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Multiconfiguration relativistic random-phase approximation. Theory
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The relativistic random-phase approximation is generalized to describe excitations of an
atomic system having a multiconfiguration ground state. The response of such an atom
to an imposed harmonic perturbation is determined by applying the time-dependent varia-
tional principle to a multiconfiguration wave function constructed from Dirac orbitals.
Terms in the wave function independent of the external field lead to the multiconfigura-
tion Dirac-Fock description of the ground state. Terms proportional to the external field
lead to a multiconfiguration generalization of the relativistic random-phase approxima-
tion. For the special case of an atom having a ground state with two electrons coupled to
J=0 outside of closed shells, we write out in detail equations for the configuration
weights and for the electronic orbitals. These equations are expanded in a suitable basis
to give expressions for the excitation probabilities. An angular momentum analysis is
carried out leading to a set of coupled algebraic equations for the configuration weights
and a set of radial differential equations for the electronic orbitals.

I. INTRODUCTION

The relativistic random-phase approximation
(RRPA) has been employed in the recent past to
describe photoexcitation and photoionization pro-
cesses in atoms and ions of high nuclear charge. '
For closed-shell systems, such as heavy noble gas
atoms, where the ground state is well isolated from
the excited states, applications of the RRPA have
been remarkably successful. For other closed-shell
systems, such as alkaline-earth atoms, which have
low-lying excited states, such applications have
been less successful, owing to the importance of
two-electron excitations which are omitted in the
RRPA. To date there have been no applications of
the RRPA to open-shell systems, since the RRPA
is based on a single-configuration reference state
and is appropriate only for a description of excita-
tions of closed-shell systems.

It is the purpose of this paper to develop a gen-
eralization of the RRPA based on a multiconfig-
uration reference state which is suitable for treat-
ing photoexcitation and photoionization of closed-
shell and certain open-shell systems of high nuclear
charge. The approach adopted here is in the spirit
of that recently employed by Dalgaard to general-
ize the nonrelativistic time-dependent Hartree-Fock
theory. Theoretical methods equivalent to those of
Dalgaard have also been developed recently by
Yeager and J@rgensen from an equation-of-motion
point of view. These methods have already been

H(t) =H+ V(t),

where

N N
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n=l n&m
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N
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(1.2)

(1.3)
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In Eq. (1.2) hn is a single-electron Dirac Hamil-
tonian, while in Eq. (1.1), V(t) is an external po-
tential which induces transitions between atomic
states. The time-independent part of the Hamil-
tonian H is assumed to consist of a single-particle
Dirac term and a Coulomb term. The Breit in-
teraction is not considered here but may be easily
included in the calculation if required. Since the
equations resulting from our analysis will be re-
duced to single-particle Dirac equations describing
perturbed orbitals, the problem of "continuum dis-
solution" ' associated with the Hamiltonian (1.2)

applied with a high degree of success to a number
of nonrelativistic atomic and molecular systems.

Our calculations are based on an approximate re-
lativistic Hamiltonian
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does not arise in the present theory.
Our point of departure is the time-dependent

variational principle. ' We describe the ¹lectron
system as a superposition of configuration wave

functions with time-dependent weights. Since the

external perturbation may have components with

nonvanishing angular momentum and with odd

parity, the atomic wave function contains terms of
mixed angular momentum and parity. Applying

the variational principle we derive time-dependent

multiconfiguration Dirac-Fock equations describ-

ing the response of the atom to the external field.

Terms independent of the external field lead to the

usual stationary multiconfiguration Dirac-Fock
(MCDF) description of an atomic state. ' Those

terms proportional to the external field lead to
equations describing the linear response of the

atomic state to the external field; in the sequel we

refer to these linear response equations as the mul-

ticonfiguration relativistic random-phase approxi-

mation (MCRRPA) equations. If we start from a
single-configuration reference state, the MCRRPA
equations reduce to the usual RRPA equations.

The MCRRPA equations may alternatively be de-

rived from an equation-of-motion point of view. "
A general version of the MCRRPA equations

which applies to either open-shell or closed-shell

atoms is written down in Sec. II. These general

equations may be greatly simplified in specific

cases. In Sec. III, we illustrate how this simplifi-

cation is achieved for excitations of the ground

state of atoms such as alkaline earths which have

two electrons outside of a closed core. For such

two-electron atoms, we write out the detailed

MCRRPA equations describing perturbed electron-

ic orbitals.
The MCRRPA equations derived in Sec. III are

linear equations which can be analyzed on a suit-

ably chosen basis. In Sec. IV, we describe the ma-

trix form of the equations obtained from such an

analysis. From the matrix form of the MCRRPA
equations we obtain the normalization conditions

for perturbed orbitals and we derive expressions for
excitation probabilities in terms of the external

field.
In Sec. V we carry out the angular momentum

reduction of the MCRRPA equations for the case

of two-electrons atoms. A set of coupled radial

differential equations for perturbed orbitals and a
set of coupled algebraic equations for the perturbed

weight coefficients are derived. The coupled equa-

tions obtained in Sec. V are similar in structure to
the radial MCDF equations.

Numerical solutions of the equations for several

low-lying states of the Be-like ions have already

been carried out, ' giving excitation energies and

transition probabilities in excellent agreement with

experiment.

II. THEORY

Let 4(t) represent a time-dependent solution to the many-electron Schrodinger equation

=H( )4( )'
at

(2.1)

where H (t) is the approximate relativistic Hamiltonian given in Eqs. (1.1)—(1.5). To obtain approximate

solutions to Eq. (2.1) we appeal to the time-dependent variational principle '

lie(t( i —H(t( C(ti)=0, —~~~ a
at

(2.2)

which expresses the condition that the approximation error remain small for all time. Without loss of gen-

erality, we write 4(t) in the form

C(t)=e '~'P(t), (2.3)

Here E is an approximation to a stationary-state energy of the time-independent Hamiltonian H which is ob-

tained from (1.1) when V(t) is neglected. The variationa1 principle can be rewritten in terms of %(t) as

~~

~

~~
~

~

~~

54(t) E+j——H(t) 4'(t) =0.~ a (2.4)
at

We approximate the many-body wave function ip(t) by a superposition of configuration functions g, (t),

iP(t) = g C.(t)g. (t), (2.5)
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where a is a configuration index, and where C, (t) is a configuration weight coefficient. Using the expansion

(2.5), we obtain

'W&) E+i —H—{t}%(t) = g C,'(t) ECb(r)+i (1(j,(r)
~

itjb(r) }
~ ~.a, aC, (r)

ab

+gC (t)Ct. (tl tj (t) t.—H(t) tjt—(t)) .
ob at

To maintain the normalization of %(t) for all time, we require

(y. (r)
I
A(r} & =5.,

and

gC,'{r)C.(t)=1 .

(2.6)

(2.7)

(2.8)

The configuration wave functions it(, {t}are built up from one-electron orbitals u (t). To ensure the ortho-

normality relation (2.7} we require orthonormality among the one-electron orbitals

(u {t}
~
u&(t})=5 ii . (2.9)

We can simplify Eq. (2.6) by using the orthonormality condition (2.7). Later, when we apply the variational

principle we must, of course, introduce Lagrange multipliers to enforce the constraint conditions (2.9). Tak-

ing into consideration Eq. (2.7), we find

q'(&) E+i——H(r) )p(r) = QC,'(i) E+i C, (t)+ g—C (r)C (r)
. 8 8
at at a b

a ab ab

where we write symbolically

(——:p, (t) t—(jt(t)I,
. a a
at. = ' at '

H(t),b,— (2.10)

(2.11)

(2.12)H(t},b —= (i/l, (t}
~
H(t}

~
tjkb(t) } .

Varying C,'(t) and u (t} in (2.10}according to (2.4} subject to the orthonormality constraint (2.9} we obtain

equations for the weight coefficients and orbitals, respectively,

E+i C(t)+—g i H(t},b —Cb(t) =—0,a a
at ' at, {2.13)

QC, {t)Cb{t} 5 i 5~—(t},b ——g—y p(t)up(t},
ab Bt b

-

P

(2.14)

where y jS( t) are the Lagrange multipliers, and
where we denote functional derivatives with respect
to u (t) as

5~ l =
g

l
~ . a s . a

(2.15)
Bt b Qu+ Bt

~ zb

and

I

time-independent part H describing the many-
electron dynamics and a harmonic perturbation
V(t) describing interaction with an external field as
described in (1.1)—(1.3), we may correspondingly
assume a harmonic time dependence for %(t) and
write

C.(t)=C.+[C,]+e-'"'+ [C,] e'"'+

(2.16)~5(t),b
—— t H(t), b .5

5u

Assuming that the Hamiltonian H(t) consists of a u (t)=u +la~+e ' '+N e'"'+
(2.17)
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where . . denotes omitted higher-order harmon-

ics. We may also assume that the Lagrange multi-

pliers r tt(t) take a similar form

r.tt(t) =r.tt+[r.ttl+e '"'+[ratt] —' '+

stronger conditions

g c.'[c.],=o

&u liopi&=0

(2.24)

(2.25)

To satisfy the constraints (2.8} and (2.9), we

demand

g C.'C. =1,

(2.19)

(2.20)

to guarantee the relations (2.21) and (2.23). Substi-
tuting (2.17)—(2.19) into Eqs. (2.13) and (2.14), and
equating coefficients in powers of e+-'"', we obtain
zeroth-order and first-order equations governing
the many-particle system.

(i) Zeroth order.

g ([C, ]+C, +C,'[C, ]+)=0,

(u lug&=5 tt,

( —lutt&+( I ~tt~ &=0.

In the following paragraphs, we impose the

(2.21)

(2.22)

(2.23)

ECa —g [Hab]OCt, =0,
b

gC Cb[5& bio —gr ttutt=o,
ab P

(ii) First order.

(2.26)

(2.27)

(E+to) [Ca ]+—g ([Hab ]o[cb]++[Hab]+Cb )= g [Vab]+Cb .
b b

(2.28}

QCCb 5 i
. 8

ab ~t b

—[5~b], —g([c.l'c, +C.'[cb], )[5&bio g(—r.tt tt. +[r.ttl+utt)
ab P

= g Ca'Cb[5a Vab]+ . (2.29)
ab

In Eqs. (2.26)—(2.29) we have used square brackets with subscripts to designate the coefficients in powers of
e+-' ' in the expansion of various matrix elements:

Hab = & 1('.(t) I
H

I fb(t) &= [Hah lo+ [Hah]+e '"'+ [H b] e'"'+

Vab = &(('.(t)
I

V(t}
I pb(t)& I Vab]+e . +[Vab] e'"'+-

(2.30)

(2.31)

5~ i-t . a
at

(2.32)

ab [5aHab lo+ [5aHab] ye '"'+
[5aHab ] e'"'+ .

5.'V.,=[5'.V.b]+e '"'+[5.'V.b] e'"'+ .

(2.33)

(2.34)

[vab l+ =
& (('a

I
o+

I itb & (o+ }ab

[5 V.b]+=5 (o+}.b .

To arrive at (2.26) —(2.29), we have used

(2.35)

(2.36)

. a =0
ab 0

(2.37)

In (2.31) and (2.34), the coefficients are given expli-

citly by

I

and

a
at . =0. (2.38)

which can easily be shown by taking into account
(2.25). The zeroth-order equations [(2.26) and
(2.27)] are just MCDF equations for the unper-
turbed orbitals u and unperturbed weight coeffi-
cients C, . The parameter E is the MCDF approxi-
mation to the energy of an atomic stationary state.
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The first-order equations [(2.28) and (2.29)] are the
MCRRPA equations describing the response of the
atom to the external perturbation v+. Homogene-

ous MCRRPA equations obtained by omitting the
perturbing terms v+ on the right-hand sides of
(2.28) and (2.29) describe the free oscillations of the
atomic system. The parameter m is a natural fre-

quency of oscillation of the system.

III. MCRRPA ORBITAL EQUATIONS

To describe the general procedure for reducing
the multiconfiguration equations [(2.26}—(2.29)] to
orbital form without invoking complicated
mathematical manipulations, we confine our treat-
ment to systems such as the alkaline earths, which
have two particles outside of a closed core. Since
we have in mind applications to photoexcitation
and photoionization, we restrict our attention to
excitations from the ground state of such systems.

We place no a priori limit on how many config-
urations are to be included in the expansion (2.5);
however, we do restrict our choice to configura-
tions which can be constructed from a given set of
orbitals. For example, to describe the beryllium
atom, we consider only 1si&2, 2si~2, 2p&~2, and

2p3/2 orbitals. The configuration functions l(, (t)
will then consist of all possible multiplets with dif-
ferent angular momenta and parities. For atoms
with two electrons outside of closed shells, the set
of orbitals will consist of core orbitals (e.g., Is i/2)
which describe closed shells in all configurations
and valence orbitals (e.g., 2si/2, 2pi/2, 2p3/2}
which have different occupation numbers in dif-
ferent configurations. Of course the designation of
an orbital u (t) by quantum numbers n and
a =(j, I ) is somewhat artificial since, in view of
Eqs. (2.18) and (2.29), the perturbed components
m + will be a mixture of terms with different
values of ~. In the following paragraphs we adopt
the convention that an orbital u (t) is referred to

by the quantum numbers a=(n~, ~~) of its unper-
turbed component.

We refer to a configuration [(closed core)
(n x ) (n, a; )]J, by the configuration index a.
Let us consider configurations which can be built

up from F distinct valence orbitals. We arrange
the possible configurations in an order such that
the first F configurations are those with two
equivalent valence electrons coupled to zero total
angular momentum, viz. ,

(n K )=(n K )=(n tr )

and

J, =O for a &F .

(3.1)

The remaining configurations will have
(n, k, )Q(n, k, ) and play a role in describing ex-

citation of the system.
A general configuration wave function is given

by

~ f, (t)) =
~
(C)(n, it, ,n, p., )J,M, ), (3.2)

where

Xe(ijk . . aia&), (3.3)

1, ng Icg +ng Kg

1V, =,
~a +a ~a +a

1 1 2 2

(3.4)

and where e(ijk . aia2) is a Slater determinant
composed of orbitals

[u;(t),ui(t), ub(t), ... ,u, (t),ua (t)]

Here i,j,k, ... refer to core orbitals, and a& and a2
refer to the two valence orbitals. Using (3.3), we

can evaluate the matrix element (2.11) as

where Ã represents the closed core, or explicitly by

g, (t)=N, g (j, m, j, m, , ~
JM, )

m m
1 2

i =5,—b g k i k+N, Nb—g (j, m. j.m, , ~
J,M, &(jb mb, jb mb~ ~

JbMb)
a -a
at .='

~ at
a& a2

mb mb
1 2

. a . aX ~a g a) i—b& —~a y a] i—b2 2 Bt
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where the index k—:(nkKbmk } is for core orbitals, and the summation gk is over all the core orbitals. The

index ai =(n, k, m, } (and similarly, a2, b|,b2) is for valence orbitals. We have also used the notation
a& a& a&

a i —P = a(l, t) i —P(l, t) = f d riu (l, t)i ut—t(l, t) .~ ~ ~

~

a a = 3 t -a
at

' ai ' = ' ' at
(3.6)

With the time-independent part (1.2) of the total Hamiltonian, the matrix element {2.30) is given by

H,b
——5,b gh(ii)+ g V(ik;ik)

i(k

+NNb g (j, m, j, m, lJM, &(jbmbjbmb, lJbMb}
ma ma

1 2

mb mb
1 2

5,,b, h (ai,b|)+g V(ia, ;ibi ) —5, b, h(aiba)+ g V(iai', ibq)

+5, b h(a2b2)+ g V(ia2 ,ib2) —'5, b h(a2bi)++V(ia2;ib, )

+ V(aia2', b|b2) (3.7)

where i and k are core-orbital indices and

h(aP)=(a(l, t) lhi lP(i, t)) = f d r, u (l, t)hiup(l, t)i

V(aP;o&) = (a( l, t)P(2, t)
l V|2 l

o( l, t)A(2, t) )

= f d r, f d r u2(~l, t) u(t2t, t}V, 2u(l, t} u(x2, t) .

(3.8)

(3.9)

Here the operator V&2 is

Vi2 ——U i2{1 —P12) (3.10)

with Pi2 being the permutation operator for particles 1 and 2. Using the explicit expressions (3.5) and (3.7)

we can evaluate the functional derivatives (2.32} and (2.33}. It is convenient to consider core orbitals and

valence orbitals separately.
(aj Core orbital ub.

5k i—8
aS

a=5,bi —uk(t),
at

(3.11)

5bH, b=5ob h+ g V(tt) uk(t)

+N, Nb g (j m ja,m
l J,M, )(jb mb jb, mb, l

JbMb)
ma ma

I 2

mb mb
I 2

X[5,,b, V(a&b&) —5,,b, V(a&b2)+5, ,b, V(a2bz) —5, b V(a2bi)]uk(t), (3.12)
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where

hu (t)=hiu (1,t),
V(aP)u (t)= f d r2u {2,t)V|2up(2, t)u (l, t)

= f d r2[ua{2,t}vi2up(2, t)ua(l, t) —ua(2, t}vlqup(l, t)ua(2, t)] .

(b) Valence orbital u .

5, i— =N, Nb y &j, nt, j, tn, ~~,lbf, &&jb, ntb, J'b, rnb, l~bltfb&Bt b a) a2

mb mb
1 2

Xl [5aa)5aibiub)(t) 5aai5a2biubt(t)+5aai5aib ubi(t) 5aa 5a|biub|(t)] i

a

(3.13)

(3.14)

5~~=N, Nb g &j. rn.j.m. , I&.lbf. &&jb, ntb, jb,rnb, l»Mb &

ma ma
1 2

mb mb
1 2

{3.15}

X h+ g V(tt) [5~,5a b ub, (t) 5~,—5a,b ub (t)+5 5, b ub {t)—5 5, b ub (t)]

+ 5~, V(o2b2) ub, (t)+5,V(a, b, )ub, (t) (3.16)

To obtain further simplification of the MCDF and MCRRPA equations [(2.26)—(2.29)], we need the follow-
ing zeroth-order and first-order expressions:

[h {aP)]0 f d r i u ——(1)h iu p(1),

[h(aP)]+ ——f d ri[wa-(1)hiup(1}+ua(1)h lwp+(1)],

[V(aP;ak)]0 ——f d ri f d r2u (1}up(2}Vi2u (1)ut„(2),

[V(ap;oA)]+ ——f d ri f d r2[w (1}up(2)Vi—2u {1)ui(2)+u (1)wp (2)V&2u (1)ub(2)

+u (1)up(2)View +(1)ui(2)+u (1)up(2)V|2u (1)wi+(2)],

. ai—u. (t) =0,
at

(3.17}

(3.18)

(3.19}

(3.20)

(3.21)

i—u (t) =+cow +(1),~ a
ai

[hu (t)]0——hiu (1),
[hu (t)]i=hiw +(1),
[V(aP)u (t)]0= f d r2u (2)Vi2up(2)u (1),

(3.22)

(3.23)

(3.24)

(3.25)
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[V(aP)u (t)] = f d r2[w —(2)Vi2up(2)u (1)+u (2)Vi2wtt+(2)u (1)+u (2}V|2utt(2}w (1}].

From (3.21) and (3.22) we can easily show

(3.26)

5k i—. B

Bt
b

=+6.bcowk, (1), (3.27)

5 i—. B

b +

2
=+~aa~ab p ++a+s fOr a, b, &F,

la]'
(3.28)

where we have used the notation

[a]—=+2j, +1 .

We note also the relation (3.1) and tra =(j,l, }.Similarly, we have

(3.29}

[Vab]+ 5ab g v+(tt)+&.&b g (j. tea ja,tea, I J.M. &(j b rrtb jb trtb, I JbMb &

m~ m~
I 2

mb mb
1 2

X [5a,b2v+(a&b&) 5a2biv—+(a, b2)+5aibiv+(azb2} 5aib2v+—{a2b1}1

where

v+(aP)= f d3riu (1)v&+u~(1}.

Its functional derivatives are

(3.30)

(3.31)

[5kVab]+ 5abv+uk i

[5 V.,]+ N. Nb g —(j,,rrt. ,j.,rrt. , I
J.M. &(jb,rrtbjb, trtb, I JbM, &

m m
1 2

mb mb
1 2

XV+ (5aai5aib2ubi 5aa|5a2b —ub +5aai5aibiub2 —5aa25a|b2ubi),

(3.32)

(3.33)

where

U+Q =Ui+Q (1) . (3.34)

We now consider specifically the excitations of atoms with two valence electrons from its So ground state.
We therefore seek the ground-state solution of the zeroth-order equations, i.e., the MCDF equations. The
only nonvanishing C, for the ground state are those with a &F, i.e.,

C, =O, for a)F .

By substituting (3.17)—(3.2S), (3.32), and (3.33) into (2.27) and (2.29), we obtain MCDF and MCRRPA
equations for orbitals.

(a) MCDF.

(3.35)

e A u + g C,'Cb[5~~.b]v= g y ttutt
ob

(3.36)
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(b) MCRRPA.

(ca+co )Aawa+ ——g C,' Cb [5aHab ]++ g ( [C, ]+Cb +C, [Cb ]+)[5aHab ]p
ob ab

+ g r.p p++ g [r.p].u, + g C.'Cb [5.'V.b]+
p~ p ab

where the metric A is defined as

(3.37)

C, C„ if a =a, valence orbital
2 Q ~

Aa= [a]2

1, if a=k, core orbital. (3.38)

We have defined the orbital eigenvalue e as

~a= raa~~a .

For computational purposes, (3.36} and (3.37} can be reduced to more convenient forms.
(a) MCDF.

(i) Core orbitals:

ebub+ g C, Ca [5bHaa]p gkkpu——p,
o ~k

(ii) Valence orbitals:

e,u, +A, ' g C,'Cb[5, H,b]p QA, ,pu——p .

(3.39)

(3.40)

(3.41)

(b) MCRRPA
(i) Core orbitals

(ek +to)Wb+ +Ca Ca [—5—bH+z]++ g ([Ca ]+Ca+ Ca [Ca ]+)[5bHaa]P
agF agF

+ g (Ca [Cz]+[5&Has]p+[Cd]+Ca[5kH&a]p)+ g Xbpwp++ g [kbp]+up+0+uk, (3.42)
a&F ~k P
d&F

(ii) Valence orbi tais:

(e +Na)w + —aAa g Ca Cb[5aHab]++ Ca [Cb]+— [Ca]+Cb [5aHab]p +Aa g Ca [Cd]+[5aHas]p

+ g ~aP P++ g [~aP]+uP+Aa QCaCb[5aVabl+ .
P b

In (3AO) —(3.43) we have defined the Lagrange multipliers as

A, p
——yp/A

[) pl+=[r pl+~A .

(3.43)

(3.44)

(3.45)

IV. MATRIX FORM OF THE MCRRPA
EQUATIONS

To facilitate the discussion of transition proba-
bilities we consider the reduction of the equations
of Sec. III to a linear algebraic system. To this
end we introduce a complete orthonormal family
of Dirac orbitals u . The orbitals u are required

I

to coincide with the MCDF orbitals derived from
(3.40) and (3.41) for core and valence electrons,
but, in addition, are required to span the space of
possible excited orbitals. If we order the orbitals
so that the first f's are core and valence orbitals
and the remaining are excited orbitals, then, since
the perturbed orbitals w + are orthogonal to the
unperturbed core and valence orbitals, by Eq.
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(2.25), we may write

W~+ = g X~u~, R(f
I&f

iva —= g Y~u„~ a(f .
I &f

(4.1)

"A~w = X [P~.Wp+Qw. ,p, Yp, l
P&f
v&f

+ g [P~,.g. +Q~,.rl. ]+& (v+ &„,
n&1

In parallel with the expansion (4.1), we may
decompose the perturbed weight coefficients [C, ]+
from Eqs. (2.17}and (2.28) in terms of eigenvectors
of the matrix [H,s]0. If we let E'"' be the nth
eigenvalue of [H s ]p and let C,'"' be the
corresponding eigenvector, then

— A Y = X[Q',p&p+P', p Yp-]
P&f
v&f

n&1

(4.6)

E "C~ = g [H~b]pcs
b

(4.2)

E() E (4.3)

for the lowest eigenvalue, and correspondingly

C'"= .C„a=1, . . . , F
0, a)F (4.4)

The remaining eigenvectors of (4.2) for the
ground-state multiplet also form F-dimensional
vectors, but these excited J, =0, ~, =+1 vectors
are orthogonal to the F-dimensional vector C, .
Now in view of the orthogonality requirement for
weight coefficients (2.24), we may expand the per-
turbed weights [C, ]+ in terms of the eigenvector
of (4.2) as

[c ] gg c(nj

The matrix [H s ]p can be brought to block-
diagonal form by ordering the configurations ac-
cording to total angular momentum and parity.
Each block, having a definite value of J and n., will
lead to a separate eigenvalue problem for a multi-
plet which can be constructed from the core and
valence MCDF orbitals.

Taking into consideration our convention (3.1}
for ordering the configurations, the first F values
of the configuration index a describe a multiplet
with J, =0 and ~, =+1. Since the ground state
has the lowest energy in this multiplet, we may
write

cog„= g [P„p„Xp„+Q„p„Yp„]
P&f v&f

+P...g„+(v+ )„, (4.8)

X [Q:,pXp +P:.p Yp ]
P&fl &f

+P„'„r)„+(v )„. (4.9)

The notation used in Eqs. (4.6)—(4.9} is as follows:

p~ p„=g C.'C, f d r u&(r)[5~,s]++& p5„„,
ab

(4.10}

with wp+ replaced by &„;

Q p„= pc,'Cs f d'r u„(r)[5~,s]+,
ab

(4.1 1)

with wp replaced by u '

P~ „——g C.'C,'"' f d r u&(r)[/Has]p (4.12)
a, b

Q~„=gc,'""Ci, f d r u„(r)[5~,s]0,
a, b

(4.13)

(4.7)

Similar equations for the expansion coefficients g„
and rl„can be derived using Eqs. (4.1), (4.5), and
(2.28):

n&l

n&1

(4.5)
~n, P =~P, n

Q.,p, =Qp...
(4.14)

(4.15)

(4.16)

Substituting the expansions (4.1) and (4.5) into the
MCRRPA equations (3.37), we obtain

(v~ &„=g C,'Cs f d r u„[5 V,s]+, (4.17)
ab
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(v+ )„=g Co'""Cb[V~b]+
ub

(4.18)

It is convenient to organize the linear equations

[(4.6) to (4.9)] into a single matrix equation. For
this purpose, we introduce a column vector =,

M:- =coQ:-. (4.27)

Any two solutions =b and:-t of Eq. (4.27} belong-

ing to distinct eigenvalues &ok and col are orthogo-
nal with respect to the metric Q. We normalize

these solutions so that

(X q)

(g„)

(~„)
(q„)

(4.19}

kQ l ~kl . (4.28)

The solution to the inhomogeneous equation (4.25)

may be expanded in terms of eigenvectors of the
homogeneous equation (4.27) as

a Hermitian matrix P, :-kQ V (4.29)

(P „p„) (P~„)
P= (I't, p, ) (&t,, )

and a symmetric matrix Q,

(Q „tt„) (Q~„)
(Qtp }

(4.20)

(4.21)

We arrange P and Q into a single Hermitian ma-

trix

k N —Nk

The expansion (4.29) may be used to obtain a sim-

ple prescription for calculating transition ampli-
tudes within the MCRRPA framework. The pro-
bability of a transition from the ground state to an
excited state of the system induced by the time-

dependent perturbation V(t) of Eq. (1.2) is given

by

I
&n

I v, Io& I'= ~ &q(t) Iu, e-'"'Iq(t)&, ,
co=E„—Eo

P
M= (4.22) (4.30)

and introduce the diagonal matrix

A 0
Q 0 (4.23)

where the diagonal submatrices A have the form

(A5 p5„„) 0
A= 0" (4.24)

We may then write Eqs. (4.6) —(4.9) as a single in-

homogeneous equation

(4.31)

Now by expanding = in Eq. (4.31) in terms of
eigenvectors of the homogeneous Eq. (4.27}, we ob-
tain

where the subscript t on the right-hand side
represents a time average, and where 4(t} is the
time-dependent state which evolves from the
ground state in the presence of V(t}. In applying
Eq. (4.30},only terms of second order in u+ are re-

tained after averaging over time. With this under-

standing, we find

&q(t)
I v, e-'"'I q(t)&, =='nv . -

M:-=coQ:"—V, (4.25)

where the vector V is given in terms of the external
potential as

I=-trav I
& %(t)

I
v~e '"'

I
%(t) &, = g

n

(4.32)

V=

&v+ &„

(U+)„

—(U )'„

(4.26)

In the absence of an external field, the inhomo-
geneous equation (4.25) reduces to an eigenvalue
problem for the excitations of the atomic ground
state:

The poles in Eq. (4.32) occur at the natural excita-
tion frequencies of the atomic system. From (4.30)
it follows that the transition probability from the
ground state to the nth excited states is given by

I &&
I v+ I

o& I'=
I
=-'IIV I' ~ (4.33)

The quantity =„QV may therefore be interpreted
as the MCRRPA amplitude for a transition from
the ground state to the excited state having energy
E„=E+a)„.
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Our approach to the MCRRPA equations is to
solve the homogeneous differential equations writ-
ten out in Sec. III directly, without using the ma-
trix formulation explicitly. The matrix formula-
tion, nevertheless, has the formal advantage of
leading to convenient normalization conditions for
the homogeneous orbitals w + and to explicit ex-

pressions for transition amplitudes from the
ground state to each eigenstate of the homogeneous
equations. In terms of orbitals, these expressions
are

(i) Normalization condition:

=-,'II=, = g A.(( ., ~ .,&-& . ~ . &)
a&f

+ g (I[C.]
a&,F

(4.34)

algebraic equations for weight coefficients

(C„[C,]+}. These radial equations can then be
solved self-consistently to give energies and wave
functions for the ground state and its excitations.
We write the orbitals in the form

G„„Q„~
u, (r)=-

r &Fyg K + K yg

(5.1)

and introduce the two-component radial functions

Gn K

uIE —uIE(r) = F@~K~

(5.2)

We also define the radial Hamiltonian operator, in

atomic units, as

(ii) Transition amplitude:

:-bQV= g A ((w, + i U+ i
u )

a&f
+(u ~u ~w ))

+ g {[C]+Cb+C [Cb] )(v+) b .
a, b&F

h =h (r}=
d Ka

C +
dr r

d Ka—C
dr r

vN(r) —2c

(5.3)

(4.35)

In Eqs. (4.34} and {4.35} w + and [C,]+ are eigen-
solutions to the homogeneous MCRRPA equations
of Sec. III corresponding to the eigenvalue cok.

where UN(r) is the nuclear potential and c is the
speed of light in atomic units, which equals the re-

ciprocal of the fine-structure constant. Hence, we

obtain the algebraic equation for C, with a &F:

V. ANGULAR DECOMPOSITION OF
MCRRPA EQUATIONS

T

E —g [i]'(hI, + —,gI,.) —2(h~+g ) C,

By assuming central-field forms for orbitals we
can reduce the differential equations for the orbi-
tals (u, w +) into radial forms and simplify the where

= g ( —)'At(aabb; J)Gt(ab}Cb (5 4}
bl

00

hap= dr ua(r)hp(r)up(r),

g tt ——g [i] Ro (ai;Pi ) QDt(a—i )Rt(ai;iP)
l l

00

Rt(aP;o)L)= dr~ dr2u (r~)utt(r2)Rt{r~r2)u {r~}u~(r2},

Fi(aP)= Rt(aP;aP),

Gt(aP) =Rt(aP;Pa) .

The angular coefficients in (5R4) and (5.6) are defined as

a 1 P
Dt(aP) =

~ ~ ii(l lip)
. 2 2.

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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with the parity function

1, I +l+l~ ——even,

0, l +l+lp ——odd
(5.11)

and

aPJ
gt(aPtrg; J)= ( —} + Ct(aPo'g} '

~ (5.12)

with

a l o P l A,

Ct(aPoA)=( —) + [aPcrA] ~ ~ ~ ~ II(l ll )II(lttllz) .
2 2 2 2

(5.13)

In foregoing equations, we have used the abbreviations a=j, etc. wherever the total angular momentum for
a certain orbital is needed. The radial factor RI(r&r2) in (5.7) is

Rt(r]rz) =r(/r)I l+1 (5.14)

We will choose the phase for the weight coefficients such that all C, are real. The differential equations for
u are then given by

(i) Core orbitals uk:

hk —ek+ g A+va ug = —g kkaua,
a a+k

(5.15)

(ii) Valence orbitals u, :

h, —e, + g v; u, = —g [ab] g ( —}Dt(ab)vt(ab)ub —g A,~ ~u.
b Ca a~

(5.16)

Here we have defined

v "utt=[a] vo(aa)u~ —QD~(aP)vt(aP)u

(5.17)

where

G+ Q„m ~

1
— a'

u +(r)=- iF~+ 0 „,ma
(5.20)

and

vt(aP)= drzu (rz)Rt(r&rz)utt(rz) . 5.18)

Equations (5.4) together with (5.15) and (5.16) are
the usual MCDF equations expressed in radial
form. To obtain radial MCRRPA equations, we
follow the prescription '

j~ m~ +M
( r ) y ( )(M+M)/2[J]

ma' ja Je .m ~

X u ~ (r) II(l l J+A.—1), (5.19)

The coupling coefficients in Eq. (5.19) are covari-
ant 3-jm coefficients' and are chosen so that by
replacing the orbital u~(r) in the ground-state
many-electron wave functions with the excitation
w +(r) will result in a wave function with angular
momentum J and M. The parameter A, in Eq.
(5.19) determines the parity of the excited state
JM; A, =1 corresponds to electric 2 -pole excitations
with parity n.=(—), while A, =O corresponds to
magnetic 2 -pole excitations with parity
m =(—) +'. We define the two-component radial
functions by



25 MULTICONFIGURATION RELATIVISTIC RANDOM-PHASE. . .

(5.21)

(5.22)

a' ma +M
( )(M+M)i2[ J]

~ m ~

Xrl(I~ I~J+~—1) . (5.23)

G, +
ua + =ua +(r) =

t+

By considering Eq. (5.19), we are led to assume for
[C,]+ and [A, p]+ the forms

[C, ]+——5JJ 5M+M ( —)' + ' C,+,

The angular decomposition of the MCRRPA equa-
tions can be performed after substituting (5.19),
(5.22), and (5.23) into (3.42) and (3.43). This
reduction can be accomplished most expediently
using a graphical method. ' The algebraic equa-
tions for C, + are obtained as

(E+tp)Cai ——g[(Hab )pCb++(Hab)+Cb],
b

(5.24)

where

(H t )p=5 b g [i][h;;+—,g;;]+ g [h +g ]
ex=0 i,02

+5JJb+ Qb Q [(—) At(a i a2b, b2,J)RI(a 'i a2 b lb2 ) + ( —) At(a, a2b2b i,J)Rt(a 'i a2b2b i )]
I+b i

—b2 J+l
l

(5.25)

(H,b)+ —— N, ( —)
' ' 5, b(h, +g, )+[b] g( —)Dt(ahab)Rt(aiba'2+bb) „

l

a|b[ a2b ++ga'2b'+)a =ab, +fa&b]

—~(—)'+'w) ~l(ala2b b;J)Rt(aia2b'+b) ( —)
' "—(1 2)

b'l (5.26)

The notation (1~2) denotes all preceding terms inside the same brackets with the subscripts 1 and 2 inter-

changed. In (5.26), we have used the notation

fap= g[(—)' ' TJ(ai'+pi)+TJ(aipi'+)], (5.27)

with

1
Tq(aPok)=

2
CJ(oa)Ci(PA)RJ(aPoi)+( —) + +At(oaPA;J)Rt(aPAo, ) .

[J]'
(5.28)

The differential equations for u + are written for core and valence orbitals separately as

(i) Core excitation uk +.'

[hk —(ek+tp)+ g AaUa ]uk y

= —5Jp g C (C,++C, ) U, uk
2[k] DF

a &F [a]'

+ g Nb C [5 ba, [Cab tp(b~ib2)+( —)
' 'Cb w(b2b, )]—( —)-' ' (1~2)juk+2 b) —b2 bI +b2 —J

. F [a]
b)F

g 5aka 5ak,a ~kaua'+ g 5ak, a ~k+aua
aQk a

(5.29)
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where

w(aP)ux+ ——
z CJ(AA, ')Cq(aP)vq(aP)ux+( —) + +At(AA, 'aP;J)vi(aA, )utt,[J]'

v" "up+ ——v "up++ g [(—) 'w(a'+a)+w(aa'+)]up+
a'

(ii) Valence excitation u, + ..

(5.30)

(5.31)

h, + —(e, +co)+ g v;
" u, +

( —) + [b] Dt(a'b)vt(a'+b)ub+ +At(aa'b'b;J)vI(ab'+)us

l

+ g( —)
+ At(aa'bb', J)vt(ab)us+,

b'

+5Jp g 2 (C, +Cb —C,cs+)[b]g ( —) DI(ab)vi(ab)ub
[a]'

b&F C,

+~x [']c
badlba'd& g [a'b]( —) Dt(a'b)vt(d2b)u&d)F

+ g ( —) At(aa'did2, J)vi(adi )ue —( —)
' ' (1~2)d, +d2+l dl+d2 —J

1
2

g br r br r ~aaua'+ g ~r,r ~a+aua ~

a~ a
(5.32)

where a'&F, and where u, and u, + have the same angular symmetry. Equations (5.24), (5.29), and (5.32)
constitute an eigenvalue problem for the radial components of the perturbed orbitals u, + and for the per-
turbed weight coefficients C,+. The solutions to these equations describe the excited states of the atom hav-

ing a given angular momentum and parity J,II=(—1) + '. These eigenstates are normalized according to
the rule (4.34) which may be written in terms of radial functions as

(u. ,u.. )]+ y [~C., i' —iC. i']= .
aa' a&F

(A, ).
Let us assume that the perturbing field is a sum of electric and magnetic multipole terms vJM.

(A, )V+= ~ VJM
JMA,

(5.33)

(5.34)

A given term in (5.34) will lead to a spectrum of excited states having the same angular momentum and

parity as the perturbation. The transition amplitude from the ground state to one such state is given from

(4.35) as

TJ ' QAa((wa+ ——
~

vs qua)+(ua ivJ~ iwa ))+ g([C, ]+Cb+Ca[ b] )( z~)ab . —
ab

(5.35)

Let us define the interaction strength XJ (ap) to be the reduced matrix element of the irreducible tensor

vJM between orbitals a and p'3

ta M mp
XJ '(ap) . (5.36)
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The MCRRPA transition amplitude Tq
' can be written in terms of the interaction strength X~ '(aP}

using (5.19), (5.22), and (5.36):

Tz~' —( —)
+' g A [(—)~XJ. (aa'+ )+XJ (aa' —)]

[&1

+ ( —) g C, [(—) Cs++Cs ][5,s +( —) + 5,s ]Xg '(b)b2) .

b)F

(5.37)
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