
PHYSICAL REVIEW A VOLUME 25, NUMBER I JANUARY 1982
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We investigate the conditions for Bose-Einstein condensation of an ideal relativistic Bose gas in various spatial

dimensions. From the direct numerical evaluations of the equations for the density and the specific-heat anomaly,

we are able to show the qualitative difference between the massive and massless relativistic systems. As a

consequence we are able to discuss the dependence of the critical exponents upon the spatial dimensionality for this

system.

I. INTRODUCTION

The investigation of the dependence of the ther-
modynamics on the spatial dimensions for the
ideal relativistic Bose gas leads to results relat-
ing to phase transitions and critical phenomena in
much more complicated systems. In this work we
want to look more extensively into the analytical
structure of the phenomenon of Bose- Einstein con-
densation (BEC) in various spatial dimensions"
in order to further develop an approach to the re-
lated physical systems.

Although for a long time the general concept of
condensation had been related to the liquid-gas
first-order phase transition below the critical
point, it was first explicitly stated by Einstein' in
1925 that such a situation could exist for an ideal
quantum many-particle system, which now is
called the ideal Bose gas. In particular, he showed
that from the basic structure of the total noninter-
acting many-particle state it would be possible
under the right thermodynamical conditions to
have a finite fraction of the system drop into the
ground state. Somewhat later, this type of con-
densation was considered by London, ' who re-
garded it as a momentum-space condensation, to
relate to the then known properties of superfluid-
ity, which even today has its place in the study of
the collective phenomena using macroscopic mod-
els for superfluid helium and superconductivity.

The effects of dimensionality have also previous-
ly been investigated' ' for nonrelativistic thermo-
dynamical systems possessing an energy spectrum
of the form

c(p) = Q cgpg,

where the c, are the particular coefficients of the
respective components of the momentaP„d is the
number of spatial dimensions, and o is a free pa-

rameter relating to the power of the spectrum.
Several interesting special cases arise in the de-
tailed investigation of this proposed energy spec-
trum. It is clear that the special case with all the
values of c, equal to 1/2m, where m is the par-
ticles' mass, and o =2 corresponds to an isotropic
system of free particles. Another physically in-
teresting case is that of a gas of massless parti-
cles where we have can= 1 together with all the co-
efficients equal to c, the velocity of light, which
we hereafter take as c =1=I. It has already been
pointed out' ' that the quantity q =-d/o is the de-
termining factor for the existence of BEC with the
energy spectrum of the type (1.1). Thus for q

~ 1,
there exists no BEC; while q &1 guarantees that it
takes place.

In this work we want to discuss in detail the
ideal relativistic Bose gas in relation to the above
observations. We replace the energy spectrum
(1.1) with the usual relativistic energy

, (p) =(m + Ipl')"', (1.2)

dvg(p)=( g 0 dP»
1 V„„P"

2m" p'

which yields the special cases of (1.1), with v = 2

and 0 =1, respectively, the nonrelativistic and

ultrarelativistic limits.
In order to write our partition function as an in-

tegral, we must use the appropriate phase space
measure for this relativistic system. We have
shown in another work' how in general the grand
partition for the relativistic quantum gases may
be gotten from the relativistic constraint formula-
tion. Furthermore, we demonstrated there that
the form of this phase space measure reduces to
the known Touschek' measure dv, (p) for an ideal
gas in the usual three-dimensional volume V,. The
direct generalization, which we shall use, into d
spatial dimensions then becomes
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where Vd„and p" are, respectively, the volume
and momentum vectors belonging to a (d+1)-di-
mensional generalized Minkowski space.

Now we give a short summary of our work. In
the next section of this paper we elaborate on the
above mentioned criterion for BEC for the rela-
tivistic ideal Bose gas with an energy spectrum
(1.2) in relation to the particle density n. In the
following section the specific heat anomaly" is
discussed in relationship to the dimensionality.
Then we are able to make some statements about
the relationship of the critical exponents to the
dimensionality. In conclusion we make some re-
marks about extensions of this work to some re-
lated areas.

II. BOSE-EINSTEIN CONDENSATION
IN d-DIMENSIONS

This form yields the simple relation for the ideal
relativistic Boltzmann gas, n= Id z. However, for
the ideal relativistic Bose gas we find that

z'e"-"" K.(umP)
k~' '

K~, (mP)
(2.8)

where n, is the density of particles in the ground
state and d' = (d+ 1)/2. n, is given by

We have previously introduced a d-dimensional
generalization' of a form which has been valuable
in d=3 for the thermodynamics of the ideal quan-
tum gases. " This dimensionally dependent quant-
ity we defined as

w~
L (m, P)= ~ 2 ' (mP) e K~, (mP). (2.5)

In our previous work" we investigated the ideal
Bose gas in d-dimensions using the grand canoni-
cal ensemble. The thermodynamical potential 0
is gotten from the grand partition function .in the
form -P 'ln-, so that we find'

:"(V,i),A)= I A" f d, (()
E Yd

where P „and p" are the inverse temperature and
momentum vectors of a (d+1)-dimensional gen-
eralized Minkowski space and A is the relativistic
fugacity"" with a direct relation to the relativis-
tic chemical potential p in the form of exp(pp)
The nonrelativistic fugacity z is given by

z =A exp(-Pm) . (2.2)

The evaluation of 0 in the rest frame of the sys-
tem yields

P&= ' d'P ln(1-Ae '~')V
(2v)'

+ ln(1 -Ae™), (2.3)

+ ln(1 -Ae ~
) . (2.4)

The evaluation of this integral is carried out" us-
ing the modified Bessel functions" K„(x). The par-
ticle number density n can be simply calculated by
taking a derivative with respect to A on (2.4).

where we have used (1.3) for dv~(p). The second
term of the right-hand side of (2.3) arises from the
contributions from the ground state, which be-
comes singular when A reaches exp(mP) or as z
—1, in the same way as it is for the nonrelativistic
Bose gas." We use the spherical symmetry of the
system in momentum space for (2.3) to obtain

v
2v) x I'(d/2) dpp 'ln(1-Ae " ')

m

V 1 -Ae () V(1 —z)
d

We see that n, has the same form as in the non-
relativistic Bose gas. Likewise, it can be shown
that at sufficiently low temperatures for V„-~
and z- 1, we have 80~0 The critical density n,
is determined by'

~ e" '"' K,.()gamp)-4~ n'-' K (mP)
' (2 8)

The significance of this relationship comes from
the fact that (2.8) defines at a given temperature
T =P the critical density n, . Furthermore, it is
possible to turn around this statement so that at a
given density we may solve for a critical tempera-
ture T, Thus (2.8). defines a critical line in the
density-temperature plane.

Now we discuss the numerical computation of
these quantities. In our previous work' ' we have
already looked into the behavior of the quantity
I d n, in relation to various dimensions, which we
include for the sake of comparison in Fig. 1(a).
Jn Fig. 1(b) between d= 3 and d= 7 we show how

I-,'n, looks as a function of mP for integer dimen-
sions between 3 and 7. Particular numerical val-
ues for these two plots are given in Table I. We
notice in general the lowering of the critical dens-
ity at higher dimensions and temperatures in com-
parison with the density of the Boltzmann gas at
the temperature. Thus, the nonrelativistic and
ultrarelativistic limit form, respectively, upper
and lower bounds for the curves in Fig. 1(a) as
well as ending and beginning point for Fig. 1(b).
In Sec. III we shall contrast this behavior with the
critical phenomena related to the specific heat
cv
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pends on the particle number. However, since the
specific heat is evaluated at constant particle num-
ber N, this term always vanishes upon differentia-
tion. The second term in (3.4) is the contribution
of the rest mass from the nonzero momentum
states. Thus, by the same argument we may drop
this term before continuing with our calculations.

For the sake of simplicity of the evaluation of
C~ we introduce the following expressions:

0, 2&d-4

[1,(2, o)]'
1,(1, 0) J,(1, 0) '

(3.1o)

The case of d = 2 need not be considered since
massive particles do not undergo BEC in two spa-
tial dimensions. Therefore, one cannot define a
critical temperature T,.

Now we discuss briefly some special cases of
this form of n~ in (3.9} involving the nonrelativistic
and ultrarelativistic cases. We find that the inte-
grals simplify so that we have the following:

and

(i) the ultrarelativistic limit (mP —0)

~~= Nd'C(d }/K(d —1), d&2 (3.11)

(3.7b)

We found these two differing expressions for C~,
which belong to the indicated ranges of tempera-
ture, from the fact that in (3.1) the second term
vanishes for T & T„since is constant there.

Now we investigate the behavior of the jump in

C~, which we previously mentioned" but did not
evaluate. We define

a, -=~Cr(T,+) —Cr(T, )~, -
which after using (3.7a) and (3.7b) yields

(3.8)

1,(1, )d, (l, o) (3.9)

We are particularly interested in the limit ~- 0.
However, the integrands of I~(n, o) and J~(n, 0) are
singular at the lower limit of integration. We
analyze I~(n, &) in the Appendix; J~(n, &) can be
similarly analyzed. We find that 1~(n, &) con-
verges in the limit &-0 if d&2 (3 n), whereas-
it diverges if d ~ 2 (3 —n). The same procedure
for J~(n, ~) yields in the limit &-0 convergence
if d&2 (2 —n), and divergence if d ~2 (2-n).
Now we consider the jump in C„given by (3.9).
The combination of convergence conditions yields
the result as &- 0,

J, (n, &)-=dx(x" +mpx" ')
0

x (x'+2mPx)" ""(e* 1) ' (3 5)

After performing the indicated differentiations in
(3.1) using (3.3) and (3.4), we may express C„with
the expressions of (3.5) and (3.6) as follows:

I, (3, u) [I (2, n)]'
d, (1,~) 1,(1,~)d, (1, ~) '

(3.7a)

(ii) the nonrelativistic limit (mP- ~)

n~=N (d/2)'~(d/2)/f[(d/2) —1], d&4. (3.12)

Thus we see a further confirmation that the rela-
tivistic gas of massive particles behaves similarly
to the nonrelativistic gas for all values mP & 0.
Furthermore, we again obtained the result that the
ultrarelativistic gas in d dimensions should behave
like the nonrelativistic gas in 2 d dimensions. The
results for these limiting cases have been noted
previously by Landsberg, '"where he finds from
the general form of the energy spectrum (1.1) that
"&0 when d/o'&2.

Now we turn to a discussion of the numerical
evaluation of this jump in the specific heat ~,/N.
We have tabulated the quantity ~,/N in the spatial
dimensions from d = 2 to d =8 for selected values
of the parameter mP including the limiting cases
in Table II. The absence of entries for d =2 except
for mP = 0 comes from the fact established in Sec.
II that there exists no BEC aside from the mass-
less Bose gas. Furthermore, we see that only
the massless Bose gas has positive values for
',/N in d= 3 and 4 in spite of the fact that BEC
takes place in all cases, which we saw analytical-
ly in (3.10). This dependence upon dimensionality
is illustrated in Fig. 2(a), in which we notice that
the massless gas and the nonrelativistic limit
form the upper and lower bounds for the curves in
the sense opposite to Fig. 1(a}. The dependency
of a~/N on the parameter mp is shown for dimen-
sions 5 to 10 in Fig. 2(b) to be monotonically de-
creasing. The limiting values are listed in the
first and last columns of Table II. In Sec. IV we
shall show how these analytical and numerical
facts can be incorporated into concrete state-
ments' about the critical exponents.

IV. CRITICAL PHENOMENA IN d DIMENSIONS

In this section we want to look into the nature of
BEC near to its onset through the investigation of



25 ANALYSIS OF BOSE-EINSTEIN CONDENSATION FOR AN. . . 565

TABLE II. The jump in the specific heat per particle 6/N in Fig. 2 is given for stated
values of d and mP.

d mP = ~ mP = 10 mP =7.5 mP = 5 mP =2.5 mP =1 mP =0.5 mP =0.1 mP = 0

2
3 0

0
5 3.21
6 6.58
7 10.29
8 14.41
9 18.96

10 23.95

0
0
4.73
9.73

15.48
22.17
29.88
38.71

0
0
5.26

10.77
17.14
24.58
33.20
43.10

0
0
6.32

12.77
20.21
28.93
39.05
50.69

0
0
9.29

17.68
27.25
38.37
51.18
65.78

0
0

14.97
25.28
36.94
50.34
65.59
82.76

0
0

18.76
29.63
42.07
56.34
72.51
90.63

0
0
0

22.81
34.06
47.15
62.13
79.05
97.94

0
6.58

14.41
23.95
35.32
48.57
63.73
80.83
99.90

the analytical structure around the critical point.
This analysis is usually characterized by using
the critical exponents, "where the spatial dimen-
sions are generally treated as a continuous param-
eter d. Here we investigate these quantities in re-
lationship to the scaling laws for BEC.

The work of the preceeding sections was dis-
cussed for integer-valued dimensions although the
curves characterizing the critical density [Fig.
1(a)] and the jump in the specific heat [Fig. 2(a)]
show a continuous dimensionality dependence. It
is precisely this continuous structure that is rele-
vant for the critical exponents. Especially impor-
tant to us here are the properties of the specific
heat above four spatial dimensions, which we shall
elaborate on soon. In order to see the behavior of
&~lN more clearly, we have extended Table II be-
tween four and five spatial dimensions in smaller

intervals at various values of ml3 in Table III. We
notice the almost linear growth of the nonrelativis-
tic limit (mP = ~) near d =4 as opposed to the very
steep increase of the small values of m13 as can be
seen in Fig. 2(a). However, the massless Bose
gas (mP =0) has no onset of 4,/N at d=4 but in-
stead at d= 2. This behavior around d =4 is analo-
gous to the situation for n, as illustrated in Fig.
1(a) at d =2, which we have previously discussed. '

Now we reexamine some aspects of the critical
phenomena related to the relativistic Bose gas. '
Although the analytical structure of the nonrela-
tivistic Bose gas has already been investigated" "
for arbitrary spatial dimensions d with the iso-
tropic form of the energy spectrum (1.1), there
has been little concern for the critical structure
of the relativistic system with a(p) in (1.2), which
in the massless case was known to have an anoma-

100-
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mp=l

mp=25

60
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40

0
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0 I s I ~ I & I & I
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FIG. 2. The jump in specific heat per particle 6/N at T~ (a) in relation to the spatial dimensions d for given values
of mP, and (b) as a function of mo for the stated d.
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TABLE III. An extension of Table II to noninteger dimension given A/N for d between d =4
and d =5.

mP = ~ mP = 10 mP =75 mP=5 mP=25 mP =1 mP = 05 mP = 01 mP=0

4.0
4.2
4.4
4.6
4.8
5.0

0
0.65
1.29
1.92
2.57
3.21

0
0.98
1.93
2.86
3.79
4.73

0
1.11
2.17
3.20
4.22
5.26

0
1.38
2.66
3.89
5.10
6.32

0
2.33
4.26
6.00
7.66
9.29

0
5.47
8.48

10.83
12.94
14.97

0
9.30
12.31
14.59
16.70
18.76

0
14.87
16.85
18.79
20.77
22,81

14.41
16.17
18.01
19.92
21.90
23.95

lyso for d = 3 (d & 2). However, in the massive sys-
tem we have seen that this jump first appears
above d =4.

It is known that in the usual nonrelativistic Bose
gas most of the critical exponents" with the ex-
ception of & associated with the specific heat show
the expected behavior of a classical system for d
above four dimensions. The usual definition of &

for temperatures near to the critical temperature
T, expressed in terms of the reduced temperature
t= (T —T,)T, as

(4.l)

However, it has been known" for a long time that
the description in dimensions higher than four, de-
mands a special exponent &, defined by taking the
mth partial derivative, which then yields a singu-
larity of the form

nents" & from the equation of state, p from the
correlation function, and p from the correlation
length, then we find the scaling laws" of Widom

(4.5)

and of Fisher

y = (2 - q)v . (4.8)

These three scaling relations can be seen to be
completely consistent with the classical values
for d &4. In fact, the nonrelativistic case with
a =2 can be seen to give identically the classical
values for the exponents for d& 4, while the ultra-
relativistic case with o =1 differs from the classi-
cal system only for g and v, when-both have the
numerical value 1. However, the significant dif-
ference from the classical system comes with the
Josephson scaling law

Q fag
v (f)-&a~+m&

Q +ffl (4.2) dp=2 —+ (4.S)

This definition is necessary because of the fact
that for d &4, C~ is finite at 7.', as we calculated
in Sec. III. Nevertheless, there is a sing-
ularity at dimensions smaller than four. One finds
the corresponding critical exponent &„ whose defi-
nition comes from the usual free energy, F(T), by
subtracting off its nonsingular part F„(T), so that

which reflects the dependence on the dimensional-
ity in &,. From Table IV it is also clear that &„
instead of o, in (4.7) would result in an inequality
for d &2o. For other dimensionally dependent
scaling relations it was shown by C. Hall" that the
apparent scaling violations can be restored for
d &20 by introducing a factor +~ —O', . Thus, the
remaining major scaling laws become

(4.3) d v —'Y = 2P + ( +„—&,), (4.8)

Furthermore, it was shown" that the difficulties
in relation to & for d &4 can be resolved by using
the quantity &„—, for some scaling relations, "
which relate the various critical exponents to each
other. In particular, the famous Rushbrooke scal-
ing relation" has P as the exponent of the order
parameter and y as that for the isothermal com-
pressibility, which together with the usual defini-
tion from (4.3) for n„yields

TABLE IV. A list of some particular critical expon-
ents with stated conditions on the dimensionality in re-
lation to the parameter o of the energy spectrum given
in (1.1).

d&o'

„+W+y=2. (4.4)
d -2o d-2o x

o. d+o 1
o&d &2o. 2 —CT

d -o' d-o. ~ d -o d-o. d —0

The validity of this equation can be seen by a sub-
stitution of the values for the critical exponents
listed in Table IV. When we introduce the expo-

d &2o.
2o' —d

o 2
1

2 —o'
0'
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v (d —2 —t7) = 2P + (u„- n, ),
2 n-=&~/(20 +r+&„—&,),

d —2 +q=d(2il+&„—o', )/(2 —o,) .

(4.9)

(4.10)

(4.11)

V. CONCLUSIONS

In this last section we want to bring this work to
an end with a discussion of some applications in
various branches of physics. Many of these appli-
cations arise naturally in relation to synergetic
systems, '"where the structure of the cooperative
phenomena are dominated by the competing states
of order and chaos (condensate and gas). The sim-
ple structure of the ideal relativistic Bose gas in-
cluded in the energy spectrum (1.2) can be ex-
tended to a generalized energy spectrum" for cer-
tain types of relativistic interactions, which bring
about changes in the dimensional character for
BEC. In a similar way it can also be seen that the
walls (boundaries) can also change drastically
some of the conclusions" concerning the dimen-
sional structure of BEC. The nature of magnetic
confinement ' of bosons with a magnetic moment
(for example, monoatomic hydrogen or deuterium

Furthermore, we note that the Eqs. (4.7)-(4.11)
all have the dimensionality d entering directly into
the formulas, which relates with property of hy-
perscaling.

We have listed in Table IV the stated critical ex-
ponents in terms of their dependence upon d in re-
lation to the power o of the energy spectrum in
(1.1). From the point of view of critical phenome-
na, this discussion of the dimensionality can be
related to the n = ~ line of the spherical model in
the d -n plane, "where n is the dimension of the
order parameter. The nonrelativistic case with
a = 2 is the crossing point of the n = ~ line, with
the line for the classical systems at d =4. The
ultrarelativistic limit represents the lower end
of the line n= ~ atd=2.

As a conclusion for this section we remark that
our calculations show an anomaly in the specific
heat, which has the same dimensional behavior as
the violations in the hyperscaling relations of
(4.7)-(4.11). However, a direct analytical rela-
tionship to ~~ is not apparent since &„given in
(3.10) remains constant, which implies that even
values C~ very near to T, always remains bounded.
Therefore, we get directly only the classical value
& =0. Nevertheless, the definition of &, in (4.2)
remains the same so that the given forms of the
hyperscaling relations keep their validity. Thus,
we have only established the consistency of the
relativistic Bose gas with what was already known
for its nonrelativistic counterpart.

gas) also has a similar effect. Finally, we men-
tion briefly that various processes in nuclear and

particle physics in relation to the relativistic
many-particle systems show a sort of condensa-
tion process.

Although synergetics" draws its subject matter
from many diverse fields throughout the sciences,
we remark upon two of the most important cases
in relation to physics, the laser and the electron-
hole pairs, as a demonstration of a type of BEC.
The laser, ' even though complicated by nonlinear
couplings between its different internal fields,
clearly demonstrates in a particular one-dimen-
sional model" a condensation into a collective
state corresponding to BEC. Although these mod-
els are not generally formulated in a manifestly
covariant way, their fundamental structure due to
the electromagnetic fields is relativistic. Simi-
larly for an excited semiconductor, the particle-
hole pair can also undergo a BEC in the form of a
droplet" instead of forming only the usual gas of
excitons. However, it must be further remarked
that both of these examples are typical of this
branch of science in that they represent systems
far from equilibrium in contrast with our above
calculations for an ideal relativistic Bose gas.

Another problem enters when we consider the
walls of the system. A Bose gas with either at-
tractive or repulsive boundary conditions brings
about a significant change in the dimensional
structure of the BEC. In fact, it has been shown"
that with sufficiently attractive boundary conditions
at the walls, the BEC in an ideal Bose gas can take
place in two or even one dimension.

A closely related problem is the effect of a
strong magnetic field, which confines the magne-
tized Bose particles. This external force changes
the relation of the BEC to the dimensionality" in
a manner similar to an ideal gas of higher dimen-
sions. In particular, it is shown that with a
"strong" confinement potential, the related phase
transition does not occur. However, in the case
of the weak field for a gas with d =3 and afield,
which confines in a plane (acts only perpendicular
to the direction of the magnetic field), it is found
that the system possesses the same structure as
the ideal system with d =5. Thus, there is shown
to exist a jump in the specific heat, "which corre-
sponds directly with our & in (3.12). An additional
interesting fact that comes together with the pres-
ence of an external field H is the existence of a
critical applied field H, (T), which yields a mag-
netic induction B= H —H, for H& H, , and ~ = 0 for8(8 .

The importance of relativistic properties is
seen in relation to various condensation processes
at high energy. In the strong interactions between
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nucleons, the pions at very high densities have a
state into which they condense. " This possibility
has interesting applications in nuclear matter as
well as in astrophysics. " A similar phenomenon

happens at very high energies where the gluons
undergo a similar type of condensation. " This ef-
fect has its importance in the study of the transi-
tion between hadronic and quark matter.

After this work was finished we found that simi-
lar calculations for &~ were in progress. The re-
ported results" are similar to our Fig. 2(a).
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APPENDIX

For the explicit evaluation of C» we need the integrals I~(n, &) and &, (n, o') in (3.5) and (3.6). We want to
explicitly analyze I„(n, o') here. A similar analysis holds for J~(n, o'). We write I,(n, o') as a sum of two

integrals I~~(n, &) andI~(n, &) defined by

and

I~~(n, o) —= dx(x" +mPx" ~)(x2+ 2m Px)
«»I '

0
(Al)

I,'(n, (x) =- I, (n, &) -I,'(n, n) .
For (A1) we choose the real number e in such a way that we may achieve the necessary exactness. The

integrand of I~(n, &) contains no singularities so that it vanishes for x- ~ like exp(-x). If we substitute

y+ l
&

l
for x, we may write

a+I at
I)(n Q)-mp(2mp)(&-»)'~ dyy- (y+ l

o( l)"+«I
l of I

In the limit -0,

I,'(n, n) = (

))(2ml))" " )n)) (0 + (d/2) = 3

(A4a)

(A4b)

Thus we have the conditions for &~ in the limit o' —0 as we stated in (3.10).
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