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Two rigorous lower bounds to T„ the Weizsacker correction, have been derived: T, &(m."'2'"/24)
X(fp'(FJd f)'" = T, '[p] and T, & (1/72) & r '& = T, '[p]. The first bound is universal, while the second holds only
for spherically symmetric bound systems. Numerical comparisons employing the Hartree-Fock atomic densities
reveal that the bounds are not very tight; however, the ratios T,/T, ' and T,/T, ', though decreasing slowly with
increasing Z, remain fairly constant for Z = 2 through 24. The implications of these bounds in the variational
context are discussed.

I. INTRODUCTION

Since its introduction, there has been a wide-
spread interest in the density-functional (DF)
formalism first put forth by Hohenberg and Kohn'
(hereafter termed HK), which has furnished an
approach to treat many-electron systems on a
footing that ascribes the electron density p a sta-
tus of a basic variable. Within the DF framework
the exact many-particle ground state is a function-
al of p(r), which in turn can be shown to be a
unique functional of the applied external poten-
tial V(r). The total energy, which is the sum of
the ingredients

+=E[P]=T[P]+U[P]+V[P]

becomes a functional of p. In Eq. (I) the terms
represent, respectively, the kinetic energy, the
electron-electron interaction energy, and that
due to the external potential. T[p] and U[p] are
universal functionals of p. Their forms, however,
are not known exactly. In particular, from HK
(and the references therein) it follows that the
kinetic energy functional can be expressed as

term. ) In the realm of the variational technique,
the approximation T[p]= T,[p] leads to Thomas-
Fermi or Thomas-Fermi-Dirac and related the-
ories, ' wherein the value of the density at the nu-
cleus p(0) is infinite and hence unphysical. With
the inclusion of T2, p(0) becomes finite and the
total energies for atomic systems are estimated
fairly accurately, unlike the overestimated ones
from the Thomas-Fermi and related theories.
The cusp condition' is well obeyed upon the in-
corporation of T, . Following the earlier work of
Goodisman, ' recently Parr et al. ' have advocated
that the full Weizsacker correction (i.e. , 9 times
the present T,) should be taken, whereas the co-
efficient appearing in the expression for T, should
be replaced by some other constant which they
have reported from their studies of atomic sys-
tems.

The above remarks make it evident that the in-
clusion of the Weizsacker term serves far more
than merely a "correction" alone. It is of further
interest to note that this correction term is
bounded from below, which forms the theme of
this paper.

T[p] =T,[p]+T,[p]+ T [p]+ ~ ~ ~ . (2) II. BOUNDS TO THE WEIZSACKER CORRECTION

T [p] + T [p] —~~ (3v2)2& ~fps & ~(r)d r

+ i I&p(r)i'+g () dr. (3)

(The term T2 here is &th the original Weizsacker

The first term is the Thomas-Fermi ' contribu-
tion to the kinetic energy, which forms the major
part of T[p]. The second term is the Weizsacker
or the first inhomogeneity correction. Employing
the Hartree-Fock atomic densities, T,[ p] + T,[ p]
serves as a fairly good approximation to T[p], as
has been demonstrated from the recent work of
Murphy et al.' Explicitly written, one has (in
hartree units)

A Sobolev inequality, ' in three dimensions, for
any bounded P(r) such that f Q(r)dr is finite, is

gro3 —
Q r gr . 4

With the substitution

4 (r) =2[p(r)]'~'

one has Vg(r) =Up(r)/[ p(r)]~~2, so that from the
inequality (4) it turns out that

T,[p]=~ dri ~p(r)i'
pr

p rdr =T~' p
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It is noteworthy that the lower bound T2s'[ p] ap-
pears in a much simpler form compared to T,
since it (i.e., Ts2'[ p]) is free of the gradients of p.
Above all, it is also gratifying to note that the in-
equality (6) does not need any special assumptions
such as spherical symmetry of p and hence, fur-
nishes a universal lower bound to T, .

Yet another lower bound to T, can be obtained
for spherically symmetric densities p(r) by virtue
of the inequality"

(7)

dr+3 p r dr

d ()„
p

A partial integration yields

(9)

p( )d =p(r)r —f p')r)rdr
0 ]p p

&p(r) dr 7

p dr (10)

since the integrated term vanishes for all atomic
densities. With Eqs. (9) and (10) one is led to

OO

dr& ~ p r 4ndr=T, '
ppr Cr p

for all spherically symmetric densities. The
quantity on the right-hand side of Eq. (11) is
~»(r '), whereas that on the left-hand side is T,.
With the use of

16 ( -l)2 (N(r 2) (12)

as shown by Gadre" for monotonically decreasing
densities (N being the total number of electrons),
it follows that

2 (r ')' 2 V', ,
135 N 135NZ

V„, being the nuclear-electron attraction. It has
been observed" that the Hartree-Fock densities
are monotonically decreasing, even though a rig-
orous proof to this effect is lacking.

Even though one is restricted to spherically
symmetric densities, the second bound connects
T, via an inequality to the major energy ingredient
V„,, which is an interesting feature in itself. In

for all y(r) such that y(0) =0. The prescription

y(r) = r& p(r)' (6)

is compatible with these conditions and the in-
equality (7) leads to

the next section the two bounds Ts2'[ p] and T2 [p]
will be investigated for tightness.

TABLE I. The ratios T&[p] /T2 [p] and T2[p] /T2 [p]
for some model densities. See text (Sec. III) for details.

Densit
atio T~[p]

T [p]

exp(- nr)
exp(- er2)
exp(- o.Wr)

1.175
1.183
1.072

2
3
1.5

III. NUMERICAL TESTS AND DISCUSSION

For an initial orientation the tightness of these
bounds has been tested for simple density profiles,
viz r r the Slater-type orbitals (STO), the Gaussian-
type orbitals (GTO), and p(r) =exp(-nv r). The
results have been reported in Table I, from which
it is clear that with the profiles used, the first
bound is fairly tight whereas the second one is not
as tight. In the Hartree-Fock context, both bounds
Ts2'[p] and T~2'[ p] are valid since the Hartree-
Fock densities are known to be monotonically de-
creasing. When applied to atomic systems it
turns out that both the bounds are not very tight.
However, the ratios T,[p]/T s2[p] and T,[p]/T2~'[p]
remain fairly constant for the Hartree-Fock atom-
ic densities although they decrease slowly with in-
creasing Z. For elements He through Ne the av-
erage ratios are 2.59 and 1.84, respectively, with
a maximum mean deviation of 4%. For elements
Na through Ar they are 2.50 and 1.'l1, respec-
tively, with a maximum mean deviation of about
2/o. Table II displays the ratios for Z =2 through
22 for a comparison. It may be noted from Table
II that the bound T2s2[p] is much tighter than T2s'[p]
for spherically averaged Hartree-Fock densities.

It would be worthwhile to investigate the conse-
quences of the constancy of ratios T,/Tg' and T,/
T, ' in the variational context. It may be stipula-
ted here that if T,[p] is replaced by (const)T, '[p]
or by (const)T2s'[p] and the variational technique
applied (the constants chosen appropriately for the
first and the second row atoms), one is assured of
obtaining good estimates for the total energy with-
out having to compute a[p(r)] at all. For molec-
ular systems, of course only TB'[p] would be ap-
propriate, and Balazs theorem" [which states that
"when the electrostatic potential at a point is a
function (not functional) of p, molecules cannot be
stable" ] does not deny the possibility of obtaining
good estimates of total energies with the replace-
ment T2[ p] —(const)Ts2'[ p] and the variational
technique employed. Strictly speaking, however,
it would be apt to employ an upper bound in a
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TABLE II. The ratios T2/H~' and T2/T& employing
the Hartree-Fock densities for atoms [see the text
(Sec. III) for further details).

Atom T,/T~~' 2/T

He
Li
Be
B
C
N

0
F
Ne
Na
Mg
A1
Si
P
S
Cl
Ar
K
Ca
Sc

2.659
2.644
2.634
2.607
2.581
2.559
2.540
2.525
2.515
2.507
2.503
2.498
2.495
2.492
2.488
2.486
2.484
2.481
2.479
2.476

1.909
1.902
1.897
1.871
1.841
1.812
1.789
1.767
1.763
1.735
1.725
1.717
1.710
1.703
1.696
1.690
1.684
1.679
1.675
1.669

variational principle, but a simple form for an

upper bound to T, is hard to find.
Of special interest is a recent model developed

by Parr and co-workers" wherein local functionals
have been employed for the energy ingredients. It
is noteworthy that their E[p] is not a rigorous
upper bound to the true energy functional. With

a proper choice of the parameters, however, this
model yields reasonable energies for atomic sys-
tems. With simpler forms for T, offered by the

two bounds when utilized in conjunction with the

work of Ref. (9), the energy functional would

assume simple forms
X/3

E(p] Af=p'~'( )d +B(fp'( )dr

+C p 'rdr N ~'- Z dr+@I
i r r }

Nlt

(i4)

for molecular systems and

E[p] A'f p'=~ 4rr'dr+B f4 p('r}dr

+C' p' ' y 4n''dz N' '-Z 4myp g dy

(i5)

for spherically symmetric densities; A, B,C and

A', B', C' being the appropriately chosen constants.
The E[p] in Eqs. (14) and (15) do not provide rig-
orous upper bounds to the true energy. In light
of the work of- Parr et al." it may, however,
be anticipated that reasonable energies (for ex-
ample, compared to their Hartree-Fock counter-
parts) can be obtained from Eqs. (14) and (15) with

an appropriate choice of parameters. The varia-
tional technique can be subsequently applied to ob-
tain decent and rather quick estimates of the total.
energy. All these investigations are being done.
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