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Nonrelativistic and relativistic self-consistent-field wave functions of the Hartree-Fock

type and with statistical exchange have been used for the calculation of radial hyperfine
integrals for the 3d-shell atoms within the 3d +'4s and 3d + configurations. The
mean value of r ' for the 3d electron and the electron density at the nucleus for the 4s
electron have been evaluated with the nonrelativistic wave functions. The relativistic
wave functions have been used for the calculation of radial integrals appearing in an ef-

fective hyperfine Hamiltonian for the magnetic dipole and electric quadrupole interaction.
For the magnetic dipole interaction the relativistic wave functions calculated with a sta-
tistical exchange potential are found to describe the hyperfine interaction for the 4s elec-

tron in a better way than what is achieved with the HF potential. The experimental orbi-

tal, spin-dipole, and contact radial parameters for the 3d electrons of some of the ele-

ments seem to be strongly influenced by configuration-interaction effects, which are not
included in our theoretical values. The magnitude of configuration-interaction effects has
been estimated for the orbital and spin-dipole parts by comparing existing experimental
radial integrals with the corresponding relativistic ones. The pure relativistic parameters
in the effective Hamiltonian for the quadrupole interaction are found to be in good agree-
ment with the experimental values for manganese and cobalt, while the experimental un-

certainty for the parameters of the other elements is still too large for a critical compar-
ison to be done. Quadrupole moments have been evaluated with the use of published ex-

perimental hyperfine parameters and theoretical radial integrals calculated in this work.
A comparison between ratios of experimental quadrupole parameters and relativistic ones

gave an estimate of the quadrupole shielding, known as the Sternheimer effect.

I. INTRODUCTION

The knowledge of the hyperftne structure (hfs)
for the 3d-shell atoms in the two lowest configura-
tions 3d 4g and 3d + 4g has increased consider-
ably during the last few years. This is particularly
due to high-precision measurements with radio-
frequency (rf) methods as the conventional
atomic-beam magnetic-resonance (ABMR) tech-

nique' and laser-induced hyperfine pumping com-
bined with radiofrequency spectroscopy '

The new experimental data have usually been
analyzed by means of the technique of effective
operators. With such a procedure, effects of con-
figuration interaction as well as relativity are in-

cluded in a convenient way. Of particular interest
for this work are the pure relativistic quadrupole
parameters in the effective Hamiltonian for which
experimental values are now available for a number

of elements. The influence of configuration-
interaction effects on these parameters have been
discussed by Armstrong and Feneuille. ' They
made a perturbation expansion of the relativistic
interactions in nonrelativistic terms using the
Foldy-Wouthuysen transformation. Using the
transformed Hamiltonian it was found that the
configuration-interaction contribution on these
pure relativistic parameters is mainly due to spin-
orbit and Breit interactions. These effects are
often neglected in hyperfine structure analysis and
zero-order relativistic self-consistent-field (SCF)
calculations for the investigated configurations or
states should then be able to describe these pure re-
lativistic parameters.

Results from SCF calculations were presented
earlier ' for these elements within the 3d 4s con-
figuration and for V, Co, and Ni within the
3d +'4s configuration. Therefore Dembczynski
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et al. ' used the values for V, Co, and Ni, and ob-
tained by interpolation the hyperfine integrals for
Mn. The renewed interest in the hfs for the 3d-
shell atoms has motivated us to extend the earlier
calculations. We present in this article nonrela-
tivistic and relativistic hyperfine integrals of the
magnetic dipole and electric quadrupole interaction
for the 3d-shell atoms within the configurations
3d +'4s and 3d + . These integrals have been
calculated using nonrelativistic and relativistic

(SCF) wave functions of Hartree-Fock (HF) type
and with a statistical exchange known as optimized
Hartree-Fock-Slater (OHFS). ""

A short description of the hyperfine theory and
the SCF methods used are presented in Sec. II. A
detailed description of the calculation procedure is
given in another article, ' treating the 4d- and 5d-

shell atoms. The result and comparison with ex-

perimental data are given in Sec. III.

II. THEORETICAL APPROACH

For the analysis of the magnetic dipole interaction within a nl n's configuration the effective Hamilton-
ian is normally taken as'

N

Hhr, (M1)= g [I;anl' —(10)' (s C ),'a„'l +s;anl ] I+.a„',s „"I,

where I is the nuclear spin. I;, (s C );, and s; are the orbital, spin dipole, and spin operators for the elec-
trons with orbital angular momentum l. s „ is the spin operator for the unpaired s electron. The effective
Hamiltonian for the quadrupole interaction of a nl or nl n's configuration is usually given as '

i=1
n /0 ~ n ]0 ~ n (2)

where Q is the quadrupole moment and T2(n) the
nuclear quadrupole operator. ~C. is a second-rank
tensor operator and U'"~'" are double tensor opera-
tors of rank v in spin space, rank A, in orbital

space, and of rank k in the combined spin-orbital

space as discussed by Judd and Sandars. ' ' The
quantities a„'~~, a„'.„in Eq. (1) and b„'Jl in Eq. (2) are
related to the nuclear moments lMI, Q, and the radi-

al hyperfine integrals in the following way:

Po „Pl
anl= 4 ~PB I (r )nl ~

2

4m.ep

(3)

(4)

In the analysis of experimental hfs using these
Hamiltonians, the a„'I and b„'I quantities are nor-
mally treated as free parameters. It is necessary
here to use hfs constants corrected for perturba-
tions due to neighboring J states. The origin of
these perturbations is that the hfs operators are not
diagonal in J. Breakdown of LS coupling in the
considered states also have to be taken into account
in the analysis by the use of adequate wave func-
tions intermediate between the LS- and jj-coupling
limits. It is shown in earlier works that the values

of the experimental parameters are sensitive to the
intermediate-coupling coefficients, which put great
demands on the quality of the intermediate wave
functions used. The 3d-shell elements are charac-
terized by the three even configurations 3d 4s,
3d + 4s, and 3d +, which are very close in en-

ergy and are therefore strongly mixed. This strong
configuration mixing has to be taken into account
by the use of angular wave functions expanded in
all three configurations. Extensive analysis of this
type has for example been done by Dembczynski
for Mn' and Fe.'

Generally a magnetic dipole interaction constant
for a certain

~

SLJ ) state of these elements will be
expressed in 12 different radial parameters; three
for the d electrons from each configuration; one
from the unpaired s electron, and two cross-con-
figuration parameters. For the quadrupole interac-
tion 11 parameters are needed, i.e., three for the d
electrons from each configuration and two cross-
configuration parameters. These cross-configu-
ration parameters are proportional to the integral
(3d

~

r
~

4s ) and are normally neglected in the
analysis. We have estimated these integrals nonre-
lativistically as well as relativistically to be of the
order of -10 a.u. and the neglection of them is
therefore justified in comparison with the diagonal
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integrals (Tables II and III). Although a reduction
of the number of parameters is obtained in this
way, it is in most cases not possible to get a com-
plete determination of them due to lack of experi-
mental data. Further approximations as, for exam-
ple, fixing the ratios between some of the parame-
ters, are therefore usually done in the analyses.

The experimentally determined radial integrals
include, besides the zero-order nonrelativistic HF
values, relativistic and configuration-interaction ef-
fects as discussed by Judd, ' ' Sandars, and
Armstrong, and Feneuille. ' For the analysis of
these effects it is convenient to rewrite the experi-
mentally determined integrals in the following way:

(r )nIE=(r ) lRn(1+6 l)n~

(r —3)12 ( —3)12 (l+g12)

&r '&.IE &r '&'IR+(r )„IC,
&.-'&."..= &.-'&.",,(i+~„".,),
(.-')",.=( r-'&' ,1(i +~")I

&r '&.'I,E=&r '&.'I', R,
(r )nl E (r )nl R

(sa)

(Sb)

(5c)

(5d)

(5e)

(5f)

(5g)

The indices E, R, and C refer here to experimental,
relativistic Hartree-Fock, and core-polarization
values, respectively. (r )'„IR represents the rela-
tivistic effective hyperfine integrals as introduced
by Sandars and Beck and also defined in other
works. ' ' The contribution of configuration in-
teraction is taken into account by introducing the
parameters 6'„I. The relativistic (r )„IR,
(r )„'IR, and (r )„I„integrals will, in the non-
relativistic limit, be equal to the nonrelativistic
mean value of r, while the integrals (r
(r )„'IR, and (r )„'IR are of purely relativistic
nature and approach zero in the nonrelativistic
limit. The (r )„'IE and (r )„'I E integrals are
influenced by configuration mixing mainly due to
the spin-orbit and Breit interactions as mentioned
before. ' These effects are here assumed to be
small compared to the zero-order SCF values
(r )„IR and (r )„'IR. The 6'„I parameters are
therefore omitted in Eqs. (Sf) and (5g). The fur-
ther analysis will show the validity of this assump-
tion. For the (r )„IE parameter, however, the
most dominant contribution is from configuration
interaction. The valence electrons polarize the core
and this gives a net spin density at the nucleus re-
sulting in an induced contact parameter for the nl
shell. This effect is also denoted as spin polariza-
tion. The (r )„IE parameter has therefore been

expressed in a different way compared to the oth-
ers.

In this work we have calculated nonrelativistic
and relativistic SCF wave functions for the 3d ele-

rnents within the configuration. 3d +'4s and
3d + . The calculations have been done within
the Hartree-Fock (HF) and optimized Hartree-
Fock-Slater "' (OHFS) schemes nonrelativistical-
ly as well as relativistically. All these wave func-
tions have been evaluated for the average energy of
the considered configuration ' and not for a partic-
ular LS term. Applying this scheme in the rela-
tivistic case leads to the average energy of a certain
jj configuration, i.e., a configuration where the oc-
cupation numbers are given for each nlj shell.
Such a treatment is, however, only meaningful
when jj coupling dominates. The 3d elements are
closer to LS coupling than to jj coupling and it is
in such a case that only the occupation numbers of
the different nl shells are relevant. The relativistic
wave functions are, with such an approach, calcu-
lated for the entire LS configuration and denoted
as LS average. More detailed descriptions of the
SCF calculations are given in the earlier review ar-
ticle or in the article for the 4d and 5d elements. '

III. RESULTS AND DISCUSSION

A compilation of stable isotopes for which accu-
rate hfs measurements are known for the 3d-shell
atoms in the 3d 4s and 3d +i 4s configurations
is presented in Table I. No measurements have up
to now been done for states within the 3d + con-
figuration. The hfs is known for many elements in
more than three or four states for the 3d 4s and
3d +'4s configurations, which means that an ex-
tensive analysis can be performed. It is also of
particular interest to observe that for some ele-
rnents the hfs has been measured in two different
LS terms for one of the configurations. It may
therefore be possible to check the importance of
LS-dependent configuration-interaction contribu-
tions as discussed by Bauche-Arnoult ' and
Armstrong. For the further analysis, nuclear
magnetic dipole moments and nuclear spins are
included in this table.

Radial hyperfine integrals for the magnetic di-
pole and electric quadrupole interaction are
presented in Tables II and III for the 3d +' 4s and
3d + configurations, respectively. The mean
value of r for the valence d electrons and the
electron density at the nucleus for the 4s electron
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TABLE I. Nuclear spins and nuclear magnetic dipole moments for stable isotopes of the 3d elements for which ac-

curate hfs measurements have been performed in different states of the 3d 4s and 3d +'4s configurations.

Isotope
Pl

(nm)

States in which hfs has been measured

3d~4s2 Ref. 3d +'4s

configuration configuration

Ref.

45S

47Ti

49Ti

51V

50V

53C

5 Mn

"Fe
"Co

'Ni

"Cu
65( u

7

2
5

2
7

2
7

2

3

2
5

2
1

2
7

2

3

2
3

2
3

2

4.749

—0.787

—1.102

5.142

3.341
—0.470

3.446

0.0903

4.61

—0.748

2.218

2.376

2
D3/2, 5/2

3F2 4

4~
3/2 —9/2

4F3

6
S5/2

5Dl 4

41.c 3/2 —9/2

3F2 4

2
D3/2, 5/2

31,32

33,34

47

37

38,39

31,40,

41

42,43

44,45

4z~ 3/2 —9/2

F2—5

6~ 4n~1/2 —9/2 ~1/2 —7/2

S3
6m~1/2 —9/2

5 3F2 5 F2 4

4z
5/2 —9/2

3D23

2
Sl/2

29,30

32

33,35

36

10

17,39

40

42,43

46

have been evaluated with the nonrelativistic wave
functions. The relativistic effective radial integrals
for the d electrons, given as linear combinations of
relativistic one-electron integrals for the j states

3 5j = —,, —, are presented. We have for the 4s elec-

trons in Table II given the relativistic correspon-
dence of (dP/dr), 0 so that the relativistic correc-
tion factor (RCF) can be evaluated directly. ' It
should be noted that the (r )4, parameter in Eq.
(5d) is related to (r )4, and (dP/dr)„0 through

. 2

—3)10 2
( —3)M 2 F10

dr

where F4, is the RCF. Earlier, when ab initio rela-
tivistic radial integrals were not available, RCF
evaluated from hydrogenic wave functions were
almost exclusively used in hfs analysis. Using
Tables II and III, the RCF for the different hyper-
fine parameters for the 3d electrons can also be
calculated as the ratio between the relativistic and
nonrelativistic integrals.

A. Magnetic dipole interaction

Figure 1 shows a graph of the experimental
values of (dP/dr), 0 within the 3d +'4s config-
uration. For comparison, the theoretical nonrela-

tivistic value (dP/dr)„0 and the corresponding re-
lativistic quantity (r 3)4„calculated with orbitals
of HF and OHFS type, are given in the same fig-
ure. The RCF for the contact parameter of the 4s
electron, i.e., F4, is almost the same for both
methods and varies from 1.075 for Sc to 1.149 for
Cu. Hence the relativistic contribution to this
parameter is a factor of 2 greater for the slightly
heavier element Cu than for Sc. A better agree-
ment is achieved between experiment and theory if
the OHFS or ROHFS wave functions are used in-
stead of HF or RHF wave functions for calcula-
tion of this parameter. This is a general trend
which has been found in many cases. By the use
of formula (Sd) the configuration-interaction con-
tribution A4, can be deduced from a comparison of
the experimental and the RHF values. b,4, varies
from —0.05 to + 0.45.

A detailed discussion of the effective (r 3)jd
values for the 3d elements within the 3d 4s con-
figurations was presented in the earlier analysis.
The result for the 3d +'4s and the 3d +2 config-
urations for these elements presented in Tables II
and III, shows the same general trends as obtained
within the 3d 4s configuration. Within all three
configurations the electrons are more bound with
increasing N, which give an increase in the
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TABLE III. Nonrelativistic and relativistic hyperfine integrals for the magnetic dipole and electric quadrupole in-

teraction for the 3d elements in the 3d + configuration.

Z Element Config. Method

Nonrelativistic

(r '&3d

Magnetic dipole

(
—3) 10( —3)01 ( —3)12

Relativistic
Electric quadrupole

3 F01
-3)02 ( -3)13 ( -3)11

r 3d

21 Sc 3d3 OHFS
HF

0.952
0.750

0.884 0.911 —0.0129 0.970
0.736 0.750 —0.0066 0.981

0.884 0.0398 —0.0202
0.736 0.0222 —0.0105

22 3d4 OHFS
HF

1.439
1.244

1.375
1.226

1.417 —0.0201 0.970
1.253 —0.0132 0.978

1.374 0.0642 —0.0318
1.226 0.0446 —0.0211

23 V 3d OHFS
HF

1.994
1.794

1.931
1.773

1.991 —0.0290 0.970
1.820 —0.0222 0.974

1.930 0.0953 —0.0461
1.773 0.0750 —0.0354

24 Cr 3d OHFS
HF

2.627
2.419

2.564
2.394

2.648 —0.0404 0.968
2.464 —0.0336 0.972

2.564 0.135 —0.0644
2.394 0.114 —0.0536

25 Mn 3d' OHFS
HF

3.344
3.122

3.279
3.093

3.394 —0.0545 0.966
3.196 —0.0489 0.968

3.279 0.186 —0.0874
3.093 0.167 —0.0781

26 Fe 3ds OHFS
HF

4.151
3.914

4.084
3.882

4.237 —0.0723 0.964
4.025 —0.0682 0.964

4.085 0.251 —0.116
3.882 0.234 —0.109

27 Co 3d OHFS
HF

5.054
4.803

4.984
4.765

5.183 —0.0942 0.962
4.962 —0.0940 0.960

4.986 0.331 —0.152
4.765 0.322 —0.150

(r 3)3z and (r 3)/d values. A comparison of the

(r )$~ values, with a nonrelativistic counterpart,

evaluated for the different configurations of a cer-

tain element, shows that the 3d orbitals are more

contracted when the 4s electrons are present. This

is due to the fact that the 4s orbital is mainly lo-

cated outside the 3d shell. The RCF for the or-

bital part is smaller than unity, while the RCF for

50

30

I I I I I I I I I

ROHFS—

NOHFS

RHF

NHF

20—

10

0 I I I I I I I I I

SC Ti V Cr Mn Fe CO NI Cu

FIG. 1. A comparison between the experimental and

theoretical radial hyperfine integrals (in units of ao ) for
the 4s electron of the 3d elements in the 3d +'4s con-

figuration.

the spin-dipole term varies from 0.99 to 1.02. The
relativistic effective radial integral (r )3d for the

contact term is very small for both configurations,
i.e., of the order of —0.01 to —0.10. The experi-
mental values are, as seen from Table II, about
—1.5ao for most of the elements. The main con-
tribution to the experimental contact parameters
for the d electrons is therefore configuration in-
teraction. More detailed many-body calculations
are necessary to describe these configuration in-
teractions as, for example, those made by Kelly
and Ron for iron. An estimation of the spin-
polarization effects can be obtained by use of spin
polarized wave functions as was done for the S3
state in chromium.

As seen from Table II the (r )3d integrals
describe the general trend of the experimental
values for the orbital part in the 3d +'4s config-
uration. This is not so pronounced for the spin-
dipole integrals, where the difference between the
theoretical and experimental values vary somewhat
more compared with the orbital case. This is prob-
ably caused by the higher rank of the spin-dipole
operator which is 2 in the orbital space and 1 in
the spin space, compared to 1 and 0, respectively,
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TABLE IV. Values of experimental configuration-
interaction contributions as evaluated by use of Eq. (5).

Configuration 3d 4s' Configuration 3d +'4s
Element 1+6 ' 1+6' 1+6 ' 1+6'

Sc
Ti
V
Mn
Fe'
Co
Ni

0.92
0.96
0.98

0.92
0.94
0.97

0.81
0.93
0.87

0.92
0.99
0.92

0.88
0.96
1.03
0.84
0.90
0.96

2.29
0.73
0.88
0.90
0.89
0.94

'Corrected for two-body effects (see Ref. 17).

for the orbital operator. The spin-dipole operator
therefore mixes more configurations than the or-
bital one.

The different contributions of configuration in-

teraction to these terms are usually analyzed by
evaluating the ratio (r 3)„I/(r )„'I, which, in

the absence of relativistic and configuration-
interaction effects, is equal to unity. This was

done in the analysis of the 3d 4s configuration
and is given in Fig. 7 of Ref. 8. It is observed that
the pure relativistic contributions have no signifi-
cant influence on this ratio. Absolute values of the
configuration interaction to the orbital and spin-

dipole values can also be evaluated by using Eq. (5)
and the experimental and theoretical values in

Table II. The 1+5 ' and 1+6' factors calculat-
ed in this way and presented in Table IV are for

most elements in the range of 0.8—1.0, which
means that the 5 ' and 6' contributions are nega-
tive. We present the values with two decimals al-
though the uncertainties in the experimental
parameters vary significantly for different ele-
ments. The different uncertainties are due to lack
of experimental hyperfine structure data and the
assumptions made in the analysis. The original pa-
pers should therefore be checked in each case. The
6 ' values vary almost linearly for the elements Sc,
Ti, V, and Mn, Fe, Co, Ni in both configurations,
while the spin-dipole part 5' has a more irregular
behavior. More definite conclusions of the varia-
tion of 5'~ parameters seem to be not possible at
present.

B. Electric quadrupole interaction

From the hyperfine structure measurements in

the different states as presented in Table I experi-
tnental quadrupole parameters bf~ have been ex-

tracted. A compilation of published values are

given in Table V.
Of particular interest for the calculations

presented in this work are the pure relativistic
operators U'"' and U" ' in the electric quadru-

pole Hamiltonian. If we assume that Eqs. (5fl and

(Sg) are valid, the ratio between the experimental
parameters b3~ and b3~ should be equal to the ra-
tio between the corresponding relativistic integrals
in Tables II and III. A comparison of theoretical
and experimental values for this ratio is given in

Fig. 2. The theoretical ratios are nearly the same

TABLE V. Experimental quadrupole hyperfine parameters and quadrupole moments evaluated using relativistic
Hartree-Fock integrals. The notation Q'J for the quadrupole moments means that they have been evaluated from the

experimental hfdf parameters by use of the theoretical integrals (r ')$q.

Isotope I Configuration Ref.

b02
3d

(MHz)

b 13

(MHz)

b 11

(MHz)

g02

(b)

g13

(b)

@11

(b)

45SC

47T'

4'Ti

51V

7

2
5

2
7

2
7

2

3d24s

3d 4s

3d34s

3d34s2

30 —48(2) 5(5) 1.5(6)

32 99.8(1.6) 1.85(1.4) —1.25(2.0)

32 81.8(1.3) 1.5(1.2) —1.0(1.6)

35 —29.0(2) 1.3(4) —0.4(2)

—0.20(1) 0.9(9)

0.271(4) 0.18(14)

0.222(4) 0.15(12)

—0.0482(3) 0.08(2)

—0.6(2)

0.28(45)

0.23(36)

0.06(3)

"Mn

"Co

5

2
7

2

3d44s

3d 4s

3d 4s

35 —24.6(2) 0.6(9) 0.1(7)

10 229.883(28) 9.877(200) —4.375(100)

40 487.7(5.6) 24.6(1.2) —7.2(9)

—0.0487(4)

0.2757(1)

0.036(54)

0.284(6)

—0.01(10)

0.296(7)

0.354(4) 0.382(19) 0.281(35)

'Ni 3

2

3d 4s

3d'4s'
40 406.7(8. 1) 12.9(5.0) 9.9(11.1)

43 200.9 11.8 —5.4
0.326(7)

0.123

0.20(8)

0.140

—0.35(40)

0.158
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FIG. 2. Experimental and theoretical (RHF) ratios of
the pure relativistic integrals (r 3)" and (r 3)'3 for
the 3d 4s, 3d +'4s, and 3d + configurations.

for all the elements in the three different configu-
rations and is about —0.4. The agreement between

the theoretical and experimental values for Mn is

surprisingly good. This indicates that the
configuration-interaction effects on these two
parameters are very small or that these effects are
of the same relative sign and magnitude in both
parameters. A comparatively good agreement is
also achieved for V, Co, and Ni within the 3d 4s
configuration.

The uncertainty in the experimental data for the
other elements is too great for a critical test to be
done. However, it should be noted that these two
parameters are very hard to extract due to their
magnitude compared with the nonrelativistic one.
Further, the coefficients for these parameters in

the parametrized expression for the quadrupole-
interaction constants are small and very sensitive

to the type of intermediate wave functions used.
More experimental data and refined analysis for
most of these elements seem therefore necessary to
test the importance of relativistic configuration-
interaction effects on these parameters.

The experimental b'j» parameters can, by
neglecting configuration-interaction effects, be used

directly for the evaluation of the quadrupole mo-

ments by use of the corresponding theoretical radi-

al integrals in Table II in this work and Table 29
of Ref. 8. The result is given in the columns to
the right in Table V. The notation Q'J for the
quadrupole moments means that they have been
evaluated from the experimental b $q parameters by
use of the theoretical integrals (r 3)'j» We. notice
how the quadrupole moments Q' and Q" are gen-

erally associated with large uncertainties. Howev-

er, for Co in the 3d 4s configuration and for Mn
in the 3d +'4s configuration the experimental b'

11
3d

and b3d parameters are given with small uncertain-
ties and for these cases the values Q' and Q" are
consistent. The experimental ratios b 3d /b 3d are
here also well described by the corresponding
theoretical values as seen from Fig. 2. The experi-
mental uncertainty of the b„I parameter is general-

ly much smaller than that of the b„'I and b„'I'

parameters. The evaluated quadrupole moments
Qo2 are therefore determined with higher accuracy.
However, this high precision is in many cases de-

ceptive due to the influence of configuration in-

teraction as given by the g» parameter in Eq. (Se).
The estimation of this parameter has been the
source for a great deal of work by, for example,
Sternheimer. A semiempirical way of estimating
the 6 corrections would be to use the experimen-

tal I ' and 6' corrections for the magnetic dipole
interaction as evaluated in Table IV. We notice
that the 5 ' and 6' corrections are, for most of
the elements, of the order of —0.1 and one would

therefore expect the 6 to be of the same order.
However, one must be very careful in such a sem-

iempirical way of estimating 6 since the 6' fac-
tors include a number of contributions originating
from different types of configuration mixing.
These contributions can in some cases even be of a
different sign, which is illustrated for the two-

particle effects to second order for some of the 3d
elements by Bauche-Arnoult. Ab initio calcula-
tions should therefore be done for each element

and LS multiplet which is beyond the scope of the
present work.

Experimental values of the b 3d parameter can be

TABLE VI. Values of experimental configuration-interaction contribution as evaluated by the use of Eq. (7).

Element Configuration
02

b3a, E
11b 3a,E

02b 3a,E
13

b3a, E

(r )34R

(r )34R (r )34R
1+6"(11) 1+6"(13)

Mn
Co
Ni

3d 4s
3d'4s'
3ds 4$

—52.5(1.2)
—68(10)
—37.2

23.3(5)
19.8(1.2)
17.0

—56.3
—53.8
—47.8

24.0
21.4
19.2

0.93(2)
1.26(20)
0.78

0.97(2)
0.93(6)
0.89
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estimated by comparing the quadrupole moments
evaluated from the b3~ parameter with those
evaluated from the b3d and b3d parameters. If we
assume that Eqs. {5)hold, we get

02 b02 (
—3)11

~02(11) Q 3dE " 3dR

Q" b3dE(r )3dR

A similar relation holds also for the b ' parameter.
The result from this type of analysis is presented
for Mn, Co, and Ni in Table VI. No uncertainties
are given for Ni since there was no uncertainty
given in the original paper for the b $~ parameters.
We notice that 6 (11) and 6 (13) do not overlap.
The reason is probably that the uncertainties in the
experimental b'~ parameter are underestimated. An

estimation of 6 at this stage is to take the aver-
age of 6 (13), dP (11),which gives (1+602) as
0.95(4), 1.0{2),and 0.83(6) for Mn, Co, and Ni,
respectively. These values are consistent with
those obtained for the 5 ' and 5' parameters.
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