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We first discuss convergence problems of single-center expansions of molecular wave

functions in terms of exponential-type orbitals (ETO's). In a test calculation of H2+ we

find that the expansion coefficients diverge quite rapidly when nonorthogonal basis

functions are used. This behavior can cause serious numerical instabilities when the wave

function is used in a configuration-interaction calculation. This problem does not occur
when the ETO's are orthogonal. We then obtain an energy of —1.1022 a.u. (exact:
—1.1026 a.u.) for H2+. Secondly, we present a contraction scheme that incorporates the

information about the positions of the nuclei of the molecule similar to the information

included in the LCAO scheme. It is therefore very efficient in reducing the dimension of
the energy eigenvalue problem.

I. INTRODUCTION

There seems to be a common feature of quantum
chemical calculations: With a few intuitively
chosen assumptions and relatively moderate effort,
one often gets surprisingly good results. The trou-
ble, however, starts immediately when one tries to
improve these results. A typical example is molec-
ular ab initio calculations in which the molecular
wave function is formed from a linear combination

of atomic orbitals (LCAO). ' The great advantage

of this method is, of course, that the positions of
the nuclei are automatically built into the trial

wave function. In addition, the LCAO-MO's form
good approximations to the true wave function in

the vicinity of the nuclei when exponential-type
atomic orbitals (ETO's) like Slater-type orbitals
(STO's) are used. However, since these functions

do not supply sufficient electron density in the

bonding region between the nuclei, usually polari-

zation functions with higher angular momentum

quantum numbers have to be added. Hence com-

plicated multicenter integrals have to be calculated.
If Gaussian-type orbitals (GTO's) are used, instead,
the computation of these integrals is much simpler.
However, many more GTO's are usually required

to achieve the desired accuracy because of the
well-known deficiencies of these functions.

A quite different approach is the single-center
expansion (SCE) (Ref. l) of the molecular wave
function. In this method the constituent basis
functions are all centered at the same point, usual-

ly the center of gravity of the molecule. The basic
idea is that any wave function can be expanded in

terms of a complete set of basis functions centered
at an arbitrary point in space. The major advan-

tage of this method is that no complicated multi-
center integrals occur. The price one has to pay is
that many basis functions have to be included in

order to obtain reasonable accuracy. Hence, the
tenor of the earlier authors was usually pessimistic
about the feasibility of this method. ' Recently
there has been renewed interest in this method
that has encouraged us to take a closer look at the
problems associated with this method.

The aim of this paper is twofold. The first aim
is to study the convergence behavior of different
expansions of molecular wave functions. The con-
vergence behavior of the expansion coefficients be-

comes important when the wave function is used in
a subsequent configuration-interaction (CI) calcula-
tion. We therefore have to push the limit of
single-Center expansions in terms of ETO's further
than it has been done before. We can do this be-

cause in the context of calculating multicenter in-

tegrals over ETO's the computation of single-
center integrals over ETO's with high quantum
numbers are required anyway.

We find it necessary to take a closer look at
properties like completeness of sets of basis func-
tions and convergence, or as we find in one case,
divergence of the expansion coefficients of the
molecular wave function. The increase of the
dimension of the eigenvalue problem is not the
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only bottleneck in these calculations. Diverging
expansion coefficients and approximate linear

dependence of the basis functions can effectively
limit the size of basis sets. We apply the single-
center expansion to H2+ and obtain very good
results, provided we include a sufficiently high
number of basis functions.

The second aim is to present a contraction
scheme that combines some advantages of the
LCAO ansatz with those of the single-center ex-

pansion. It is a side product of the work on the
shifting of ETO's. In this scheme the positions of
the nuclei enter as input parameters like those in
the LCAO ansatz. Since this information is built
into the constituent wave functions, fewer of these
functions are needed for simulating the exact
molecular wave function near the nuclei. Hence,
the dimension of the eigenvalue problem in the
Rayleigh-Ritz method is greatly reduced. In this
paper we compare the results obtained with a 60-
term uncontracted basis with those obtained with a
3-term contracted basis.

This contraction scheme can readily be adopted
to any nuclear geometry. It should be especially
useful in relativistic single-center calculations.
There the dimension of the eigenvalue problem in-
creases faster with increasing size of the basis set
because the spinor in the Dirac equation has four
components.

(ETO's). The first set are the B functions

B~r(r)=[2 + (N+L)!] 'r e "k~ i~2(r)Yr (Q-, ) .

(4)

MIn Eq. (4) k~ i~2 and Yl are reduced Bessel func-
tions and surface sphericals harmonics in the
Condon-Shortley phase convention, respectively.
Owing to the surface spherical harmonics, the B
functions are orthogonal with respect to the angu-
lar momentum quantum number L. However, they
are not orthogonal with respect to the radial quan-
tum number N. This nonorthogonality has impor-
tant consequences for the analytical and numerical
properties of molecular wave functions that are ex-
panded in terms of such a basis as we shall see
below.

In contrast, the A functions form a set of basis
functions that is orthogonal with respect to the ra-
dial and angular momentum quantum numbers.
They are defined by ' '"

Azr (r)=M(N, L)LN I+ '&(2r)e '(2r) Yl. (Q-, )

In Eq. (5) L~ ' are the generalized Laguerre poly-
nomials, and the normalization factor is given by

M(N, L)=2 ~ [(N L —I)!/(N—+L +1)!]'

II. DEFINITIONS AND CLASSIFICATION
OF INTEGRALS

In this section we list the definitions of func-
tions and give a classification of the integrals used.
The numerical details, however, in particular, the
analytical expression, that were programed for the
test calculations on H2+, are given in the appen-
dices. We consider the following three one-

electron integrals: the two-center nuclear attrac-
tion integral

N(fi, f2,R) —= f dr f i (r) fi(r), (1)
/r —R/

the one-center kinetic-energy integral

III. CONVERGENCE OF GROUND-STATE
ENERGY AND WAVE FUNCTION

As long as one is satisfied with the accuracy ob-
tained with a few basis functions that are usually
chosen by physical intuition, there is no need for
dealing with questions like completeness of a set of
basis functions, or, existence of formal expansions.
Since we want to go beyond this initial stage of
calculations we first recall a few general properties
of sets of basis functions and then show how they
affect our numerical calculations.

(2)

and the one-center overlap integral

S(f, ,f2)—= f dr f;(r)f2(r) . (3)

As basis functions f(r) in Eqs. (1)—(3) we consid-
er two different sets of exponential-type orbitals

A. General considerations

A standard problem of functional analysis is to
approximate a known function fEL 2 by a set of
basis functions jP„(„" i, with P„CL (9F~). The
coefficients C„of the Nth approximation
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N

fN

n=1
(7)

of f is determined by minimizing the norm

I If f —
I I

(least-squares fit). If the basis functions
are orthogonal the expansion coefficients C„do
not depend on N and therefore do not change when
additional basis functions are included. The basis
set IP„ IL" ~ is called complete in L if for any

given e one can find an N such that

A basis set is called overcomplete if one can leave
out some elements and the rest is still complete. It
should be noted that nonorthogonal complete basis
sets of infinite length are usually overcomplete. '

One might be tempted to conclude that com-
pleteness would imply the existence of a formal ex-

pansion

f= pc.d.
n=1

&@x IH I @x&E lc'~ l = (@
(10)

It is worthwhile to draw the attention to the fact
that this variation is not performed over the whole
space L but only over the subspace of functions

by taking the limit N~ oo of Eq. (7). However,
this hope is only fulfilled with certainty if the basis
set IP„)„" &

is orthogonal. It has been known for
a long time that for nonorthogonal basis functions
a formal expansion [Eq. (9)] need not exist. ' The
coefficients in Eq. (7) might diverge in the limit
N~ oo. In this case, if one tries to increase the
size of the basis set they are bound to cause nu-

merical instabilities in calculations that make use
of these coefficients. This point should give rise to
some concern because frequently used SCE basis
sets like Slater' functions, or for that matter all
LCAO functions, ' are nonorthogonal. Orthogo-
nalization of the basis functions does not help be-
cause this procedure involves the diagonalization of
the overlap matrix which becomes numerically un-

stable. '

In quantum chemical calculations the actual
problem is not to approximate a known function
but to determine an unknown function by means of
a variational principle, usually the Rayleigh-Ritz
variational principle. In this procedure the
ground-state eigenfunctions are approximated by
minimizing the expectation value of the energy of
the system

that can be differentiated once, i.e., the Sobolev

space W2' 16-18 Functions like the Yukawa po-
tential exp( —r)/r, which is square integrable, are
therefore excluded. In addition, basis sets that are
complete in L need not be complete in Wz", and
if a basis set is not complete in W2" the variation-
al procedure need not yield the correct energy. A
somewhat artificial but nevertheless striking exam-

ple is due to Klahn and Bingel. ' There the 1s

function is deleted from the set of Slater orbitals.
The remaining functions are still complete in L
but not in W2 ', and the energy that is determined
via the Rayleigh-Ritz variational principle with
this basis set indeed converges towards the wrong
limit. Hence, the frequently used method of delet-

ing a finite number of basis functions from an

overcomplete set in order to prevent that the over-

lap matrix becomes singular should be used with

due care. Even if the resulting basis set is still

complete in L, the damage done by omitting a
function might not be correctable via the variation-

al principle no matter how many other functions
are included. Also the problem of diverging coef-
ficients is present in the variational calculation
when nonorthogonal basis sets are used.

In contrast, many of these complications are not
present when functions are expanded in terms of a
complete orthonormal basis set (CONS) like A

functions. As a rule of thumb we find that expan-
sions in terms of a CONS tend to be numerically
more stable. This observation seems ultimately to
be linked to the fact that the expansion coefficients
C„of some function f fulfill the Parceval equali-

13

and are therefore bounded. In the limit of increas-
ing size of an orthonormal basis set the expansion
coefficients obtained via the Rayleigh-Ritz method
converge towards the ones obtained via least-
squares fit due to the uniqueness of the formal ex-

pansion whenever it exists.

B. Single-center calculations of H2+

In our single-center calculations of Hq+ we put
the center of the expansions at the midpoint of the
molecule and keep only basis functions with even

angular momentum quantum numbers I. From the
work of Katriel' and Ali and Meath we con-
clude that we are justified in doing so as long as
the distance between the nuclei does not exceed 3
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TABLE I. Comparison of the expansion coefficients of the wave function of H2+ in terms of B functions and A

functions L,„=2,N,„=16,and a=2.7.

L N
Coefficients of B functions

N,„=6 N,„=10 N,„=16
Coefficients of A functions

N,„=6 N,„=10 N, „=16 L N

0 1 0318x 10
0 3 0.655 X 10'

0 6 —0.829 x 10'
0 9
0 12
0 15
0 16

0.519x 10
0.145 X 10

—0.130x10'
0.735 x10'

0.174x 10
0.110x 10

—0.175x 10
0.682 x 10'

—0.153X 10
0.127 X 10

—0.156x 10'

0.658 X 10
0 341X10

—0.196X 10

0.658 x 10
0.341x10'

—0.228 x 10
0.356x 10-4

0.648 x 10 0 1

0.341 x 10 0 3
—0.228X10 ' 0 6

0.589 x10-' 0 9
0.640 x 10 0 12

—0.736x 10-4 0 15
—0651x 10 0 16

2 1 0.640 x 1Q

2 3 —0.417x 10'

2 6 0.252 x 10'

2 9
2 12
2 15
2 16

0.321 x 10
0.230 X 10'
0.615x 10

0.378 x 10
0.505 x 10'
0.205 X 10

—0.779 X 10'
0.160X 10'

—0.123x 10'
0.148x 10'

0.179x 10
—0.249 x 10-'

0.563 x 10-'

0.179x 10
—0.227X10 2

—0.476 x 10-4
0.250 X 10-'

0.179x
—0.228 x
—0.390X

0.186x
—0.755 x
—0.829 X

0.976X

10 2
1Q 2
104 2

10 2

10 2
10 2
10' 2

3
5

8

11
14
17
18

a.u. For larger distances, however, one should

check the wave functions for spurious symmetry

braking solutions by allowing the expansion center

to float. ' ' In this publication all calculations

were performed at an internuclear distance R =2.0
a.u.

As basis functions we use the nonorthogonal set

of B functions and the orthonormal set of A func-

tions. The A functions have been applied to Hq+

before. However, not enough functions had been

included for discussing the convergence of the
ground-state energy, and the convergence of the ex-

pansion coefficients of the wave functions was not
discussed.

From Table I we see that as we increase the size

of the set of B functions the previously calculated

coefficients do not converge to some finite value.
This fact leads to rather large coefficients not only
for some unrealistically large basis sets but already
for the relatively moderately sized set of the first
16 radial wave functions per angular momentum

quantum number. In contrast, when we approxi-
rnate the ground-state wave function of Hq+ by the
orthonormal set of A functions the coefficients
converge to some finite value. We also want to
point out that our calculation with B functions
broke down before reaching spectroscopic accuracy
because of a numerical instability connected with
the inversion of the overlap matrix. In contrast,
there was no problem in reaching this accuracy
with A functions.

Stewart ' has calculated the energy limits that

TABLE II. Convergence of the ground-state energy of H2 in single-center expansion in terms of A functions. The

I limits are from Ref. 21.

10 16 20 25 I limit
(Ref. 21)

0
2
4
6
8

10
12
14

—1.018 307
—1.083 033
—1.094 990
—1.097 864
—1.098 152
—1.098 159
—1.098 159
—1.098 159

—1.018 482
—1.083 478
—1.095 940
—1.099096
—1.100004
—1.100083
—1.100084
—1.100084

—1.018498
—1.083 618
—1.096 270
—1.099 670
—1.100797
—1.101 171
—1.101 205
—1.101 206

—1.018499
—1.083 649
—1.096 348
—1.099 792
—1.100990
—1.101470
—1.101 574
—1.015 778

—1.018 500
—1.083 662
—1.096 379
—1.099 853

—1.018 503
—1.083 681
—1.096 438
—1.099 967

1.101 264
1.101 825

—1.102 112
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FIG. 1. Wave functions of H~+ along the molecular

axis. Solid lines: single-center expansions in terms of A

functions for L,„=0,2,4, 6,8, 10. A functions with the

first N,„=20 radial quantum numbers to each L are

included in the basis. Dashed line: exact wave function

from Ref. 22.

can be obtained with functions centered at the
midpoint of the molecular axis of H2+ when func-
tions up to a given angular momentum L ((12)
are included. He calculated these limits by numer-
ical integration of the pertinent radial differential
equation. We come rather close to these limits
with the first N =25 radial wave functions per an-

gular momentum quantum number even without
optimizing the scaling parameter a (Table II).

When we optimize a (a =6) we find with L =14
and N =20 a ground-state energy of —1.1022 a.u.
(exact: —1.1026 a.u.).

In Fig. 1 we plot the wave functions along the
molecular axis. We find good agreement in the

bonding region and at large distances. Our ap-

proximation fails to reproduce the cusps of the ex-

act wave function, a deficiency it shares with all

finite single-center expansions.
A closer look at the coefficients in Table III

shows that they change as additional basis func-
tions are included. We recall that the coefficients
determined via a least-squares fit procedure do not
change when the size of an orthonormal basis set is
increased (apart from the trivial change when the
wave function is normalized to one in each order
of approximation). The coefficients shown in
Table III, however, indicate that the "direction" of
the projection of the wave function onto the sub-

space of the smaller basis still changes once we in-
clude additional basis functions. This change oc-
curs because we determine these coefficients via
the Rayleigh-Ritz variational principle which cor-
responds to an approximation with respect to the
norm of the Sobolev space 8'z" and not of the
Hilbert space L . It is only in the limit of the
complete basis set that the Rayleigh-Ritz method
and the least-squares fit procedure yield the same
coefficients due to the uniqueness of formal expan-
sions.

TABLE III. Convergence of the expansion coefficients of the ground-state wave functions of H2+ for the basis func-
tions A» and A32.

10 16 20 25

0
2
4
6
8
10
12
14

0.659036
0.658 311
0.658 687
0.658 866
0.658 871
0.658 761
0.658 871
0.658 871

0.658 416
0.658 161
0.658 702
0.658 960
0.659 035
0.659 039
0.659 039
0.659 039

0.658 419
0.658 186
0.658 750
0.659042
0.659 159
0.659 195
0.659 197
0.659 197

0.658 419
0.658 193
0.658 760
0.659 055
0.659 178
0.659 233
0.659 242
0.659 242

0.658 420
0.658 195
0.658 766
0.659 066

2
4
6
8
10
12
14

—0.178 692
—0.188 520
—0.190639
—0.190856
—0.190862
—0.190862
—0.190862

—0.178 861
—0.189015
—0.191 308
—0.191951
—0.192008
—0.192009
—0.192009

—0.178 944
—0.189219
—0.191669
—0.192447
—0.192 705
—0.192 729
—0.192730

—0.178 962
—0.189269
—0.191749
—0.192 575
—0.192 900
—0.192 971
—0.192974

—0.178 971
—0.189288
—0.191786
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IV. ATOMIC ORBITAL- TYPE CONTRACTION

A notorious drawback of the single-center ex-

pansion method is that usually large basis sets are
required to yield acceptable accuracy. One source
of this problem is the fact that the positions of the
nuclei have to be incorporated in the trial function
via the Rayleigh-Ritz variational principle which

slows down the convergence of calculations.
In contrast, in the LCAO method this informa-

tion is contained in the constituent atomic orbitals.
Hence, fewer basis functions are needed to achieve

surprisingly good results, especially when ETO's
like STO's are used. However, it is usually diffi-
cult to improve these results because the AO's

represent the molecular orbitals in the bonding re-

gion only poorly and it becomes increasingly diffi-
cult to calculate the required multicenter integrals
for higher quantum numbers.

The central idea of our contraction scheme is to
expand the very same wave functions one would

use in an LCAO ansatz in terms of wave functions

that are all centered at the same point, e.g., the
center of the molecule. We use the shifting formu-

la for A functions

A&L (r —R)= g g (LM
~
l~m~

~
l2m2)

lll2 ml

n&n&

(12}

which was derived in Ref. 6. Useful features of
Eq. (12}are the following: (a} the T coefficients

are numerical constants that are independent of the

geometry of the molecule and can be calculated
once and for all, and (b) there is no division of the

space as, e.g., in the Laplace expansion of the
Coulomb operator. Therefore, Eq. (12) can be
readily applied not only to A functions but also to
integrals over A functions. In this way we have to
calculate only integrals over functions that are all

centered at the same point which brings about the

simplifications of the SCE method.
On the other hand, if one starts with a given set

of single-center basis functions, this scheme can be
viewed as a prescription for contracting these basis

functions. In this way the information about the
positions of the nuclei is already incorporated in

the trial wave function. If one finds it necessary to
add to these AO-type functions a few functions

that are centered at this central point, one need not
calculate any additional integrals. In the LCAO

scheme these functions would be called "floating
functions. " Clearly, this scheme can readily be
transferred from one system to another, once the

positions of the nuclei are specified. The eigen-

value problem one is left with is a generalized one

because the functions of the contracted basis are no

longer orthogonal. The dimension of this eigen-
value problem, however, is drastically reduced.

In our test calculations we compare the ground-

state energy and wave functions along the principle
axis of H2+. In the uncontracted basis we include

the A functions up to the angular momentum

L =6 and the first 15 radial quantum numbers to
each L. Since only wave functions with even L
contribute, this basis contains 60 functions. The
contracted bases contain one (truncated) ls func-

tion on each atom, which is expanded in terms of
these 60 functions at the center, plus 1s, 1s +2s, or
1s +2s +3s A functions at the center. (We adapt
the spectroscopic notation for A functions because

no confusion is possible. ) It is not surprising that

the energies (Fig. 2} and wave function are rather

sensitive to the choice of the scaling parameter a
in the small contracted basis set. The Horowitz

and Finkelstein LCAO basis set of H2+ (Ref. 23)

also shows such a strong dependence of the ground

state on the scaling parameter. The larger the

basis set is the less sensitive the results are to a
variation of a because the A functions form a

complete set for any a & 0. We note in Fig. 3 and

Table IV that the three basis functions consisting

of a (truncated) Is function at the atoms and a Is

-1.07

-1.08

(D
C

—1.09

FIG. 2. Dependence of the ground-state energy of
H2+ on the scaling parameter a for different basis sets.
For curves a to e, contracted bases are used as indicated
in the last column of Table IV. Curve f belongs to the
uncontracted basis with L =6 and N,„=15.
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FIG. 3. Wave function of H2+ with contracted basis
of curve d in Fig. 2 for a=1.5 (solid line) and uncon-
tracted basis with 1. ,„=6and N =15 (dash-dotted
line). The dashed line is the exact wave (dashed-dotted
line). The dashed line is the exact wave function from
Ref. 22.

and a 2s function at the center yields results that
are rather close to those of the uncontracted basis
of 60 functions. The spurious cusp at the center
(Fig. 3) comes from the 1s function. The varia-
tional principle has difficulties to suppress it be-
cause the contributions of this region to the in-
tegrals are reduced by the vanishing volume ele-
ment at the origin. In the uncontracted basis,
however, the cusp disappears within graphical ac-
curacy when a is optimized. In Fig. 3 the wave
functions with the contracted and uncontracted
bases agree within graphical accuracy in the vicini-

ty of the nuclei.

V. SUMMARY

In this paper we first have discussed some con-
vergence problems in single-center expansions of

molecular wave functions that could occur when
the number of basis functions increases. When the
basis functions are not orthogonal one has to be
prepared that the expansion coefficients will
diverge when the basis set is enlarged. This diver-
gence can cause a numerical instability in a subse-
quent CI calculation with these coefficients and
can effectively limit the size of the basis set. In
our test calculation of H2+ with B functions we
find that the coefficients diverge quite rapidly. A
second source of a numerical instability lies in the
generalized eigenvalue problem. With an increas-
ing size of the basis set the basis functions become
more and more linearly dependent and therefore
the overlap matrix no longer can be inverted.
Similar behavior should be expected when other
nonorthogonal basis functions like Gaussian-type
orbitals and ultimately LCAO are used.

In contrast, the expansion coefficients converge
to a finite value when the basis functions are
orthogonal. Using A functions as a basis set we
came rather close to the limits that can be reached
in single-center expansions for H2 with functions
up to a given angular momentum quantum number
as calculated by Stewart. ' We also have discussed
the shape of the wave function of H2+ along the
molecular axis.

Secondly, we have introduced a contraction
scheme for single-center expansions in terms of A
functions that incorporates the positions of the nu-
clei like the LCAO ansatz. Since the information
about the positions of the nuclei no longer has to
be determined via the Rayleigh-Ritz variational
principle, this scheme is very efficient in reducing
the dimension of the energy eigenvalue problem. It
can be readily applied to molecular calculations be-
cause the positions of the nuclei are needed only as
input parameters.

TABLE IV. Ground-state energy of H2+ for different contracted bases. The entry with *
is from Ref. 23. The letters in the last column refer to the curves in Fig. 2.

aopt Basis functions
on nuclei in center

Energy
(a.u. )

a dependence
in Fig. 2

1.23
1.23
1.28
1.18
1.52
1.55

1s (truncated)
1s*
1s (truncated)
1s (truncated)
1s (truncated)
1s (truncated)

1s
2$

1s +2s
1s +2s +3$

—1.0796
—1.0856
—1.0902
—1.0897
—1.0975
—1.0980
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APPENDIX A: INTEGRALS OVER 8 FUNCTIONS

73

We first turn to the nuclear attraction integral

L1L) ~ Ml 1 M2
N~ N (a R)= drBN L (ar) B~ L (ar) . (A1)

(A2)

N is the irregular solid spherical harmonic

We proceed by expanding the product of B functions in Eq. (Al) in a finite sum of B functions with the ar-

gument doubled. After doing a little bit of algebra we obtain sums of integrals that consist of the Coulomb
operator and one B function. These integrals are the basic nuclear attraction integrals of Ref 24:

N+L
AN L(R) =4@a [(2L —1)!!NL(aR) —g Bz L L(aR)] .

q=0

~M(~) L —
GYM(Q—)

Our final result is

(A3)

1 2

Ni+N2 2

Xg &i, m ~L,M, ~L,M, ) Y, (Q) g ( —1)'2"+'
s=O

min(N&+N2 —2 2$+1)

q=s

(q +1)!
( —2)q(q —s)!(2s —q + 1)!

min(q, N2 —~ ] (2N~ —q +p —2)!(2N2 —p —2)!

(0 ~ )) (q —p)!p!(N) —q +p —1)!(N2—p —1)!

~2
—(L, +L,+2) (o+s + 1)![2(o+1)]!2aR 2

(l +1/2)(o.+1)!

—g (, ) —hl — (L, +L2 t+s+1)!—d,l 2s+1
r=0 2

Li+L2 —f +s+ i

X (2aR ) g it t (2aR)
2P, t P /2

with

o=(L)+L2+I)/2, hl—:(L)+L2 —l)/2,

(A4)

the Pochhammer symbol (a)„and the Gaunt coefficient

(lm
~

L &M&
~
L2M~ ) = f dQ Yt (Q) YL, '(Q) YL,'(Q) .

The single-center overlap S and kinetic energy T integrals have been calculated in Ref. 24:

L ) 3
(2L ( + 1 )!!(2N(+2Np+ 2L )

—1 )!!
S~'„(a)=a-' ~L,L ~M, M

(2N/+2N2+4L )+2)!!
L1L2 2

L iL2 2
Tg N (a) = —(a /2)[S~ N, (a) —S~, ~, )(a)] .

APPENDIX B: INTEGRALS OVER A FUNCTIONS

(A5)

(A6)

(A7)

lt turns out that the three-dimensional sums in Eq. (A4) slow down the computation of the nuclear attrac-
tion integrals. We, therefore, have used a different method for calculating the nuclear attraction integrals
over A functions. First, we calculate these integrals for the lowest radial quantum number N~ ——I- &+1.
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The rest of the integrals we obtain by means of a 5-term recursion relation that is numerically stable up to
about N1 ——L1+25 and L1 (12, which should be sufficient for most applications.

For N1 ——L1+ 1 the nuclear attraction integrals reduce to

L)L~ L ) +L2 (2L2+2) M+i M~
N~ I +, ~ M——(L, +1,L, )M(Nz, Lz) dr

~

r —Ri (2r) ' 'L~ I,(2r)YI (Q)Yt, (Q)e

{Bl}

(B2)

and

We use the Laplace expansion of the Coulomb operator which allows us to perform the angular part of the
integration without any problem. For doing the radial part of the integrals the goal is to shift the indices of
the Laguerre polynomials in such a way that one obtains a finite sum of integrals of the form

J dr L~ '(r)e

2R
dr r Lz '(r)e (B3)

that are known analytically. The result of these manipulations is

N~,
'

I,+, ~ (R)=M(L, +I,L, )M(Nz, Lz)e

Xg(tm iL,m, iL,m, &

I 2l+1
N2 L2 2

X YI™(Q) (2R) '

v=O

(Lp L 1
—l)„—(L +l. +1+3)V

&i(N L 1 )
&i -L~ —2—v (2R )

(L p L i
—l)~, ——i,,—i+, e "(2R) 'y(L i+Lan+1 +3,2R)

2
— 2—

N~+Li —I
—(2R)'(L, +L,—I +I)!

v=O

N, +L, —l —&

L, +L2 —l+1—v ( —1)"

(L2 L i+I)
X Lx, +1., i „(2R)

(B4)

where y(a, x) is the incomplete y function.
In contrast to Eq. (A4), Eq. (B4}contains only two-dimensional sums of moderate lengths because the v

sums are limited by the binomial coefficients and the Pochhammer symbols.
The next step is to derive a recursion relation for the integrals with higher radial quantum numbers N1.

Such recursion relation can readily be found with the recursion relation for the Laguerre polynomial L„' '

that shifts the lower index n but leaves the upper index a unchanged. The factor r that appears in this
process is absorbed in AN I . After a short series of manipulation one finds

NN, N~(R) =
1/2

1 L if.~

(N, L, —1)(N, +L, +—1)
2(Ni NP 1)N~, , ~,—(R)—

1/2
(N2 —L2 —1)(N2+L2+ 1)

1 2+
(N1 —L1 —1)(N1+L1+1)

NN —1,N (R)

(N2+L2+ 1)(N2 —L2)+
(Ni L i —1){Ni+I.i +—1)

(Ni Li —2)(Ni+L —
1 )

(N1 —L1 —1)(N1+L1+1)

1/2
L)Li

NN, —1,N, +1(R)

' 1/2
LiL~

NN, 2N, (R) . (B5)
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(B6)

for N+N', and

The recursion relation [Eq. (B5)] connects five integrals with the same angular momentum quantum number

L i and L2 and adjacent radial quantum number N& and N&. The price one has to pay for avoiding the ar-

ray of three-dimensional sums in Eq. (A4) is that one has to calculate alinost twice as many integrals
LlL2 L)L~
I + i ~,, i.e., instead of calculating the integrals NI, + & N, up to some N2 ——L2+N,„,one has to calculate

them up to N2 L2——+2XN,„—1. Nevertheless, the tnethod based on Eqs. (B4) and (B5) for calculating
the nuclear attraction integrals is faster than the method based on Eq. (A4), provided one calculates a whole

array of integrals up to some set of maximal quantum numbers. The kinetic energy integral has been given

by Hagstrom and Shull [see Eq. (7) of Ref. 3]:
(2N, +1)(2L+1)!M(N&, L)

(2L +3)2~ M(N &,L)

L„L,' 1 (2N+1)(2L +1)!
(2L +3)!!2

for N =N'.

(B7)
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