss per unit time is
this multiplied by the projectile velocity. For an
ensemble of molecules the quantity of interest usu-

ally involves the average over the populations of
molecular states in the gas, and some velocity dis-
tribution of the projectiles. ' It has recently been
shown that the energy-loss and stopping (as well

as the usual differential and integrated) cross sec-
tions for a given electronic state are, when summed

over all final rotational states, independent of the
initial rotational state of the molecule under condi-
tions where rotational motion of the molecule is
small or negligible during the collision process.
The general proof applies to a broad range of mol-

ecules (linear, symmetric-top, asymmetric-top) and

projectiles (charged and neutral structureless parti-
cles). Thus, when the slow-rotation assumption is
deemed appropriate, the total differential and in-

tegrated cross sections and the energy loss per unit

path length and time are independent of the rota-
tional temperature of the gas—an extremely useful

result. It not only simplifies interpretation of phy-
sical processes, but also the computation of the
cross sections themselves.

Neglect of the rotational motion of the molecule

during the collision amounts to treating the

scattering event as for a molecule fixed in space
(but perhaps vibrating) during the collision process,
followed by an average over all orientations of the
molecule relative to some coordinate system fixed
in the laboratory. This is the usual adiabatic ap-

proximation, which has been extensively applied
in electron-molecule collision theory and calcula-
tions. The purpose of the present note is to pro-
vide, for the two simplest molecular cases, a proof
of the theorem stated above by a route alternative,
but equivalent, to that of Shimamura, to consider
its application to asymmetric-top molecules, and to
present the resulting general expression for the
energy-loss cross section in a form best suited to
the exploitation of current computational tech-
niques and available results. For symmetric-top
and asymmetric-top molecules the discussion will

be restricted to the case of a common initial and

final electronic state, but this restriction will be re-
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laxed for linear molecules. It will be assumed that
the molecule is rigid with respect to rotational
wave functions and energies, i.e., that vibrational
and rotational motion are separable.

For linear and symmetric-top molecules ' the
differential cross section in the slow-rotation
(adiabatic-nuclei) approximation can be written

do ~ i t ~ s doC('I ' AA )

lt

where C( . . ) is a Clebsch-Gordan coefficient, l,
is the angular momentum transferred during the
collision ( j '= j + 1„A' = A+A, ), and k and
k' are the initial and final relative momenta of the

collision partners. These are related to the rota-
tional (EJ ) and vibronic (E „) energies (in atomic
units = 27.2 eV) of the molecule by

k 2(E~It+E E~~ ~ E ~) ~ (2)

The average over initial and sum over final degen-
erate magnetic sub-states has been taken in arriving

at (1). For linear molecules A and A' specify the
electronic angular momenta about the molecular
symmetry axis, for symmetric-top (and spherical-

top) molecules they specify the components of ro-
tational angular momenta about this axis.

It will be seen that for asymmetric-top molecules
(1) can be generalized to

1 A, A"""'=—y y y y y rJ„,C(j(,j',AA, )r&„',,r„-,C(JI q', A"A', )I,-;
dQ

t

(3)

where A' = A+A, and A"'=A" +A', . The coef-
ficients I are elements of the real, orthogonal
transformation

(4)

I

fixed to the body of the molecule, assuming the
molecule to be fixed in space, and then rotated
geometrically to the laboratory-fixed coordinate
frame. This amplitude is independent of rotational
motion and can be written (for particular initial
and final vibronic states av and a'v')

where E& are the rotational energies of the mol-

ecule (depending on both j and ~), and
flu, aU (~)=&v If&a «)

l

v'& (6)

HJJ ~ =
&j Amj

l
H.o—i Ij A'mg &

with H„, the rotational Hamiltonian and
~
jAmj )

the rotational wave function for a symmetric top.
Equation (1) is a special case (H~q diagonal) of
(3).

The precise definition of the dynamical partial
/, A, A

cross sections do „„/dQ in (3) is not of direct
interest here, our only concern being that they exist
and that the dependence on initial and final rota-
tional states in (3) is confined solely to the
kinematic ratio k'/k and the Clebsch-Gordan coef-
ficients. This is the essential content of the
adiabatic-nuclei approximation for rotation. There
is no restriction on the degree of sophistication
with which the dynamical cross sections are ob-
tained. This is, of course, a subject of continued
interest.

It wi11 be instructive, however, to pursue their
definition a little further in order to fix ideas.
Consistent with the adiabatic-nuclei approximation,
they are most conveniently obtained from a scatter-
ing amplitude calculated in a coordinate frame

here R should be understood as shorthand for the
collection of nuclear coordinates~nly for a dia-
tomic molecule is it a simple vector. Similarly R
represents the simple polar angles (8,$) only for a
linear molecule; it is, in general, the set of three
Euler angles. The volume of angular space, V, for
the linear molecule is 4m. , but for the general case
is 8m . If the adiabatic approximation is made for
rotation only, then the (6) is a formal representa-
tion of the scattering amplitude for a particular vi-
bronic transition. ' If the fixed-nuclei approxima-
tion is also made for vibration, then (6) involves a
radial integral over vibrational wave functions of
the scattering amplitude f (R) calculated for a
range of internuclear separations. "

The scattering amplitude f~„„(R) is then mul-
tiplied by the product of initia1 and final rotational
wave functions R ~(R ) and R ',A (R ) and in-~J
tegrated over all R. If we take them to be normal-
ized symmetric-top functions D~~ (R ), as for
linear and symmetric-top molecules, then their pro-
duct can be written'
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RJ (R )R
j'

(R
[(21'+1)(2j + 1)] m. —A'

V

X ggg(21~+1) A A ~ A D~w (R),

where ( . . ) is a 3-J symbol. Combining this
with (6), taking the mod-square, multiplying by
k'/k, summing over mj. and averaging over mj,
and integrating over all R must yield (1). It fol-
lows that the partial cross section for angular
momentum transfer in (1) can be written

l, ,h, ,A'

d'eau, a'u'
'r —"i "&

=( —1) ' doav, a'u'

dQ

l,A, —A'

=(—1) '~t duav, a'v'

dQ
(12}

where

(2l, +1)'f '0 '„(M)=au, a u

X If~„~„(R)DM~ (R )dR . (9)

R~,(R ) = g R 1 „(R)I'~~, . (10}

Given the rotational Hamiltonian for the molecule
in question, (10) results in the eigenvalue equation
(4). Using (10) to generalize (7) yields (3), where

now the dynamical cross section is

l,A, A

d'eau a'u' l„W, l„A,'=$ [f '„, '„(M)]*f'„, '„(M),
M

The integral (9) therefore effects the projection of a
particular "harmonic" of f „„(R), and the par-
tial cross sections are dependent on the projectile
energy and initial and final vibronic (but not rota-
tional} states.

Generalization to asymmetric-top molecules is

straightforward if the wave function is taken' to
be a linear combination of those for the symmetric

top, i.e.,

The values of A, and A,
'

in (11) are also restricted

by symmetry properties, e.g., the fact that A in

(10) can take on only even, or only odd, values re-

stricts A, —A,
' to even values or zero. These and

other symmetry properties can be more easily ex-

ploited in actual computations by using, instead of
(10), symmetry-adapted wave functions, ' but this

serves no purpose essential to our present concern.

Equation (8) can now be considered a special case

(A, =AI) of (11}.
For j=a=0, (3}reduces directly to

dt's

l,A, A'

bravo, a'u'l~ k' l l d Oau a'v'~I' r' (13}

Unlike (1), (13}does not permit a unique identifica-

tion of the dynamical cross section for arbitrary

l„A„A,' with a particular cross section for a tran-

sition out of the ground rotational state. If, how-

ever, the molecule has a plane of symmetry, the

number of unique dynamical cross sections for

I, &4 is sufficiently small that (13}is adequate for
their determination if the cross sections for the

ground state are known. It is also clear that for a
molecule with a high degree of symmetry only the

elements with A, =A,' may contribute significantly

in (13), in which case the simpler set of equations

characteristic of the symmetric-top molecule may

be an adequate approximation.
It will be helpful to have the definition

d'eau, a'v'
l, ,A, ,A,

d'eau, a'v'

still with the definition (9). These cross sections

are, in general, complex quantities, but their ima-

ginary parts make no contribution to (3), which

must be purely real. The real part of (11) is clearly
invariant under interchange of A, and A,'. If, in

addition, the molecule has a plane of symmetry,
then'

=—' I ~f.„,.„(R)I'« . (14)

This simple reduction follows from the corn lete-

ness of the D matrices over the space V= dR
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(for linear molecules the sum over A, is con-
strained to only one value, but since R is two-
dimensional the D matrices still comprise a com-
plete set). Thus (14) is simply a cross section for a
vibronic transition in a fixed molecule, averaged
over all orientations of the molecule. If electronic
and vibrational motion are uncoupled, we can also
sum (14) over u' to define

d'eau, a'
l,A, A

d'eau, a'

I (uiif (R)
i i

U)dR,
V

which follows from the completeness of the vibra-

tional wave functions. It will be noted that (14) is
simply the trace of the matrix of partial cross sec-
tion defined by (11). Thus if only a total cross sec-
tion is desired, necessary computational effort is
greatly reduced for an asymmetric-top molecule.

Now let us assume that the projectile kinetic en-

ergy is sufficiently high that k'/k can be taken as
constant with respect to rotational contributions.
Then (3) can be summed over all final rotational
states, neglecting contributions from the kinematic
factor. This will be indicated by the single sum-

mand J'( =j', j'A' or jY for the three types of
molecules). For linear molecules we simply use the
sum rule for Clebsch-Gordan coefficients to obtain
immediately

It has also been shown' that this fact combined
with the factorization (1) can be exploited to
analyze rotationally unresolved energy-loss spectra
for electron collisions with linear and symmetric-
top molecules in order to extract absolute rotation-
al cross sections. The key to this technique is the
fact that only a few quantities, the cross sections
defined by (8), depend on the collision dynamics.
It follows from (3), and the J independence of the
total cross section for asymmetric-top molecules,
that this approach may prove useful for this case
as well, where now the unknowns to be determined

by the analysis are the cross sections defined by
(11). Even if individual rotational cross sections
are not of direct interest, the technique can have
great value in providing the factorization of a total
cross section into contributions for particular
transfer of angular momentum, as in (14).

Now we can consider the rotational energy-loss
cross section, which for a particular transition
avj ~a'v' is given by

(17)

Separating (17) into rotational and vibronic com-
ponents, the latter reduce immediately using (16).
The rotational energy differences for linear and
symmetric-top molecules can be written (ignoring
dependence of A and B on U)

E~ Eq Bj '(j '+—I )+——(A —B ~ )A'

+auj,a'u'j' k +au, a'u'

dQ k dQ
(16) B~(j +—1)—(A~ —B~)A2 . (18)

Thus the total cross section is independent of j, a
well known result. For symmetric-top molecules
the sum over j' also effects the elimination of the
Clebsch-Gordan coefficients, and the sum over A'

for fixed A amounts to summing over all possible
A, . Thus the result is also (16). For asymmetric-
top molecules, summing (3) over ~' and using the
orthogonality of the transformation (10) introduces

5A-. The sum over j' reduces to 5A-5 '„and that
t

over A of the remaining product (I ~,) is unity.
The result is again (16). Thus the total cross sec-
tions for symmetric-top and asymmetric-top mol-
ecules are also independent of the initial rotational
states, as previously shown.

For symmetric-top molecules A corresponds to
the second principal moment of inertia of the nu-
clei and is generally comparable to B (if smaller
than B it is often called C, if equal to B we
have the case of the spherical top). For linear mol-
ecules A corresponds to the moment of inertia of
the electrons about the internuclear axis, and is
generally much larger than B and strongly depen-
dent on a. Consistent with the assumption of only
two degrees of freedom for the linear molecule, the
terms in Aa and Aa in (18) will henceforth be
neglected for this case (more properly, subsumed in
the vibronic energies). To evaluate the sum over J'
of the first term in (18) we use the sum rule (A5)
derived in the Appendix. The result, for linear
molecules, is
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I,A

dQ k I
' ' dngB 1,(l, +1}

I

+[(B ~ Bj—)(j +1) B—A'i+B Ai+2B AA, +E „E—„]

Now supposing that BN =B =B, (19}reduces to

dSavj a'v
QBl, (l, + I )

' +(E „E.„—BA,')— (20)

For symmetric-top molecules, with the restriction to the case a =a', we use the identity

2BA(A' A)+—(A —B}(A'~—A~) —=~AA, +(g

and note that the first of these terms vanishes when averaged (the energy EJ being independent of the sign

of A} over +A for fixed A, . The result is

I, ,A
k'

g g [Bl,(l, +1)+(A —B}A,]
' +(E „E„)— (21}

Equations (20) and (21) are, as (16},independent of J. Thus we have, for linear and symmetric-top mol-

ecules, an alternative proof of Shimamura's theorem, here slightly generalized to include electronic transi-

tioris for linear molecules. This generalization required the use of symmetric-top functions rather than

spherical harmonics to represent the rotational wave functions, without which the term in A, in (20) would

not have been correctly obtained. Generalization to electronic transitions in nonlinear molecules will neces-

sarily require the use of more sophisticated representations of the rotational wave function, but this will not

be pursued further here.
A similar reduction of the energy-loss cross section for asymmetric-top molecules has not been attempted

[further generalization of the sum rule (A5) would be required], but this is no doubt possible. We will rath-

er apply Shimamura's theorem, and seek the result analogous to (20) and (21). If the rotational contribution

is independent of J it must equal the value for J=0. Thus using (12)

I,A, A'

lt v At A

(22)

Using (4), the sum over ~' can be carried out to yield

(23)
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(24)

The elements of H„' ~, are simply expressed' in terms of l„A„A,' and the three principal moments of iner-
t'

tia of the molecule. It is noteworthy that only elements with
~

A', —A,
~

=0 and 2 are nonzero. Equation
1,

(23) is the general expression sought. It reduces to (21) if Hz z, is diagonal, and to (20) if, in addition, the

sum over A, is restricted to a single term and the restriction a=a is relaxed.
Shimamura's result can be expressed

k' f [f „„(R)]H„g „„(R)dR+(E „E„—)
where the scattering amplitude in (24} is that defined by (6). In deriving (24) it was assumed that both ini-

tial and final states are eigenfunctions of the same H„„equivalent to our assumption that

(A „,B „)=(A „,B „).

Shimamura also noted that the first term in (24) may be small "if the amplitude f „„(R) depends weakly
on the molecular orientation. " In (23) this corresponds to only the harmonics with 1, & 0 being significant.

The major advantage of (23} is that the partial cross sections defined by (11}are usually, or can easily be
made, a direct by-product of fixed-nuclei calculations. Their value is already apparent from (1}and {3).
This becomes even more useful if vibration as well as rotation is treated with, or can be assumed to satisfy,
the adiabatic approximation. Since the sum over v of the energy-loss cross section may be of interest, we

can take

cE lp QU —cx + p ~ Ey

and use (15) for the electronic terms. It is also easily shown, given the completeness of the vibrational wave

functions, that

g(E„, E„) "' —" =——f (v[fa (R)]*[Hvib~faa'(R)] I
v)dR,

I)

(25)

where the scattering amplitude in (25} is that in the right-hand side of (6), and H„;b is the vibrational Hamil-
tonian. Calculations in the body frame are required over a range of values of R in order to evaluate the in-
tegrals in (6) and (15), but it may well be both easier and more accurate to evaluate the right-hand side of
(25) than the left-hand side. In this case, we can represent the sum over v' of (23) by

~av, a' draw, a'v' k
dQ „. dQ k

/, A, A'

gggH', ' +(E E)—
l, A, A'

+—' f & v[fa a {R)]*[K„;b)fa a (R)]
~
v)dR (26)

If the vibrational wave function is well-localized
about the internuclear separation R (as for the
ground state), then (15) may be adequately approxi-
mated by the results of calculations at R only,
and it may also be adequate to approximate H„;b in
(26) by the harmonic oscillator Hamiltonian.

Concerning the validity of the adiabatic approxi-
mation itself, it is generally expected to break
down: (i) near threshold, (ii) near a resonance, and
(iii) for polar molecules. In all cases this is because
the interaction time is not, in a classical sense,

I

short compared to the molecular rotational or vi-

brational periods. Problems (i) and (ii} may be
somewhat mitigated by use of the energy-modified
adiabatic approximation. ' Problem (iii) is particu-
larly acute, as (11) diverges for forward scattering
and the angular integration of (11) is infinite, for
I, =1. This problem, as well as (i), may be partial-
ly solved by use of the multipole-extracted
adiabatic-nuclei approximation. ' In this approach
the dominant long-range interactions are treated
with full account of the rovibrational dynamics,
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dS~ =SJ 2B[(j +1)o—j~+, jojJ",]—,
where

(27)

but in some simple approximation such as the first

Born approximation. Then all of the above discus-

sion can be applied to the corrections to these ap-

proximate cross sections, these corrections still be-

ing obtained with the adiabatic approximation but

with the dominant long-range interactions extract-

ed in a self-consistent manner. The dependence of
the energy-loss or stopping cross section on initial

rotational state would then be, in this example,

that associated with the first Born approximation.

This could be useful information, even if the abso-

lute magnitude of the cross section is unknown.

Following Shimamura, we note finally that the

above discussion is not limited to electrons as pro-

jectiles. They could be positrons or heavy struc-

tureless particles as well. The range of validity

over which the adiabatic approximation is valid

may, of course, be different.
To illustrate, we consider electron collisions with

CO. Cross sections for transitions involving the

lowest few rotational states of the ground vibra-

tional state are available' from quite sophisticated

calculations not involving the adiabatic approxima-

tion. Stopping cross sections SJ computed for ini-

tial states j=0 and j=1 from these results are

compared as a test of the theorem in Table I. The
dipole-extracted stopping cross sections (SJ less the

first Born approximation FBA) are defined by

SJ(E)=6So(E)+2B[(j +1)oJJ+i(E)

F~aA (E)] (29)

and the values of Mp in Table I. For higher ener-

gies the agreement of S& and Sp is excellent, but

the original results do not extend to high enough

rotational levels that the results for SJ could be
considered well converged. The moral here for fu-

ture calculations is that it may take more values of
1, to converge (23) than, for example, (1), (3), or
(14). Likewise, if fixed-nuclei calculations are be-

ing made for vibration, the little additional effort
required to evaluate the right-hand side of (25)

may be quite valuable.

is the first Born approximation for the cross sec-

tion in units of ap(= 0.2800&10 m ),
D ( =0.044 a.u.) is the dipole moment of CO used

in the original calculations, and j& is the larger of

j and j'. The cross sections Sp and S& are seen to
be in reasonable agreement only at the highest en-

ergies tabulated, but the cross sections Mp and
d6'~ are in excellent agreement at all energies. The
first Born approximation appears to be adequate
for energies less than 0.005 eV. Thus we conclude

that the stopping cross section for the energy range
2B to 0.6 eV can be obtained to good accuracy (as-

suming the original results to be correct) from the
expression

pgA 8m D2 j& k+1'
ii' =

3 k2 2j+1 ~k —k'~
(2g) This work was supported by the U.S. Depart-

ment of Energy (Office of Basic Energy Sciences).

TABLE I. The stopping cross section (meVA ) for electrons scattered by CO. The in-

cident electron energy is E for initial state j=0 and E —28, for B=0.238 meV, for j=1.
SJ is the stopping cross section, and hS~ is the stopping cross section less the contribution
from the first Born approximation for the dipole (hj =+1) transition.

E (eV) Sp bSp Si hS)

0.005
0.010
0.030
0.050
0.100
0.600

22.1

13.5
6.05
4.26
2.83
2.34

0.4
0.5
0.64
0.71
0.85
1.92

16.7
10.9
5.16
3.72
2.56
2.30

0.4
0.6
0.64
0.71
0.85
1.93
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APPENDIX

In a footnote, Shimamura attributed to Takayanagi the observation that the sum

g C(j 1j ', AA' A)—C(j lj ', A"A' A"—)[j '(j '+ I ) j(j—+1)]
J

is independent of j for l, =1,2 and 3 for the case A'=A=A"=0, and stated that it is possible to extend the
result for I, &4. In this appendix some of the standard formulas of Racah algebra are used to prove the j
independence of this sum for any l, for the case A =A"+0 and A'+0, and to provide a simple expression
for its value in the general case. The resulting expression is a simple generalization of that provided for the
case A'=0 by Choi et al. '

The reduced matrix element of j 1, can be written'

and also written

(A1)

(A2)

where W( . .
) is a Racah coefficient. Using the relation &L

~
~L~ ~L & =[L (L +1)]' for the reduced ma-

trix elements in (A2}, and equating (Al) and (A2), yields

j'(j'+1)=j (j +1)+l,(l, +1) +2( —1) ' P'(jjl, l, ;jl')[(2j +1)(j+1}j(2l,+1)(ii+1)l,]'

Now consider j'(j'+1) multiplied by

C(jlj '; AA' A}C(j lj ', A—"A' A")—

(A3}

and summed over all j '. The first two terms in (A3} reduce immediately. The third reduces, using a stan-
dard contraction formula' for the sum of the product of two Clebsch-Gordan coefficients and a Racah
coefficient, to

—2[(2j + 1)(j+1)j(2li+ 1)(ii+ 1)lg]' ( —1)
A —A" e A —A'A' —A" e

(A4)

and evaluating the Clebsch-Gordan coefficients in (A4) yields the final result for the sum rule'

g C(jlj ', AA' A)C(jlj ', A"A'—A"j)'(j '+1)=[—j(j+1)+l (l, +1)+2A(A' —A)]5&z-

—
I [j(j+ 1)—AA" ][it(li+ 1 )—(A —A')(A" —A')] I 5pp

(AS)

In addition to the use to which (AS) is put in this paper, it will find application in the I,-conserving
modification of fixed-nuclei calculations. Here the relevant sum can be expressed, using (AS) as

(A6)C(jlJ;Am) Bj (j +1)=B[l(l+1)+J(J+1)—2m(A+m)] .
2j+1 . z

2J+1

Thus for the diagonal (in J,m and A) elements of the fixed-nuclei channel energies, we have simply kI —kI
= B[1(l+ 1)—l'(l'+ 1)].
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