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The aperiodic or chaotic behavior for one-dimensional maps just before a tangent bifurcation occurs appears as

intermittency in which long laminarlike regions irregularly separated by bursts occur. Proceeding from the picture

proposed by Pomeau and Manneville, numerical experiments and analytic calculations are carried out on various

models exhibiting this behavior. The behavior in the presence of external noise is analyzed, and the case of a general

power dependence of the curve near the tangent bifurcation is studied. Scaling relations for the average length of the

laminar regions and deviations from scaling are determined. In addition, the probability distribution of path lengths,

the stationary distribution of the maps, the correlation function and power spectrum of the map in the intermittent

region, and the Lyapunov exponent are obtained.

I. INTRODUCTION

There has recently been considerable interest
in the properties of nonlinear discrete maps. ' '
Such maps arise in a variety of nonlinear field
theories. Perhaps the best known of these is the
Poincare sections for dynamical systems which

can be usefully approximated by such maps re-
lating a continuous time process to a discrete
process. 4 Spatial order for commensurate-incom-
mensurate phase transitions on a lattice have

recently been discussed in terms of discrete
maps. " In addition, the phenomena of electron
localization on a lattice with an incommensurate
potential has been treated as a discrete mapping

problem generated by the Harniltonian acting on

a tight-binding state. ' In all these cases, there
is a physical parameter which enters the map in

an essential way. In a hydrodynamic system it
could be the Reynolds or Prandtl number, for a
phase transition it could be the ratio of near to
next-near coupling constants, while in the quan-
tum-mechanics problem it was the ratio of the

hopping matrix element to the incommensurate
potential. As this parameter is changed, the
sequence of iterates generated from the map may

alter going from a regular periodic to an irregular
aperiodic or chaotic behavior at some critical
value of the parameter. The nature of this tran-
sition to chaotic behavior forms the focus of much

of the recent interest. ' In particular, the concepts
of scaling and universality' so successful in the
theory of phase transitions play a central role,
encouraging the detailed study of simple models.

Here we are interested in the onset of chaotic
behavior characterized by the occurrence of reg-

with 0&x&1 and 0&R &4. The attractor for this

map in the region 3&R &4 is shown in Fig. i.
Past the first period doubling bifurcation cascade
at R =3.5V, various open regions with odd numbers

of fixed points appear which arise from tangent

bifurcations. The three-cycle region appears
last at R, = 1 +&." As R increases further one

can see that this three-cycle behavior undergoes

the usual cascade bifurcation to chaos. However,

(x„

0
Io c 4O

FIG. 1. The attractor vs R for the logistic map &„yf
=Rx„(1~„)prom Ref. 16). The intermittent behavior
discussed in this paper arises when& decreases below

the threshold for an odd-limit cycle. In particular, we

focus on the region just below &~ = 1~8 which is the

threshold for three-cycle orbits.

ular or laminar phases separated by intermittent

bursts. This intermittent transition to turbulence

was discussed by Pomeau and Manneville' in con-

nection with the Lorenz model. They pointed out

that it arises when a tangent bifurcation occurs.
A simpler model which exhibits this type of phen-

omena" is the well-known logistic map

x„„=ax„(1—x„)
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startin from x= 0.7; (a) in the stable three-cycle region' n R -R= -0.002 andFIG. 2. Iterates of the logistic map starting from x= 0.7; a in

(b) in the intermittent region ~ -R~ = 0.R-R =0.002.

(1.2}

as R decreases below R, the system also enters
a chaotic regime and it is this transition, ocur-

stud here.ring through intermittency, that we s y
Figures a an2( } and 2(b} show the results of iterat-

—0.002,ing Eg. (1.1) for R =R, +0.002 and R =R, —
respective y. orl ForR &R, after an initial trans-
ient, the iterates settle down to threefold imi
c cle. However, for R &R„approximate three-
f ld c cles are interrupted by irregu
cyc e. o

lar behavior.o cy
rR -R =10 4F 3 shows every third iterate forlgu re

1 thand nearly repeating segments of varying eng
l appear. eseTh form the "laminar" regions sep-
arated by irregular behavior which appears as
bursts if one magnifies the scale.

The geometric picture of Pomeauau and Manne-
ville which explains this phenomena cancan be illus-
trated by constructing the three-iterate map

Z"&(x) =Z(Z(F (x)))

with F(x) =Rx(1 —x). This map is plotted in Fig.
4 for R =R, . At this critical value the map is just
tangent to the line x at x = (0.160,0 0.514 0.956).
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FIG. 3. Third iterate of the logistic map for R
= 0.0001 showing regions of laminar bear behavior by inter-
mittent irregularities.

R &R EI'I(x) passes through the line x givingForR&
rise to six new it '

ew fixed points of which three are
stable. T is is eThis is the phenomena of tangent bifurca-

d the manner in which odd-limit cycles en-
ter the attractor. Figure 5 shows a blowup o

=R —5&10 '. Theregion near x, =0.514 for R =R, —
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1.0 could imagine determining P(l), the probability of
a laminar region of length l. Beyond this it would

be natural to observe the correlation function

F(3)( )

0.5

0
0 0.5

X

1.0

FIG. 4. The threefold iterated map+3)(x) vs x for R
=R
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FIG. 5. A blowup of the central region of Fig. 4
showing +' ' (x) for R, -R= 0.005. Successive
third iterates of a point show the phenomena of slow
passage which gives rise to the laminarlike regions in
Figs. 2(b) and 3.

points represent a sequence of threefold iterates
which map in the usual way indicated by the stair-
case path. The slow passage of the iterates as
x approaches x, =0.514 is evident. Pomeau and

Manneville pointed out that as R- R„ this time of
passage diverges as (R, —R) '~'. After passing
through the region shown in Fig. 5, the iterates
move wildly under the map until they return to
this neighborhood or a similar one near 1.160 and

0.956. This produces the regular laminarlike re-
gions separated by bursts shown in Figs. 2(b) and

3 which are characteristic of the intermittent re-
gion.

In order to test this idea against experiment it
is useful to consider what can be measured.
Clearly, given a gate G which sets an acceptance
1x —x,

~

&G on deviations in the laminar region,
the average number of threefold iterates or
length (l) can be determined. In addition, one

lim e""=lim lim([x„(xo+b, ) —x„(xo}]/s). (1.5)
g~ oo N~~ +~0

Here x„ is the Nth iterate and x, +~ and x, are
two neighboring points. Clearly, if X is positive,
two nearby points separate at an exponential rate,
if X is negative, they converge towards a fixed
point. Although here we are primarily interested
in readily accessible experimental quantities, one
must not be too hasty to judge what can and what

cannot be observed. If, for example, light ab-
sorption produced two neighboring triplet states
which could subsequently recombine depending
upon their distance of separation, one might by a
careful examination of the tail of the intensity-in-
tensity correlation of their recombination radia-
tion determine X.

When observations are compared with theory it
is also essential to understand the role of noise.
This is particularly true in the case of chaotic
phenomena which by their nature may appear
noisy. There has in fact been considerable prog-
ress recently on understanding the effects of
stochastic noise on maps near the bifurcation cas-
cade to chaos. " " For example, the Lyapunov
exponent has been shown to satisfy a scaling be-
havior characterized by universal exponents. Here
we will study the stochastic difference equation

x„,=Rx„(1—x„) +gt„

with $„aGaussian random variable with ($„)=0
and ($„(„')=5„'„. In the presence of noise we find
that as e =(R, -R}-0, the ratio of the average
length in the presence of noise to that with g =0
scales as"

/( )(f). (1.7)

and/or its power spectrum
N-1

S(~,) =C(0)+2 g C(l) cos(l~, )+C(N) cosN~, ,
1= 1 (1.4}

where ~, = 2'/ N. Finally, if the system appeared
to be in a steady state, one might try to find the
probability W(x) of finding the system with a given
value x.

In addition to these observables, one might even
devise an experimental observation of the Lyap-
unov exponent X. This is usually introduced as a
formal parameter useful in characterizing the
sensitivity to initial conditions:
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with a proportional to g /e' for Eq. (1.6) or more
generally for F 'i(x} maps which have a quadratic
term when expanded about their point of contact x,
(see Fig. 4). If this term vanishes and the lowest-
order term beyond the linear (x -x, ) term is (x
—x,}', then we find that

(I) &-(c-x)/* ~d & g/&(-+ o/~

The layout of the paper proceeds as follows.
In Sec. II, the results of a variety of numerical
experiments on the logistic map are presented.
With these results in mind, a simple theoretical
model is proposed and analyzed in Sec. III. Re-
sults for (I), P(l), and W(x} are obtained. In ad-
dition, the effect of noise on these results is in-
vestigated. Exact results as well as the e -0
scaling limits are derived. In addition, these
theoretical results are compared with results of
numerical experiments on a simple map construct-
ed to exhibit the important features of the inter-
mittent transition to chaos. A brief conclusion is
given in Sec. IV.

II. NUMERICAL RESULTS FOR THE LOGISTIC MAP

In order to explore the phenomena of intermit-
tency, we carried out a number of numerical ex-
periments using the logistic map. In Fig. 6, ob-
servations of the average number (I) of threefold
iterations which begin and end inside an accept-
ance gate G =

~
x —x, ~

=10 ' are plotted versus e.
These data were obtained from runs in which 104

laminar regions were observed. A laminar region

lp
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FIG. 7. The histogram shows the measured probab-
ility distribution P (L) for having laminar regions 3l
iterates long for e= 2.5 x10 4 in the absence of stoch--
astic noise, g~ 0. The dots sPow P (& }for the same
value of & but with g = 5 x 10 In both cases the ac-
ceptance gate was Is~, (&10

2

of length I occurs if an iterate falls inside the gate
~x„-x,

~
&G and leaves after I threefold iterates.

Deviations of runs starting from different initial
values of x were of order 1f~. For a&10 4, the
measured values of (I) clearly follow the expected
e ~ behavior. The solid and dashed lines are the
results of analytic calculations for a model dis-
cussed in Sec. III.

For e =2.5&&10 ', the probability distribution P(l}
for lengths of a given run was computed and is
plotted as the histogram versus l in Fig. 7. The

I 20 I I I I I I I
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FIG. 6. The dots show the average number (l) of
threefold iterations measured between bursts for the
logistic map vs ~ for an acceptanoe gate Is-s~ I ~ &0

The dashed line corresponds to Eq. (3.9) and the solid
line is its asymptotic limit ~/]s-s, j-0 given by Eq.
(3. 10).

0
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FIG. 8. The probabGity. P~, (~) of a given starting 4
value of & inside the acceptance gate for &= 2. 5 x 10
Note that this peaks at the lower end of the gate skewing
P(&) shown in Fig. 7 towards largerl values.
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FIG. 11. The average length of the three-iterate lam-
inar regions g), for the logistic map in the presence
of noise e'= 10g /c l' normalized to its zero noise
value g)0 for three different values of e. Note the ap-
proximate scaling of the data when it is plotted in this

way.

(2.1)

For e &0, the system settles down to the three-
cycle behavior shown in Fig. 2(a} and

3

h =-,' g In[R(1 —2x, )]. (2.2)

the fluctuations produced by external noise.
The effect of noise on the distribution P(l) of

laminar lengths is shown as the dots in Fig. 7.
The tail giving values of l exceeding l,„for g =0
results from a passage in which the noise shifts
the point back of the bottleneck region after it has
already passed through it.

Writing x„(xo)=F "(xo) and using the chain rule
for differentiation one has for the Lyapunov ex-
ponent, Eq. (1.-5},

N
1

X =lim —~ In[R(l —2x,.)] .„N;

Fig. 11 the results for the ratio of the average
length (l) ' in the presence of noise a' =10g'/e'
to its value (l) o in the absence of noise is plotted
as a function of &' for different values of e. Once
again 104 laminar regions were obtained in a given
run leading to rms errors of order 1%. It is clear
that the results for c =10 ' to c =10 ' are very
similar to each other when plotted in this way.
There are in fact expected to be small differences
proportional to e but we will postpone discussions
of deviations from scaling until Sec. III. Just as
in the theory of phase transitions, the existence
of scaling results in a great economy in dealing
with data and, moreover, provides the framework
for extracting the intrinsic chaotic behavior from

0.2

x = —-', (aP, )'+I cI ++0(I eI), (2.3)

where a, and 5, are given by Eq. (3.2). This is
shown as the dashed line in Fig. 13. When e &0,
we know that the number of steps in the bottleneck
region varies as c ' so that we expect that X —e

+O(e}. The solid line in Fig. 13 varies as e and

Here x„x„and x, are the stable three-cycle
fixed points for a given R&R, . Results obtained for
X versus e for the logistic map are shown in Fig.
12. The solid line shows X in the absence of any
stochastic noise, g=0. Figure 13 shows lnIXI
versus lnI eI for g=0. Here the solid dots cor-
respond to the divergent, intermittent region with
e &0 (R &R,) where X. &0 and the open circles cor-
respond to the stable three-cycle region with e

&0(R &R,) where X&0. For t &0 it is straight-
forward to show that

O.OI—
O~

b~

IO 5xl0 -sxio ' Q-io ' O. l

-O.I

IO IO' IO' IO"

FIG. 12. The Lyapunov exponent X vs & for &he logistic
map. The solid curve is without noise g = 0 while the
dashed and dash-dot curve are with noise g= 10 4 and
5 x10, respectively.

FIG. 13. A log-log plot of I XI vs I s I for the logistio
map in the absence of noise. The solid dots are for
&& 0 and correspond to divergent trajectories with
~& 0 while the open circles are for «0 and correspond
to stable three-cycle trajectories with X& 0.
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has been adjusted to fit the data for small e. Note

that the "critical" region in which e-~ for q &0

is very narrow due to the contribution from the
burst regions. Compare this with the behavior of
(l)0 shown in Fig. 6 which has the asymptotic form

for e S 10 . The effect of noise is to wash out

the ~ =0 singularity as shown in Fig. 12. In the
critical region we find that X scales with g'/e'
just as (l) does.

Having explored some of the basic phenomena
exhibited by a particular map near the intermit-
tency threshold, we turn in the next section to an

analysis of a simple model which contains the es-
sential features of the geometrical picture intro-
duced by Pomeau and Manneville.

III. ANALYTIC FORMULATION AND RESULTS

In this section we discuss a simple analytic
formulation of the intermittency problem in the
presence of external noise; we consider the recur-
sion relation

y' =y +ay'+ e+g$ . (3.1)

Such a recursion relation arises in the logistic
map when expanding around the contact point.
Near the region of the tangent bifurcation, P"~(x, R)

can be expanded about x, and R„
F"'(x,R }=—x, + (x —x, )+a, (x —x,)'

+b, (R, -R}. (3.2)

Here x, is one of the three contact points where

R =R, . Although the parameters a, and b, are in

fact different from the middle contact point and the

two outer contact points, their product a =a,b,
= 68.5 which enters in various physical predictions
is identical for all three regions. Setting y =(x
—x,)/b, and including an external noise gives a
recursion relation for the threefold iterate having

the form of Eq. (3.1) with z =2. If the coefficient

a, of the quadratic term in Eq. (3.2) were to vanish

one would need to include the first nonvanishing
term (x —x,)'. We will discuss mainly the case
z =2 here for definiteness, although the extension
to arbitrary (positive and even) z is straightfor-
ward. The exponent z is important since it de-
termines the "universality class" of the problem.

We will assume Eq. (3.1) to be valid only over a
small range of the variable y, -y, &y & yp
side this range, we assume the variable y to under-
go some unknown chaotic motion for some time and

then to reenter again the interval of interest. In
general, this reentry will occur at random points
y;„subject to some probability distribution which

depends on the model under consideration; a par-
ticular example was discussed in Sec. II. For
purposes of the theory the detailed form of P,„(y)

is irrelevant and we will assume the simplest

possible form, i.e., "white" reentry:

1
P~~(y) = yo y yo ~

2yp
(3.3)

The quantities of interest in the problem do not

depend on the form of the distribution of (, so
that we will take it to be uniformly distributed for
our numerical experiments.

In order to treat the problem analytically, we

approximate the recursion relation (3.1) by a dif-
ferential equation on which the step spacing is dt,

—= ay' + e +g ((t}.Py
dt

(3.5)

Here ](t}is a Gaussian white noise source, sat-
isfying

(3.6)

The passage from (3.1) to (3.5) is justified if the

changes in y at each step are small. This will

always be the case for small e and y, . Since we

are interested in the limit of small c, and the

value of y, is at our disposal, this approximation

is not essential for our results. This is confirmed

by the results of our numerical experiments using

Eq. (3.1), which closely agree with the analytic

result obtained from (3.5}.
We now discuss some of the results one can de-

rive from these recursion relations, first in the

absence of external noise.

A. Intermittency in the absence of external noise

Consider first the case z =2. The differential
equation is

f Y

cl't
—=ay +E ~ (3.7)

This is readily integrated to yield
I

l (y,„)= arctan o——arctan — '"

for the length of time (number of steps) it takes
a process started at y;„ to reach the boundary yp.

Note that for y,„&0 this diverges as 1/We in the
small-e limit, as discussed by Pomeau and Mann-

eville. The average time of passage is obtained

by averaging (3.8) over the probability distribution
of y;„. For the particular example of P;„(y) chosen
one gets

The external noise ( is assumed to be a random

variable with

(3.4a)

(3.4b}



526 J. E. HIRSCH, B. A. HUBERMAN, AN D D. J. SCALAPINO

IO& I

(a)

I02

10

I

IO'
I

IO'
I

IO

I

IO'

IO'

IO

IO

IO' IO IO 0 2

FIG. 14. Average time of passage g ) vs & inthe absence of external noise for (a) &~ 2 and (b) z =4. The dashed
lines are the theoretical results from Eq, (3. 11), the full lines are limiting forms for &/y&-0. The dots are results
of numerical experiments with 10 000 passes per point. In this and the following figures, the numerical simulations
were done using the map (3. 1) witha = 34 and white reinjection, with a gate yo~ 0.01 for s = 2 and go 0.1 for z 4.

(I) =/ —arctan( ~') (3.9}

and, in the limit of v'~/a «yp,

(3.10}

I/»

([}=- ~. „.+g-yp/( e /a)

so that the asymptotic behavior for small e is

(3.11)

(l) ~1/e() )/')

and in particular, for z = 4

w 1 2
( ) ~ sl/4 e3/4

(3.12)

(3.13)

For the case of general z, an identical calculation
yields

In Figs. 14(a) and 14(b) we plot the average time
of passage for z =2 and z =4, respectively, in a
log-log plot. The full lines are the "scaling limit"
results (3.10) and (3.13) while the dashed lines
are the "exact" results (3.11). The dots were ob-
tained from numerical experiment on the discrete
recursion relation Eq. (3.1) with the "boundary
condition" that each time y goes out of the inter-
val, it is reinjected randomly and uniformly be-
tween —gp and pp The results were averaged
over 10000 passes. It can be seen that the agree-
ment between theory and "experiment" is excel-
lent. Similarly, in Fig. 6, the solid line is the
asymptotic form Eq. (3.10}and the dashed line
corresponds to Eq. (3.9). In the case of the full
logistic map, while the numerical data for (I}
vary as e +, they have been shifted to larger
values because the input into the acceptance region
is not white (see Fig. 8}. In the present section,



25 THEORY OF INTERMITTENCY 527

all numerical experiments were performed using
Eq. (3.1) with a white reentering distribution.

It is also of interest to compute the probability
distribution of path lengths, P(l), where P(l)dl
gives the probability to observe a path with length
between l and l+dl. Using the relation

a Langevin process of the type described by (3.5)

one can write the corresponding Fokker-Planck
equation" for the time evolution of the probability
distribution W(y, t) for y:

dt '
dy

—W(y, t}= ——[K,(y)W(y, t)]

P(l)dl = P,„(y.,„)dy,.„ (3.14}

together with (3.8) and (3.3), one finds readily
+- —,[K',(y)W(y, t}].d'

2 dy
(3.17)

P )(t= 1+tan' a ctan '
(

—4ta l I. (5.15)
2yo )('a a p

This is plotted in Fig. 15 for a particular case,
e =10 ', as a dashed line: the histogram is the
result of a numerical experiment. It is interesting
to note that in the absence of noise the average
value of l is actually the least likely to occur. The
most likely paths are either very short or close to
the maximum value given by

Here we have for the moment neglected the re-
entering flux. The functions K, (y} and K,(y) are
defined by

([y(t+~}-y(t)]')
5

7- «O
(3.18)

K,(y) =ay'+e,

K.(y}=g'.
(3.19a)

(3.19b)

From (3.5) and (3.6) we obtain (for the case z =2)

fma)t = —arctan!
&

!t' yo
EC7 (4e/a

(3.16) Equation (3.17) can be simply interpreted as a
continuity equation

The observation may be important from an experi-
mental point of view. Similar results are obtained
for the general z case. However, we should

note that this behavior changes in the presence of
external noise; this will be discussed further in

the following subsection.

B. Intermittency in the presence of external noise

Consider now the differential equation (3.5) with

the external noise present. As is well known, for

—W(y, t) =-d dG(y)
dt '

dy
(3.20)

is the probability current.
In order to take the reentering flux into account,

Eq. (3.20) has to be modified to

that expresses the conservation of probability,
where

G(y) =K,(y)W(y, t) [K,—(y—)W(—y, f)] (3.21}1

dG(y}—W(y, t) =- — +r.
dt '

dy
(3.22)

Ooi5- ~

l'

0.0iO lt

Here, r is the rate at which the points reenter the
interval per unit length, which is independent of

y in our model. Equation (3.22) simply expresses
the fact that W(y, a) changes both due to the flow

from neighboring points and the flow from outside.
First let us consider stationary solutions to

(3.22). We have for our problem

(ay'+e)W(y) --', g' =G, +ry,dw(y} (3.23)

0.005- )J where Go is an integration constant arising from
integrating (3.22) once. The appropriate boundary

conditions are
o.ool—

loo !50
w(-y, ) =w(y, ) =0 (3.24)

plus a normalization condition to determine r.
Note that the current as a function of y is

FIG. 15. ProbabGity distributions of path lengths &(& )
vs l for z = 2, & = 10~. Dashed line: theoretical results
without noise. Histogram: results of a numerical sim-
ulation without noise. Dash-dotted line: numerical sim-
ulation in the presence of noise n = 100.

G(y) =G, +ry. (3.25)

The net number of points that leave the interval
(-y„yo) per unit time is
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Ã= G(yo) —G(-yo) =2ryo (3.26) w(y, t =o) =6(y —y,„). (3.35)

which equals the reentering density rate (r) times
the length of the interval (2yo). This expresses
the conservation of probability in the more gen-
eral sense discussed here.

It is convenient to rescale (3.23} as follows. De-
fine

We consider now in W(y, t) only processes that
have not reached the boundary in the time interval
(0, t). This probability density will satisfy the
Fokker-Plank equation (3.17) in the interval
(-y„y,). The integral

x =y/We,

w(x) =Ww(y(x}),

g/e3/h

g, =G, /We .

Equation (3.23) then becomes

(1+ax')W(x) --, n —g, +rx,dW

which is readily integrated to yield

2 "2
W(x} =—r dx'(x -x, +c)

Q

(3.27)

(3.28)

(3.36)

(3.37)

The dependence of W(t) on y;„ is understood. The
probability of having a time of passage between t
and t+dt is clearly

tv(t)dt =W(t) -W(t+dt) = ——dt
dt

(3.38)

W(t) = dy W(y, t)
9p

gives the total probability that the process y(t) did
not reach the boundary until time t Cle.arly, W(t)
satisfies

with

x exp {-(2/n)Lx' x+ (a/3)(x" -x')J) so that the mean first-passage time for a process
that started at y,„at t =0 is

X2 = —X =$ p// WE (3.30}

Here, c is determined by the boundary condition

w(x, ) =0 (3.31)

while x is determined by the normalization con-
dition

w(y)

f r2
dx W(x) =1

rl
(3.32}

In Fig. 16 the stationary probability distribution
is plotted for a particular case (e =10 '), with
and without noise. The agreement between the re-
sults of the integral (3.29) and results of numeri-
cal experiments is very good. In the absence of
noise, the probability distribution is simply

( )
~'EQ y+yp
7Tgp gg + E

and the most probable value of Y is

2y pa

(3.33)

(3.34)

Ioo-

Note that in the presence of noise the most prob-
able value shifts appreciably to negative values of

Next, we consider the evaluation of the average
length of passage in the presence of noise. ' Con-
sider a process y(t) starting at a given y;, at time
t =0; the probability density for the process sat-
isfies

0
)I'p

FIG. 16. Stationary probability distribution ~'@) for
& = 2, &=10~. The full and dashed lines are the theor-
etical results for &= 0 and += 100, respectively. The
histogram and the dots are the corresponding results
from numerical experiments.
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M(y ) = dtsu(t)t
dp

(t) =~f(c().1 (3.48}

dW
dt —t

dt

dtW(t).
0

(3.39}

Finally, we will be interested in the averaged
first-passage time, obtained by averaging over

&In:

(3.40)

dt j~ dy;„
—W(y, t) =&,(y. )—d, dW(y, t)

(() =, f 'a, M(, ).
-rp

To find an equation satisfied by M(y} it is use-
ful to consider the adjoint equation to (3.17), the
Kolmogoroff equation, "given by

(I), =~F((x, e),1 (3.49)

(3.50)

The limit in Eq. (3.50) is well-behaved. For
small a, f (a() - const. For large n, we expect

(I) to be independent of e; this is only possible if

Equation (3.48) expresses a scaling property of
the problem. If we plot We(l) versus g'/e' =(x

for different values of e, the points should fall on

a universal curve. An example of this, for the full

logistic map, was shown in Fig. 11. In reality,
Eq. (3.48) is not entirely correct since there are
corrections to scaling in the problem. More pre-
cisely,

O'W(y, t)
+3&3(y(. }-d 3

dy In

(3.41)
1f(n)- ~ for n-~, (3.51)

where W(y, 0} satisfies the initial condition (3.35).
Integrating (3.41) with respect to y we obtain,
using (3.36),

giving

1(I)- (3.52}

—,W(t) =Z, (y;„) „+-',h, (y.,„) d, — (3 42)
In dy, „

Note that this is different from what one naively
would expect for a random walk

and integrating (3.42) in time from t =0 to t =~ and

using (3.39) and (3.37) we find y -l+g l-~.
p

(3.53)

—1 =(ay +e) —+—,g
dM, d'M

dy
(3.43)

(ax'+e) —+—,
' o. ~ = —1.

dx
(3.44)

where we have also specialized to the problem of
interest here. We see that the problem reduces
again to solving an ordinary differential equation.

Using the rescaling given by Eq. (3.27), with

m(x) =a eM(y(x)), Eq. (3.43) takes the form

The difference is due to the drift term in (3.1),
and can be understood as follows: for large y, the
drift term dominates while for small y one can
assume a pure random walk. To be more precise,
the drift term is more important than the noise
when ~y ~

~ y„while the noise term is more im-
portant for ~y~ 6 y, . The crossover valuey, is
easily found to be of order g '/a'~'. The time it
takes to go from -y, to y, due to drift only is

The appropriate boundary conditions are I, - 1/y, —a +/g't3 (3.54}

m(x, ) =m(x, ) =0,

x, = —x, =yp/We,

and the average time of passage is

yp/

(I) dxm(x, o.) .
2yo -r /~i0

(3.45)

(3.46}

while the time it takes to go from -y, to y, by a
pure random walk is

y, 1
2 P a 173+/3 (3.55)

Both contributions are of the same order and give
the behavior (3.52). Clearly, this will be valid in
the regime

For @=0 one has, as discussed in Sec. IIIA, ((g ((yog . (3.56)

1
m(x, a =0) =~ (arctanx, —arctanx) (3.47)

leading to the form (3.9) for (l). For n not equal
to zero, one has the approximate form

For still larger values of g, there is a crossover
to a pure random-walk regime satisfying (3.53).
We will not consider that regime in what follows.

The solution of Eq. (3.44} yields
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I.oi

I.OOi

100
a

dash-dot curve shows the large & behavior 1/a~'.
We show also in Fig. 17 the results of numerical
experiments for e =10 ' and c =10 '. The statis-
tical error in those data (obtained from averag-
ing over 10 000 passages} was s 0.01. As we can
see, scaling is approximately satisfied. The
dashed line is the theoretical result obtained, using
the full solution Eq. (3.5V) for a finite e, e =10 '.
The corresponding numerical results fit this curve
extremely well. It can be seen that small devia-
tions from the scaling limit Eq. (3.60) are evident
even for this small value of e.

It is interesting to expand the result (3.5V) to
lowest order around + =0. One finds

F(e&, e) 1 Men' —=1+- +O(a') +O(e) .
FO, e 8y, (3.61)

0.95

I I I I I

0 2 4 6 8 IO
a

2 "2-"
m(x} =— dx dx'e @~ I' -*'&'~'&&.'-*"»

~ x x I

-(nb)[r+&d /S)X ']
J 0 (3.5V)

f, is determined by the condition m (x,) =0; from
(3.5V}, one finds that f e is exponentially small
so that we will neglect it in what follows. The
scaling function is given by

UFO PF
f (~) =—lim v e dx m(x) =~am(-~) (3.58)

2~0 a~0 -yO/~e

or

f ((y) dX dXse -(2/n)I - '
(axe&x( +x' )]x'

N

One can evaluate one of the integrals in (3.59)
analytically by changing variables to get

g dQf (~)
s +

e -x[x+Ian*ha&x I
2Q 0 ZL

(3.60)

This is plotted in Fig. 17 as a full line and the

FIG. 17. Average length of passage (~ )~ normalized
to zero noise value (l ) o as a function of n = g /e
for & = 2. The fu11 line is the scaling limit result Eq.
(3.60). (a) The dashed line is the theoretical result
for & = 10+, the dots and open circles are results of
numerical experiments for & = 10 and 10, respect-
ively (10 000 passes), rms deviation & 0.01. The dash-
dotted line is the asymptotic behavior of + 3. (b) Detail-
ed behavior for small & . Dashed line: theory, & = 5x 10+.
Dots: numerical simulation, 200000 passes, rms de-
viation & 0.002. Straight line. slope at o' = 0, from Eq.
(3.61).

Thus, we see that corrections to scaling in fact
give an increase in F(n, e} with respect to its n
=0 value for small n. This implies that a small
amount of noise actually increases the average
time of passage, contrary to what one might have
expected. This effect is shown in Fig. 17(b) for
E' =5 ~10 '. The straight line is the slope at o =0
given by (3.61), the dashed line is obtained from
the integral (3.57), and the points are a numerical
experiment with 200000 passes each. The statis-
tical error here is ~ 0.002. Again, the agreement
between theory and experiment is excellent, and

one can clearly notice the initial rise of the curve
for small a. On this scale of resolution, the dif-
ference between the finite e results and the limit-
ing scaling function [given by the full line in Fig.
17(b)] is substantial. Note that in the e =0 limit,
the scaling function f (n) is a monotonically de-
creasing function of &.

We have also computed numerically the prob-
ability distribution of path lengths in the presence
of external noise. An example is shown as the
dash-dotted line in Fig. 15. Note that for the value
of e =100 used in this calculation, the average
path length is shorter than in the absence of noise.
Nevertheless, the probability distribution has a
long tail, and it is now possible to observe arbi-
trarily long path lengths. Note also that in the
presence of noise the average path length is close
to a peak in the distribution, so that experimen-
tally one will observe predominantly either very
short passes or lengths close to the average path
length. Thus, although the increase in P(l) for
small l is not removed by the presence of noise,
the increase for l near l,„(a=0) disappears.

Finally, we discuss briefly the extension of
these results to arbitrary values of z in Eq. (3.1).
It is easy to show that the appropriate variable in
this case is
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(y 2/~&I+ I/g) (3.62)

and the scaling form for the average time of pas-
sage is

Thus, the behavior for small and large values of
the noise is

with

f (n) — const,

(3.63)

(3.64a}

1(I)-~ z,&, n«]
E'

1
(l) 2&g-o &&gal)t o » 1 ~

(3.65a)

(3.65b)

1
&(z-I)gz+ I)f (o) (3.64b)

Note that (3.65b) approaches the free random walk
result as z =~

~ The solution of the differential
equation for general z is

z2 Z

m(x} =— dy dy' exp(-(2/nay -y'+[a/(z+1)](y"'-y'"'))), x =-x, =y, /e '
Z X

(3.66)

and the average time of passage is

1 1
(I) = —,~, dxm(x).

2~o ~ z
(3.67)

In Fig. 18 we show an example of results for z =4.
Here, times of passage are much longer so that it
is more difficult to get good statistics. The stat-
istical error in the numerical results is -0.03,
with runs of 1000 passes each. As before, the
dashed-dot curve in Fig. 16 shows the asymptotic
behavior of the scaling function, in this case
1/a'~'. Again we obtain excellent agreement with
the theoretical prediction E&I. (3.67).

provides a simple model clearly exhibiting the
essential characteristics which have made the
analysis of one-dimensional maps interesting.
First there are a set of clearly defined features
for the purely deterministic map which signal the
onset of chaos. The average length, as well as
the maximum length, of steps associated with a
fixed acceptance gate vary as (R, -R)' ' "as R,
-B-0. Here z is the parameter characterizing
the universality class of the map. Furthermore,
in the presence of noise, we have shown that this
average length of the laminar regions scales so
that

IV. CONCLUSION
lim e" ~' (l )„=f (a)
f ~0

(4.1}

The approach to aperiodic or chaotic behavior
via intermittency which has been discussed here

I.O&

(C)0

0.6

0.2
0 25 50 75

FIG. 18. For z = 4 the average length of passage (& )~
normalized to the zero noise value (&)p is plotted as
a function of & =g2/e 4. Here yp = 0. 1. Dashed line:
theory, &= 10 5. Dots: numerical simulation, &= 10
1000 passes, rms deviation & 0. 03. Full line: scaling
limit. Dash-dotted line: asymptotic behavior 0(~

with o =g'/e'"~*' f(0) =const, and f(o&)- n

for n»1. Here, as opposed to the bifurcation
cascade the "critical indices" are rational num-

bers. One should not however think of this as a
mean-field behavior. In fact for the case of the
logistic map where z =2, the scaling relations are
analogous to those of Pott's model near its multi-
critical point. "

We have also studied how corrections to scaling
enter and in particular how they give rise to an
initial increase in (l)„ for small o.'. It is import-
ant to have an idea of the size of these effects
since any real system is bound to have some ex-
ternal noise acting on it.

Besides the characteristic length and the cor-
relation function and its power spectrum, we have
studied the behavior of the distribution of lengths
P(l) and the stationary probability distribution
W(x). In the absence of external noise, the deep
valley in P(l) near (l) provides a possible flag for
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this type of intermittency. However, in the pre-
sence of external noise, it is clear from Figs. 7
and 15 that real care must be exercised in using
P(l) to prove that observed intermittency" is or
is not of the type discussed here.

Finally, just as in the case of phase transitions,
we have seen that one must be careful to be inside
the critical region in order to compare data with
the various leading exponents and scaling relations
derived here. In the case of (I)„ this critical
region was set by requiring that v'e/a be sufficient-
ly small compared to the gate y, that
(w/2) arctan(y, /Ve/a) = 1. However the Lyapunov
exponent exhibited a substantially narrower criti-
cal region for &&0.

Clearly, in spite of the numerical tests reported
here which provide strong confirmation for the
analytic results, the real test of these ideas will
be experimental. To the authors present know-

ledge, the intermittent behavior so far reported
does not in fact fit the type of results described
here. Hopefully, physical systems falling within
this universality class will be found so that these
ideas can be tested further.
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