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Using the hydrodynamic model for a homogeneous plasma, we have investigated the modulational instability of an

electromagnetic ion-cyclotron wave by a low-frequency electrostatic ion acoustic mode in a collisionless plasma. The

low-frequency nonlinearity of the instability arises through the parallel ponderomotive force on the ions, and the

high-frequency nonlinearity arises through the nonlinear current densities of the ions. For typical plasma parameters

n,'= 10" cm ', co„/coo= 1.2, B, = 10 ko, T, = 1 keV, T, =0.05 keV, and 8 = 30', the growth rate of the

instability turns out to be —10' rad sec ' for u„„~C,
~

= 10 ', where v„„ is the pump-induced drift velocity of the

ions and C, is the ion acoustic velocity in the plasma.

I. INTRODUCTION

The heating of ions in a tokamak by ion-cyclotron
radio-frequency (ICRF) waves has attained con-
siderable interest in recent years. ' ' This is
recognized as one of the most promising methods
of heating a fusion plasma. Many experiments
were performed using slow waves or fast waves
in toroidal or linear machines. However, at pow-
ers (~ 200 kW) usually employed in ICRF heating
one would expect a variety of parametric pro-
cesses. Liu and Tripathi' have demonstrated that
the electrostatic ion-cyclotron waves are unstable
for oscillating two-stream instabilities at such
power levels in Alcator C and PLT-type devices.

In this paper, we have studied the parametric
decay of an electromagnetic (em) ion-cyclotron
wave into a low-frequency ion acoustic wave and
two scattered em ion-cyclotron sidebands. The
growth of the low-frequency electrostatic ion
acoustic wave whose phase velocity is equal to
the group velocity of the incident ion-cyclotron
wave causes the modulation of the wave front of
the incident em ion-cyclotron beam. We have
used fluid equations for the nonlinear response
of electrons and ions in the plasma. In the present
investigation for the em ion-cyclotron pump wave
the low-frequency nonlinearity arises predomi-
nantly through the ponderomotive force on ions,
whereas the high-frequency nonlinearity arises
through the nonlinear current densities for the
scattered waves.

In Sec. II we have derived the nonlinear disper-
sion relation for the low-frequency ion acoustic
wave in the presence of the ion-cyclotron pump
wave and the scattered sidebands. The dispersion
relation has been solved analytically, and the
dependence of the growth rate of the low-frequency
ion acoustic wave on various parameters of inter-

est has been obtained in the same section. A brief
discussion of the results is presented in Sec. III.

II. NONLINEAR DISPERSION RELATION
AND THE GROWTH RATE

We consider the propagation of a left-hand-cir-
cularly-polarized (LHCP} electromagnetic ion-
cyclotron wave in a homogeneous collisionless
plasma in the direction of the static magnetic

E, = E,' exp[- f(tdot -kcz)],

Eo, =zEO,

(~d (dg, s

C (d t(1 —(dc/(d t)

where &~,. and +„- are the ion-plasma frequency
and the ion-cyclotron frequency.

We assume the existence of a low-frequency
density perturbation (td, k) for electrons and ions
due to the presence of an ion acoustic mode in
the plasma. The density perturbations are taken
to be electrostatic (f= —VP). The drift velocities
of the electrons and ions, and the oscillatory mag-
netic field of the incident em ion-cyclotron wave

(td„kc) interact with the density perturbations
(td, k) and produce two high-frequency sidebands
(ddt s=|d vtdc, ft» ——kwkc}. The sidebands in turn
interact with the pump (td„kc} to produce a low-
frequency ponderomotive force which then drives
the low-frequency perturbations. We thus con-
sider the four -wave parametric decay of an em
:i.on-cyclotron wave into two scattered em ion-
cyclotron waves (td», k, ,) and the growth of the
electrostatic density perturbation associated with
the ion acoustic wave. The nonlinear growth of
the density perturbation is the basic cause of the
modulation of the incident beam.
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where -e, m, g, v, and v, are the electronic
charge, mass, density, drift velocity, and the
thermal speed, and the quantities with suffix z

refer to ions. Here, c is the velocity of light in

vacuum. We now express the various quantities
as follows:

(4)

(5)

In the presence of the electric and magnetic
fields of the pump and the decay waves, the re-
sponse of electrons and ions is governed by the
equations of motion and continuity:

—"+V ~ (nv) =0,
&t

2Bv - e~ e v—+(v V) v= ————(vxB) —~ Vn,
at m mc n e(- E,x(d„, +i(d R,}

m( ((d~( —(d ())

e(f„x(d„+i(d,f, )
ll. (~2 ~2)

e(E„x(d„+i(dg„)v 2J.
(

2 2)

e(-E,lx(d (+ j(d,f,l)
( 1J.

( 2 2) v

m, e„-m,
(7)

where po is the equilibrium density of electrons
or ions.

Substituting Eqs. (6} in Eq. (2)-(5) we obtain
the following linear response:

e(f,x(d„+i(dg, )
v

m((d,'-(dg

K = K()((d ()v
k ()) + E ((l) )%) + El ((d l v kl) + E2 ((d 2 v k 2) v

B = zB, + B2((do, k2) + Bl((d l, k, ) + B2((d 2, k2),

V = Vo((d 0, ko) + V((d v k) + Vl((d l, kl) + V2((d» k2) )

v, = v, o((d o, k2} + v( ((d, k}+v, l((d» k,}+ v(2((d» k,},
n =n', +n((dv k}+n,((d„k,) +n, ((d„k,),

n, =n', +n;((d, &)+n((((d„&,)+n(2((d„&2)v

B2=ck2x K2/(do,

Bl = col X El/(d l v

B2 = ck2 X K2/(d 2 v

(6)

e(-E, x(d„, +i(d,E )
m ((d' -(d')

v~ = eE~/mi(d, (1 —u,' v.'/(d,'),

v„=eE /mi(d, (1 —&,'v,'/(d,'),

v, „=—eE„/m(i~„

v(~ = —eE~/m(i(d, .

Substituting Eqs. (7) in Eq. (3), the z component

of the low-frequency ponderomotive force on elec-
trons turns out to be

v, = ——(v, v, )v ~ (v', v )v v —((v,x2), ~ (v, xa, ),v(v, xB,),~ (v, x2,),])

= ——i(k, v«)v~+i(k2 v*,~)v~+ —
~

(v„E„)— (v«k»)+ (v„h«)2 OL 2g OL 1L OJ 1J- 1J- OJ.

On simplif ication

(g)

In a similar way, the z component of the ponderomotive force on ions turns out to be

2, tv( .', — ',),( .', -«,') V, tv(tv«-tv'), (,*, -««l))

tv, (tv,', —,'),(tv,', —tv', ) V, )tv, (tv,', —««', ) v,(v,', —tv, ))
(10}
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A comparison of Eqs. (9) and (10) in the limit
&0- „reveals that the pondermotive force on
ions is much greater than that on electrons.

Hence, the low-frequency components of elec-
tron and ion density perturbations turn out to be

X.k'Q
4me

eitI=X. E„+B.E~,
D~ ~ E1=CQ,

D, ~ E2=DQ,

(17)

(18)

(19}

Now, substituting Eqs. (11), (12), (15), and (16)
into Poisson's equation and the wave equations
for the sidebands we obtain

where

4~e eik,
(12) where

&' ek (x i~-)E
A= »" ' f~ .(~ k

2m 0i 00 01 k (CO . —0i')'
0 1 ci 0

k»i» ~
Xg (13) + (000k1 + (dik0] I

is the electronic susceptibility and X,. is the ionic
susceptibility of the plasma.

Using Eqs. (11) and (12) we obtain the nonlinear
parts of the current densities due to the sidebands
as follows:

012„.ek.(x+ iy )E *,„
~2~ ~ k2(102 102) [ ci( 0 2g 2 0}

i 0 2 ci 0

+ (0ick2 —012k0)] I

(20)

J10' (0i1 ~ k1 ) = —nev g«/2+ 22, ev ~«1I2
k' (- *+ *)0»i y

(14)

(15)

2 2

(16) D~22-k1 2I -k1 2k122- (d1 26122

In Eqs. (15) and (16) we have neglected the non-
linear parts of n and ni

and I is the unit dyadic. The linear dielectric
tensors for the sidebands are given by'

2
0»

2 2
~c»

ioi c»
~1,2 2

i(d~»
2 2c»1212

I — "(I- )

(21)

Without loss of generality, we now assume that k, k„and k, are confined in the xz plane (i.e. , k„,k,„,
k,„=0). The nonlinear dispersion relation for the low-frequency perturbation is obtained straightaway by
eliminating Q, E„and E, from Eqs. (17)—(19) as follows:

where

ID, ! tD2t
' (22}

(d e k k (g g+ ) k (Jg ypz (g 1 1ci 1 g( cg 0g ~ k2+ ci i ci(+ k + k )+~ k1 4~ 002 2k2(id2 102) id2 1 2 ~ ( 0 1g 1 0 0 g ~10 ~ (id id )i ci 0 0 ci 0
(23)

k'+ "~ (01 k —0i k )+ 0i kl 2 4~ ~2cgk2(~2 id2) 102 2 2
00

I 0 2! 2 0 0 g 221 id 22i (00 id )ci 0 0 c i ci 0

(25)

In Eq. (17) & =e(0i, k) is the linear dielectric function of the low frequency electrostatic ion acoustic mode
and is given by
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1 T K (g) pg&=1+
&&&

1+ Z ' I„(b)exp(-b) +, , ~ 1+ WZ ' I„(b,) exp(-b, ). (26)

where Xv= v, /(2'i'u&) is the electron Debye length, Z is the plasma dispersion function, I„ the modified

Bessel function of second kind, v, and v„ the electron and ion thermal speeds, and

b = b,'p,', b, = b'p' p'= v'/2~' p'= v,' /2~'

Now, with the approximations that

~ «k,v„(d» k,v„. ,

the linear dielectric function becomes

2(d' gm'/2e 2 ~ 1/2

(27)

(28)

The real part of E is then

(d . (dbi bi
k2Q2 ~2 k2 7

S

and the imaginary part is given by

(d7T 2(d (d -(d
ba bi

~+
erI

Near the resonance we can have the following
expansions for e, iD, ~, and iD, i:

(29)

(d = (d„+ Q',

BE„&= (r+ri, ) B(d„

/D, i= (r+r„—) ' —'i",B~D, „
2

where Zi. ~ &1,1 and ZL, 2 are the linear damping

rates of the ion acoustic mode, lower and upper
sideband, respectively:

d m C, ~T 2'/2
—T,

v(m/m, . ) c (u„'(1 —(o',/(u,', )' (d (dk' cos'0- ~
1,2 C2 ci 0

(32)

Neglecting the linear damping rates of the high-

frequency sidebands we obtain

r(r + ri) —= r',

T i p —2 i' 34

— k', , sin6) cosa '

(82)
I

The linear dispersion relations for the scattered
sidebands are given by

&u', ,&u'„(1+ cos'6+[sin'6+ (4~', ,/&o'„) cos' 8]'I']
1i2 C2 2((d,', - (d' )cos'0

From Eq. (29)

B(d z (d k

From Eq. (25)

(86)

where e is angle between k, and k, or k, . For
simplicity we have taken that both the scattered
ion-cyclotron waves make the same scattering
angle 6.

When the resonance conditions

(d = COO+ (d1

k=koak, 2

(28)

(36)
are satisfied, then the angula, r frequency of the

low-frequency ion a,coustic wave is given by
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(d 1 X/2

k,c, 2(1+ (u, /(o„)

4„2
x 1+cos'8+ sin'8+, ' cos'8

~ca

(39)
where —sign is for 8& w/2 and + sign is for
8 & w/2. Now, the condition that the phase velocity
of the ion acoustic wave will be equal to the group
velocity of the incident ion-cyclotron wave re-
quires that co must be taken from the following

equation:

(d 1 1/2

(do 2(1+ (do/(d &)

4~2 1/2 1/2
x 1+cos'8+ sin'8+, ' cos'8

GO

(40)

Using Eqs. (35) and (36) the expression for the
unperturbed growth rate of the instability reduces
to

1 vo], (u m co„- ~ my 1 1

~k' lk,'c (rc'/c')(, /m)N1 —rc'/rc„', .)'f(kr. ,/rc„)(rck„—,k„)k rck, l
) (41)

where

v„,= —ieZ„/m, &d„(1—(u,/u&„) . (42)

In the presence of the linear damping of the ion
acoustic wave, the growth rate of the instability
is obtained from the following relation:

y= [(yi+4y'.)"-yg]/2. (43)

To have a numerical appreciation of the results
we have calculated the growth rates of the insta-

I

bility for the following plasma parameters: ~„/
(mt)p 1 2y n', —= 10" cm ', B,= 10 ko, T, =—1 keV,
T, = 0.05 keV. Figure 1 shows the variation of the
growth rates y and yp with the pump-induced velo-
city ~v„.,/C, ~. The growth rates increase with

~
v„.,/C, ~. The perturbed growth rate y has been

calculated for T,/T; =20. For higher ratio of
T,/T„ the linear damping rate y~ decreases and

y is then nearly equal to the unperturbed growth
rate y, . It may be mentioned here that the growth
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FIG. 1. Variation of the growth rates yp and y as a function of the pump-induced velocity ~&p~/C, ~
for the following set

of plasma parameters: np=10 cm, ~«/up=1. 2, &~=10 kG, T~=l keV, T&=0.05 keV, 8=30 .
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rate takes a very high value when the pump induced
drift velocity of ions is nearly equal to the ion
acoustic velocity in the plasma.

III. DISCUSSION

A high-power em ion-cyclotron beam propagat-

ing in the direction of the external static magnetic
field in a plasma couples parametrically with the
ion acoustic mode of the plasma. The incident
em ion-cyclotron wave gets modulated by the

growth of the ion acoustic wave when the group
velocity of the incident wave is equal to the phase
velocity of the ion acoustic wave in the plasma.
It may be noted that the ponderomotive nonlinearity

is much greater for the motion of ions than that
for the motion of electrons for waves in the ion-
cyclotron range of frequencies. For typical plas-
maparameters: n', =10" cm ', &u„/ur, =1.2, B,
=10kG, T, =l keV, T&=0.05 keV, 6=30', ~v„,/
C, ~= 10 ', the growth rate of the instability turns
out to be -10' rad sec
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