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Exponentially decreasing collision-broadened line shapes
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We obtain asymptotic approximations to the collision-broadened line shape by the

method of steepest descent. Exponentially decreasing line shapes result when the phase at

the saddle point has an imaginary part. Averaging over a thermal distribution of veloci-

ties is shown to substantially affect the line shape.

INTRODUCTION

Exponentially decreasing line shapes are often

encountered in the far wing spectra of collision-

broadened lines. Satellites, ' for example, have an

exponentially decreasing side, and in systems where

the difference of the excited and ground-state

molecular potentials increases (or decreases) mono-

tonically, one side of the collision broadened line

falls off exponentially. This has been referred to

as the antistatic wing as opposed to the quasistatic

wing ' of the line. In this report we derive expres-

sions for antistatic regions of the line shape by

direct asymptotic evaluation of the adiabatic

phase-shift expression for the line wing profile. '

The importance of averaging over the thermal dis-

tribution of relative velocities is explicitly demon-

strated.

THEORY

We consider an isolated optical transition be-

tween two nondegenerate levels and neglect nonadi-

abatic effects (inelastic collisions, quenching, etc.).

When the binary-collision approximation is valid

(time between collisions long compared to a col-

lision duration), the absorption profile for the line

wings may be written
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where yN is the decay rate due to spontaneous em-

ission, A=co —coo is the detuning from resonance,

and the collision effects are incorporated in the de-

tuning dependent broadening rate y, (h). The con-

dition
~
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&& y~ + y, (0) ensures that at most a

single collision occurs in the time of interest

rl/
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6 ~, i.e., the interaction of the atom with a

single perturber determines the line wing profile.

Using classical straight-line trajectories the

broadening rate y, (A) is

00 Vd[R (t)] t , Vd[R (t')]
y, (&)=n~U J 2trbdb J dt exp i At —J dt'

—e)

2

(2)

where nz is the perturber density, v is the relative

velocity, Vd(R) is the difference between the
excited-state and ground-state potentials Vd(R)
= V, (R) —Vg(R), and for straight trajectories R (t)
= (b + v g ) . Equations (1) and (2) are

identic-

all to the Anderson theory" in the low-density lim-

it »d «r
~
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The detuning dependence of the broadening rate

y, (A) is governed by the dimensionless parameter

~

6
~
Td,where Td is a characteristic collision dura-

tion (Td —10 ' s). Direct asymptotic expansion

of Eq. (2) for large
~

5
~

Td may be obtained by the

method of steepest descent. In the time integral

in Eq. (2), t is allowed to be complex and the main

contribution to the integral comes from regions

near the saddle points of the exponent i/(t) where
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(((t)=At —f ct' Vg[R (t')]
(3)

The saddle points are located by P(t, ) = 0 which
implies

Rh= Vd(Rs) ts =+ (1—b /Rs )
v

The leading order asymptotic approximation to the
integral is

X
27T

1/2

where the sum over t, includes all saddle points
given by Eq. (4) for which Im[())(t, )] & 0. The real
angle 0, is chosen so that the integration path is
the one of steepest descent and we have assumed
14(t, ) 1~0:
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In taking the absolute value squared of Eq. (5), the
cross terms involve phase differences

exp[ i[Re(t() —Re(()(t2)] ], where t) and tq are dif-
ferent saddle points. When the saddle points are
well separated these cross terms oscillate rapidly
with impact parameter and hence contribute little
to the broadening rate. Using these results Eq. (2)
becomes

where the sum is over real roots of Ah= Vd(R, ).
Impact parameters b & R, and any complex roots
R, make exponentially small corrections to Eq. (7).
If the collision-broadening rate y, (h) is large com-
pared to the spontaneous decay rate y~ then the
absorption profile Eq. (1) becomes

4aRs A
I(b, ) =nz g

in agreement with usual quasistatic theory ' except
for the absence of a Boltzmann factor. The
neglect of the Boltzmann factor in our result is due
to the use of straight-line trajectories.

When there are no real rooots to the saddle-point
condition fih= Vd(R, ), the far wing line shape is
determined by the complex roots. In this case the
phase has an imaginary part. The main contribu-
tion to the impact-parameter integral in Eq. (6)
then comes from regions of b where Im())(t, ) takes
its smallest positive values. This occurs for small
impact parameters b «

I
R,

I
hence it is appropri-

ate to use a small impact-parameter expansion of
Img(t, ). That small impact parameters give the
dominant contribution may be anticipated by the
following argument. When 161 Td » 1 and there
are no stationary phase points, the phase P is ra-

pidly varying throughout the collision. Then ac-
cording to Eq. (2) collisions which produce com-
parably large Fourier components of the difference
potential will contribute to the broadening. Colli-
sions with small impact parameters produce large
Fourier components. Note also that high-velocity
collisions produce large Fourier components hence
velocity averaging will be important. Expanding
Im())(t, ) for small impact parameters gives after a
straightforward calculation

exp[ —2 Img( t, ) ]fx dbb
P 1(1 I)2/R )

I

/2 (6)
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where

The evaluation of the impact-parameter integral
depends on whether or not the phase at the saddle
point has an imaginary part. Saddle points with
Img(t, ) = 0 correspond to stationary phase points
and are responsible for the quasistatic wing. If a
root R, is real then the associated saddle points t,
are on the real t axis hence the phase is real pro-
vided b &R, [see Eq. (4)]. Setting Img(t, )=0 in
Eq. (6) and truncating the impact-parameter in-
tegral at b =R, obtain
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with R, =ReRs+iIrnR, determined by AA
= Vd(R, ). Using these results the impact-
parameter integral in Eq. (6) is evaluated by the
method of Laplace to yield
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where 4p and 42 are given above and only the

complex roots R, for which 4p, 42) 0 are includ-

ed in the sum. This is the leading order asymptot-

ic approximation to the broadening rate for antis-

tatic regions of the line shape.
For power-law difference potentials [ Vd(R)

=+A
i C„~ R "] with even n the integrals for 40

and 42 are easy to evaluate:
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The main contribution comes from the smallest
value of 4p namely, k =0 and k =(n —2)/2 in the
expressions above, hence

an
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Rp is the characteristic interaction length and Tp

the corresponding collision duration. The main

feature is the exponential decrease of the broaden-

ing rate as
i
b To

i
increases. The exponential de-

crease of the antistatic wing for power-law differ-

ence potentials was predicted by Holstein in un-

published works. ' Tvorogov and Fomin" have

also obtained results for power-law potentials with

n =6 and n =8. However, their work contains
some numerical errors. " We emphasize that Eq.
(11) is the leading order asymptotic approximation
to the broadening rate for the antistatic wing —the
error of this approximation is of order

~

gZ.
~

n/(n —1)—
We now discuss the principal effects of averag-

ing over a thermal distribution of relative veloci-

ties. The thermally averaged rate is calculated by
integrating the rate for a given velocity times the
velocity distribution:

(y, (h))= f d vf(v)y, (h) .

The antistatic wing broadening rate Eqs. (9) and

(10) is strongly velocity dependent due to the 1/v

factor in the exponent Pp. The velocity integral is

evaluated by the method of Laplace and yields
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Formin and Tvorogov' have obtained similar re-

sults for n =6 and n =8 by averaging their previ-

ous results" over a Maxwell-Boltzmann velocity

distribution. They report correct numerical factors

(12)

where 4p(v, h) and 42(v, h) are given by Eq. (9) with

v replaced by U,h =&2kT/p and the sum over R
includes only those values for which 4p(vth),

42(U, h) )0. A certain range of velocities (depend-

ing on 6) makes the dominant contribution to the
broadening. This is due to the balance between the
broadening rate which increases rapidly as U in-

creases and the velocity distribution which de-

creases rapidly as U increases.
The result for (y, (b, ) ) is closely related to the

thermally averaged antistatic profile given by Szu-

dy and Baylis. These authors use a quadratic ex-

pansion of the potential in the neighborhood of the
saddle point. The motivation for this is that it en-

bles analytic results valid uniformly for the usual

quasistatic case and also in the region near a satel-

lite. We can recover the Szudy-Baylis antistatic

profile (except for a Boltzmann factor and a multi-

plicative factor' ) by using a quadratic expansion

of the potential to approximately evaluate 4p(v, h),

42(v, h) in Eq. (9). This type of approximation can

lead to subtantial error because 4p(v, h) appears in

the exponent in Eq. (12)~ The use of a quadratic

expansion can only be expected to yield good re-

sults if the complex roots R, are close to the real

axis.
For power-law potentials [Vd(R)=+A'i C„~ R "]

the thermally averaged broadening rate is
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in the exponent (P„i but different multiplicative
factors. " Comparing Eqs. (11) and (13) it is ap-
parent that velocity averaging substantially affects
the detuning dependence of the line shape.

CONCLUSION

averaging substantially affects these antistatic re-

gions of the line shape due to the strong velocity

dependence of the broadening rate. The results in

this report expand the range of detunings covered

by simple analytic approximations to the collision-

broadening rate.
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