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A perturbation study of a number of states of four- through ten-electron atoms has
been made. Second-order energy coefficients for these states are calculated and estimates
of the relativistic corrections are also obtained. Higher-order energy coefficients are ob-
tained by a semiempirical fitting of experimental data. Comparisons with experiment are
made. The extent of the agreement with experiment is good.

I. INTRODUCTION

In a 1961 paper' Sinanoglu observed that the
first-order wave function of a many-electron atom
is an appropriate linear combination of the first-
order wave function of two-electron atoms. This
allows the total second-order energy coefficient €,
to be expressed as a linear combination of two- and
three-electron contributions.

In this work, second-order energy coefficients
are obtained for all states of four- through ten-
electron atoms whose zero-order wave functions
can be expressed as 15225%2p®. Estimates of the
relativistic corrections are made for each of the
states. The effects of degeneracy of the zero-order
functions are included for the first- and second-
order energy coefficients and for the relativistic
corrections. Using these results, semiempirical fits
to the observed transition energies are made. Com-
parisons with experimental results are then made.

II. PERTURBATION EXPANSION

The nonrelativistic Hamiltonian for an N-

electron atom of nuclear charge Z in charge-scaled
atomic units is

1
H=Hy+—-H,, (1
o+ Z
where
N I 1
HO == 2 - ?V[ —_ > (2)
i= R,
EN‘, 1
Hl == - . (3)
i1 Ry
The energy through second order is
25

E(Z)=€Z’+€,Z +€,, 4)
where

6= | Hy | o), (5)

6= |H,—E | 1) . (6)

For the states considered here, €, is known exactly
as are i and €, if the state is nondegenerate. For
the states considered here that are degenerate, the
order of the degeneracy is at most two, and 1, and
€, are obtained very easily from solutions of 2X2
secular equations.’

III. SECOND-ORDER ENERGY COEFFICIENTS

Using as an example the 15225 S state of the
three-electron atom, we write the first-order wave
function as’

1

Y=4 [a(1,225(3)+ =

Is(1)b(2,3)

1 1
+721s(1)c(2,3)+‘/ils(2)c(1,3) , (D

where a, b, and c are the first-order wave functions
of 1s21S, 1s2s 1S, and 1s2s 3S states of the two-
electron atom. Upon substitution of Eq. (7) into
Eq. (6) we obtain

62=e§+%eg+%6§+7/, (8)

where €2, €5, and € are the second-order coeffi-
cients of the two electron 1s2'S, 1s2s 'S, and
15 25 3S two-electron states, and ¥ is a linear com-
bination of integrals not given by the pair (or two-
electron) coefficients.

The procedure adopted here to evaluate the €,’s
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56 ROBERT E. KNIGHT 25

of many-electron atoms is first to find estimates
for the pair energy coefficients for all the necessary
two-electron pairs. Next, three-electron contribu-
tions similar to the y term in Eq. (8) were evaluat-
ed. Linear combinations of these coefficients yield
a total €, for a many-electron state (provided that
it is not degenerate).

It should be emphasized that certain of the two-
electron pair functions considered, e.g., the 252 'S,
would appear to present some problems in the usu-
al variational scheme® for finding the pair €,’s and
first-order two-electron pair function. However, by
requiring that the expansion set be orthogonal to
the hydrogenlike 1s function, the usual Hylleraas
variational expression can be used without modifi-
cation. Thus we require that the trial ¢, for the
252§ state be chosen such that

[$1(1,2) | 1s(2)]=[¢,(1,2) | 1s(1)]=0,  (9)
and then we use
€= |Ho—€o | 1) +2(¢, | H,—€ [ o) ,

(10)
where the €, €, and ), are those appropriate to
the 252 1S state.

Finally, after the variational procedure has been
completed, two of the deleted functions, namely,

TABLE 1. Pair €,’s in atomic units.?

Designation sum —€

1s2 s 0.157 666
1s2s s 0.114 509
1s2s s 0.047 409
1s2p pe 0.157028
1s2p 3pe 0.072 999
252 ) 0.036715
252p 1po 0.095 549
252p 3po 0.028 193
2p? s 0.111148
2p? 3p 0.039 363
2p? 'D 0.086 670
(2s2/2p?) 1S 0.016 960

2The last entry is the calculated result which is neces-
sary for the degeneracy effect. We define the entry to
be

1 |. 1
2s2/2pY) =——= |j(12) |— |25 (1
(2s%/2p*) 3 j(l)R‘2 (1)2s(2)
-1 £(1,2) = [2p0(1)2p0(2)
2V3 I ’

where f(12) and j(12) are the first-order wave func-
tions for 2s%'S and 2p?'S, respectively.

TABLE II. Three-electron contributions for €, in atomic units.?

I Designation Sym 4
1 1s%2s 5 0.122130
2 1s%2p 2pe 0.182899
3 2s1s 28 0.093 538
4 2522p 2pe 0.062 536
5 252pls ('p,%p°) 0.125273
6 252p s (®p,%p°) 0.119754
7 2s2pls 4pe 0.093 109
8 2p21s s 0.183779
9 2p2ls p 0.162973
10 2pls ‘p 0.126 186
11 2p?ls 2p 0.155 864
12 2p22s s 0.057 114
13 2p%2s 2p 0.079 501
14 2p22s ‘p 0.062 139
15 2p%2s )] 0.063 601
16 2p? S 0.088013
17 2p3 p 0.107934
18 2p? D 0.099 966
(25215 /2p2ls) 25 0.011905
(2s22p /2p*) p 0.005 787

2The last two entries are the three-electron contributions necessary for the degeneracy effects.
The definitions are similar to the last entry in Table 1.
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TABLE III. Zero-order coefficients and values of A for degenerate states.?
% 0 Sym Ci o A
252 2p? IS —0.974320 0.225 165 —0.195845
2s22p 2p? 2po —0.986 327 0.164 797 —0.180792
2s22p? 2p* IS —0.979 686 0.200 537 —0.295811
2s22p? 2p* p —0.994 467 0.105047 —0.144 379
2522p? 2p* 'D —0.994467 0.105047 —0.153537
2s22p3 2p° 2po —0.991 349 0.131249 —0.204 906
2s22p* 2p8 IS —0.989 539 0.144 265 —0.321232
*We define
U =Cid5+Ca63
vo=—Ca¢3+Cid5 ,
and
P =Cid7+Cob?+ 195 ,
P=—Cyp{+Ci¢7— AV,
where ¢f and ¢ are the first-order wave functions constructed from ¢4 and ¢g.
the 1s2 and 1s2s functions are added. This addi- the notation
tion assures that no four-electron contributions oc- B 1n 2 9n 2
cur in the expressions of the many-electron €,’s. Yo=—Cpls725°+C, 1s°2p", (13)
Similar additions were made for the 25 2p *P and 4 B
. =C C Ao 14)
the 2p2 'S states. For the 2p? 'S state the functions Vi=Cid1+Cadat Ao (
1s? and 1s2s were added. For the 2s2p 3P states, is also a solution of the first-order perturbation
the 1s2p function was added. The coefficients of equation. Using the second-order perturbation
these functions were easily found from elementary equation for ¥/ we write
erturbation theory and the contributions to the
P y (Ho— e +(H, —ehwi—elyd=0 . (15)

pair energies were found exactly. The entire pro-
cess was used in order to avoid any four-electron
contributions.

Tables I and II list the pair and three-electron
coefficients.

IV. DEGENERACY

The most simple many-electron state which is
degenerate is the 15225 'S state of the four-
electron atom. We write its zero-order wave func-
tion as

U =C,1s22s2+ C,15%2p? , (11)

where C| and C, are obtained from the solution of
a secular determinant. If we construct a first-order
wave function for 1s22s? and 1s%2p? using the
Sinanoglu prescription we obtain

Ui=C1¢,+Cr¢,,

where ¢, and ¢, are the appropriate first-order
functions for 1s?2s% and 1s22p?, respectively.
Equation (12) is not correct as it stands since using

(12)

Multiplication of Eq. (15) by ¥& and integration
evaluates the unknown coefficient A. Table III

TABLE IV. Contributions of degeneracy for the
first- and second-order perturbation coefficients in atom-
ic units.*

Designation Sym P e

2s? s —0.01173 0.005 85
2522p 2po —0.00692 0.003 30
2522p> s —0.01199 0.003 37
2522p? 3p —0.00309 0.00125
2s22p? 'D —0.00309 0.000 98
2522p3 2po —0.00548 0.002 24
2s22p* s —0.007 40 —0.00051

*The degeneracy coefficients for the companion degen-
erate states are obtained by changes of sign for both €’
and €2. The degeneracy coefficients are defined as
€?=¢,—¢€}, where € is the perturbation coefficient for
the state and €] the perturbation coefficient that would
be obtained if the states were nondegenerate.
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lists the coefficients Cy, C, and A for each degen-
erate state in our list. Table IV gives the energy
contributions of the degeneracy effects for each

pertinent state.

V. RELATIVISTIC CORRECTION

We assume that the relativistic correction is

given by

6.rel:(l»MIirel | ¢)

(16)

and that H  is the Breit Hamiltonian,* and that v
is the nonrelativistic wave function. We introduce
some simplifications. The wave function ¥ can be

expanded as

25
TABLE V. Pair relativistic coefficients in atomic

units.

Designation Sym b,
1s? s 0.48013
1s2s s 0.16947
1s2s s 0.07693
Is2p 1pe 0.07978
Is2p 3pe 0.06508
2s? Is 0.060 88
2s2p 1pe 0.065 44
2s2p 3pe 0.042 35
2p? s 0.05493
2p? ’p 0.039 10
2p? 'D 0.04543

TABLE VI. Transition energies (in cm~!) for some states of the Be isoelectronic

sequence.”

Z 2s2p'P 2p%'S 2p23p® 2p*'D
4 42557 71820 37716 56388
42565 71499 37716 56432

5 73389 128279 61588 102242
73396 127 662 61577 102362

6 102 358 182243 85059 145913
102 351 182520 85059 145875

7 130695 238267 108 321 188910
130695 235370 108 325 188 888

8 158797 287934 131516 231719
158798 287909 131516 231722

9 186 885 340548 154743 274582
186 841 340424 154733 274597

10 214978 393308 178091 317667
11 243258 446377 201617 361118
243223° 446 149° 201589 361046

12 271768 499900 225409 405071
271687° 499 638°¢ 225355 405100

13 300581 554022 249537 449 662
300399°¢ 553673° 249 444 449639

14 329770 608 885 274076 495038
329707¢ 608 811°¢ 273912 495 732¢

15 359413 541349
359 324¢ 541679°¢

16 389588 588753
389 851°¢ 589 689°¢

17 420369 637422
420698° 638 883¢

For each entry, the first line is the result obtained in the present paper, the second line con-
tains the experimental results of Ref. 7 values otherwise noted.

®For the 2p?3P state the term differences are with respect to the 2s2p *P° state.

‘B. C. Fawcett, J. Phys. B 4, 981 (1971).
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TABLE VIIL. Transition energies (in cm~!) for some states of the B isoelectronic
sequence.?
z 2s2p*3S 2s2p??P 252p?*D 2pl4st
5 63775 72500 47831 68222
63550 72532 47846 68225
6 97128 110465 74853 99 005
96451 110610 74 890 98991
7 130665 145 866 100926 129522
130887 145833 100910 129519
8 163955 180423 126 692 159891
164 109 180385 126 684 159897
9 197091 214692 152386 190230
197068 214695 152130 190230
10 230180 248911 178133 220630
231710 248962 178130
11 263331 283226 204023 251183
262973¢ 283 668° 204 000° 251187°
12 296 646 317739 230135 281966
296087° 317850° 230088° 281 890¢
13 330214 352539 256542 313058
329397¢ 352678° 256 460° 313984°
14 364124 387708 283319 344 544
362984¢ 387998° 283219¢ 344410°
15 398463 423330 310546
396 856° 423233¢ 310500°
*For each entry, the first line is the result obtained in the present paper, the second line con-
tains the experimental results of Ref. 7 unless otherwise noted.
®For the 2p*4S state the term differences are with respect to the 2s2p 2 *P state.
°B. C. Fawcett, J. Phys. B 4, 981 (1971).
1 spin-spin operator.
Y=1o+ E¢‘ ’ (7 In addition, since we are interested in the contri-

and Eq. (16) can be written as
erel=a2(boz4+blz3) (18)

since we intend to keep only two terms of the
series. Next, we introduce a multiplet averaging of
the experimental data. For instance, for the

2s2p 3P terms of the four-electron atom, experi-
mental values are given for J=0, 1, 2. We replace
these three numbers with a single number

E(2s2p°P)=3E(0)+3E()+3E(2), (19

where the states are weighted by a 2J +1 factor.
This averaging tends to average out the contribu-
tions of the spin-orbit operator and part of the

butions in Eq. (18) which are multiplied by Z* or
Z* the retardation terms are ignored as they con-
tribute as Z2. We finally adopt a simplified for-
mula for a two-electron state as

Hyg=a —%<P‘:>—§<P3>+%<a<ﬁn>

+ 1’%(8@2)) +7(8(R2)) | . (20)
Instead of taking €, as
ea=0a’(boZ*+b,Z%) , 2D
we choose to express it as

€=0a’bo(Z —7)*, (22)



If the state is nondegenerate, the by’s can be ex-
pressed very easily. Denoting the zero-order wave
function as

Yo=1s2252p? ,
bo(15225%2p, ) =2b(1s)

+abo(25)+bb0(2p) N (23)
where

bo( Is)= -3
bo(25)=— 5 ,
bo(2p)=— 57 -

The b,’s for each of the pairs is given in Table V.
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TABLE VIII. Transition energies of some states of B and C isoelectronic sequences (in
cm~}).2
Z 2p32P 2p32D 2s22p21sb 2slzp2|D
6 168 688 150417 11445 10157
168 701 150423 11454 10165
7 230038 202967 17377 15238
230291 202963 17399 15229
8 288930 254914 22924 20072
288763 254911 22912 20063
9 347111 306735 28 306 24 820
346934 306748 28302 24 826
10 405219 358678 33605 29537
33606 29538
11 463 565 410925 38861 34237
463639 410918 38916 34094
12 522347 463631 44095 38933
522228° 463 633¢ 46651 39451
13 581744 516947 49323 43626
582 150¢ 516 908° 50631°¢ 43644
14 641896 571026 54556 48320
642285° 570910°¢ 54 820°¢ 48508
15 626025 59 805 53015
625 840° 60613°¢ 53435
16 65075
65 604°
17 70334
70595¢
For each entry, the first line is the result obtained in the present paper, the second line con-
tains the experimental results of Ref. 7 unless otherwise noted.
®For the 25s22p? 'S state, the term differences are with respect to the 2s2p?'D state.
°B. C. Fawcett, J. Phys. B 4, 981 (1971).
with VI. SEMIEMPIRICAL FITS
n=—b,/(4b,) .

The experimental energies for a particular state
were first multiplet averaged to obtain a single en-
ergy for the state with several allowed J values.
The theoretical estimates for the nonrelativistic
transition energies were calculated through second
order

T=eyZ’+e,Z +e, , (24)

where the ¢; are the differences of the perturbation
coefficients between the state and the ground state
of the N-electron atom. Similarly, the relativistic
estimates were also subtracted. The residue was
then assumed to be a polynomial in inverse powers
of {=(Z —s):
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TABLE IX. Transition energies of some states of C isoelectronic sequences (in cm ™).

61

l)a

Z 2s2p33S 2s2p33P 252p3'D® 252p3°D
6 105 305 75243 87691 64053
105772 75227 87873 64 062
7 154133 109175 128 780 92155
155043 109132 128873 92158
8 196988 142 157 166 770 119 844
196 434 142176 166778 119833
9 238039 174817 203 704 147452
237882 174 827 203 667 147 454
10 278 551 207 407 240271 175119
278 609 204 405 240270 175120
11 318990 240072 276784 202929
319325 240077 276817 202923
12 359579 272914 313412 230963
360121¢ 272914 313464¢ 230925
13 400 446 306023 350278 259292
401 142¢ 306084 350303¢ 259227
14 441694 339484 387483 287992
442 517°¢ 339628 387447¢ 287854
15 483409 373385 425120 317142
484 393°¢ 373763 425044¢ 317040
16 525680 463282
526 162°¢ 463027¢
17 568 598 502063
569 595¢ 501 580°¢

®For each entry the first line is the result obtained in the present paper, the second line con-
tains the experimental results of Ref. 7 (unless otherwise noted).
®For the 2s2p 3 'D state, the term differences are with respect to the 2s22p2'D state.

‘B. C. Fawcett, J. Phys. B 4, 981 (1971).

(] €4 €s

=+ +35.
& & 8
The screening constant s was arbitrarily chosen to
be

(25)

s=(N-=-2)/2, (26)

where N equals the number of electrons in the
state. The first five available members of the
isoelectronic series were chosen to obtain the fits.
Tables VI—XII show the comparison with experi-
mental data.

Table XIII lists the ¢;’s for a number of term
differences. Table XIV lists the coefficients for
obtaining the three-electron contributions of the
many-electron €,’s.

VII. CONCLUSIONS

This work is to some extent similar to a previous
study of the three-electron atom.> Some of the
conclusions are the same. (1) It is essential to esti-
mate and to remove the relativistic contributions
from the experimental data in order to obtain rea-
sonable fits. (2) The more recent data, particularly
those of Fawcett, agrees very well with the predict-
ed values. (3) The Breit Hamiltonian appears to be
quite adequate to describe the relativistic contribu-
tion for the states considered here. The approxi-
mation used here, Eq. (22), seems to be adequate.
(4) It is possible to assess the reliability of previous
studies. Table XV shows comparisons of the cal-
culated second-order energy coefficients with those
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TABLE X. Transition energies for some states of the N isoelectronic sequences (in
—lya
cm™)).

A 2s02p32p® 252p*is® 2s2p*?p® 2s2p*4P
7 9611 88162
9614 88135
8 13625 168 884 186 554 120050
13652 168 859 185835 119933
9 17468 214109 232935 152060
17464 214166 232593 152096
10 21213 258408 278 886 184 187
21204 258391 279025 184222
11 24900 302427 329682 216473
24900 302407 329787 216469
12 28549 346459 370342 248975
28633 346461 370475 248906
13 32180 390680 416456 281764
32444 390 624 416341 281647
14 35800 435208 462 684 314913
36419 435072 462 589 314782
15 39421 480099 509289 348 501
40 606 479035 509 305 348350
16

“For each entry, the first line is the result obtained in the present paper, the second line con-
tains the experimental results of Ref. 7 (unless otherwise noted).

®For the 2522p32P, 2s2p*2S, and 2s 2p*?P states the terms differences are with respect to the
2522p32D state.

TABLE XI. Transition energies for some states of the N and O isoelectronic sequences
(incm™').2

zZ 2s2p*?D® 2s22ptisc 2s2p*D 2s2p33P
8 139179 17923 15719 126276
139176 17924 15790 126233
9 176137 24020 20633 165057
176 152 24046 20709 164791
10 212849 29907 25624 204206
212853 29906 25521 204269
i1 249558 35673 30572 243575
249550 35662 30574 243 646
12 286407 41364 35463 283161
286406 41364 35475 283154
13 323502 47011 40304 323013
323644 47070 40262 322914
14 360932 52633 45109 363200
361036 52780 45143 363137
15 398791 58389 49887 403 802
399279 58520 49 661 403 600
16 63 855 54 647
64282 54475
17 69 480
69 446

*For each entry, the first line is the result obtained in the present paper, the second line con-
tains the experimental results of Ref. 7 (unless otherwise noted).

®For the 25 2p*2D state, the term differences are with respect to the 2s22p>2D state.

“For the 2s?2p* 1S state the term differences are with respect to the 2s2p*!D state.
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TABLE XII. Transition energies and some ionization levels of F and Ne isoelectronic se-

quences (in cm

e

4 T(252p°2S) IP(25s%2p°2P) IP(25%2p®1S)

9 140296
140 582

10 216455 331364 174 168

216789 331409 174193

11 263965 578573 381775

263994 578122 381983

12 310792 881755 647 149

310785 881890 647106

13 357673 1240703 969015

357661 1240789 968 932

14 404789 1655258 1346745

404 800 1654957 1346 800

15 452306 2125316 1780205

452309 2124566 1780673

16 500299 2650810 2269103

500213 2652886 2270367

17 548879 3231716 2813418

548 867 3233966 2814533

For each entry the first line is the result obtained in the present paper, the second line con-

tains the experimental results of Ref. 7.

63

TABLE XIII. Perturbation energy coefficients derived from semiempirical fits for some term differences (in cm~!).*

State 4 State B e; ey es
2s2p'P 25218 30811 —32874 126 539
2p*'S 25218 60254 —42700 123 669
2p*3p 252p 3P 23964 —2747 —19665
2p*'D 25218 61867 —122914 248925
2s2p%3S 2s%2p P 37167 154816 —462742
252p?2P 2522p ?P 61773 —177764 548068
252p*’D 2522p 2P 48717 —118739 242509
2p3%s 252p%P 42177 —32558 —14963
2p3%P 2522p %P 141139 —782515 2444 888
2p*D 2s%2p %P 100356 —266 142 545312
2522p?'S 2522p2'D 21714 —51702 132031
2s22p2'D 2s22p23p 8076 —40616 125 346
252p33s 2s22p 3P 144936 —1005 668 3292622
252p33P 2s22p23P 73876 —199 186 439669
2s2p*'D 2s2p?'D 101332 —411552 1351229
252p*3D 25s22p2°D 63656 —204 830 366911
2s2p32p 2s2p3?D 71903 461329 —1093944
2522p32p 252p3is 15755 —7278 12079
252p*28 2522p32D 144045 —718627 2325244
2s2p*2P 2s2p3%D 175655 —423736 722813
252p*P 2522p34S 74 844 —192470 161998
2s2p*?P 2s2p3D 105322 —375722 872856
2s22p*1lS 2s2p*'D 23452 —71081 16 802
2s22p*'pP 2522p*3p —16573 278310 —764275
252p°3P 2s2p*3pP 101447 — 186868 —151128
252p°2S 2s22p3%P 199 874 —1270849 —4006932

2The term differences are E(4)—E(B) and e;’s are defined in Eq. (25).
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TABLE XIV. Coefficients for obtaining the total three-electron contributions of the many-electron €,’s.?
State Sym 83 89 &0 g 812 813 814 815 816 817 818
152252 s 0 0 0 0 0 0 0 0 0 0 0
1s22s 2p p 0 0 0 0 0 0 0 0 0 0 0
1s22522p? s 2 0 0 0 2 0 0 0 0 0 0
2 2 3 2 4 2 4
1s2s22p? )] 0 0 0 2 0 0 0 2 0 0 0
1s%2s%2p? is 0 2 4 0 0 2 4 0 1 0 0
4 5 4 [}
1s%2s 22p3 p 3 1 2 3 3 1 2 3 0 1 0
1s22s%2p3 D 0 1 2 3 0 1 2 3 0 0 1
24 .2~ .4 8 10 8 10
1s°2s°2p s 7 2 4 = 37 2 4 5 0 4 0
2 16 10 2 8 16 10 4 5
Is2s2p* P T 5 3 33 3 ET A + 1 3
1 2 16 2 16
1s 22.8‘221)4 D 3 2 4 ER 3 2 4 EN 0 1 3
4 20 4 20
1s 228 22p 5 2P 3 4 8 ES 3 4 8 ES 2 3 5
1s22s2p® s 2 6 12 10 2 6 12 10 4 6 10

*For each of the states listed here, the zero-order wave function is of the form 1s?2s?2p ®. The three-electron contribu-
tions, €(3el ), for these states are

€(3el)=26,+b8,+28;+ b8,

18
+b(85+86+287)+ 3 g8, .
I=8

The g;’s for these states are listed here and the §,’s are those listed in Table II. Coefficients for the pair contributions
are listed in Ref. 8.

TABLE XV. A comparison of the calculated €,’s
with the results of Scherr, Silverman, and Matsen in

atomic units.

N Results of Scherr et al. Present results
3 —0.4089 —0.408 16
4 —0.880 —0.876 60
5 —1.843 —1.83391
6 —3.253 —3.24280
7 —5.20 —5.19097
8 —8.05 —7.97534
9 —11.64 —11.51566

10 —16.07 —15.89996

of Scherr, Silverman, and Matsen.® In this case,
the agreement is very good.

For the states considered here we conclude that
the calculations of the €,’s are quite straightfor-
ward if the state is nondegenerate. The major
problem of dealing with larger atomic systems ap-
pears to find a simple way of dealing with this
problem. Extensions to excited states of 4— 10
electron systems should prove to be relatively sim-
ple. Calculations of one-electron operators, for ex-
ample, transition probabilities, are possible for the
states considered here and for two- and three-
electron atoms.
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