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To bridge the gap between a physical Langevin equation and a stochastic equation used
in the time-series analysis, and to clarify the physical foundations of the 1"tter, the time-
series model from the Langevin equation is derived with the aid of two manipulations—
elimination of irrelevant variables and projection of state variables upon a space spanned
by observed quantities. The order of the two manipulations is shown to be important to
find an equation called the Kalman filter in control theory. All the results are summa-
rized in a concise schematic diagram which relates various models and equations estab-
lished so far in different fields.

I. INTRODUCTION

We shall consider in the present paper macro-
scopic steady-state systems such as chemical
plants, nuclear plants, and biological systems.
They are open systems, and usually have compli-
cated reaction networks. From the physical
viewpoint' as well as in the engineering aspect,
such a macroscopic system may be described by a
set of linear Markovian Langevin equations, if we
know a sufficient number of state variables neces-
sary for the Markovian description. In large sys-
tems mentioned above, however, some variables
cannot be measurable and the dimension of mul-
tivariate data is restricted to ten or a hundred, even
if modern digital computers are used for the
analysis. Thus, the information contained in the
system is contracted, and the basic equations for
the observable state variables are then non-Mark-
ovian, because of the elimination of the unobserv-
able or hidden state variables. The contraction of
information in a macroscopic world is, therefore,
an interesting topic as in the statistical physics '

of a microscopic world. We shall consider a nu-
clear reactor as a concrete example of the above-
mentioned engineering plants. It is known that in
a simple model the state of a subcritical nuclear
reactor is described by Langevin equations for two
macroscopic variables, total number of neutrons,
and that of delayed-neutron precursors. The time
evolution of neutrons can be detected by a compen-
sated ionization chamber equipped in the reactor

core, while that of precursors is not detected
directly. Thus we have a discrepancy that the
theory describes the system in terms of the two
physical variables whereas the experiment observes
it through only one variable. The discrepancy is
serious since the hidden variable —the delayed neu-
tron precursors —plays an important role in reactor
control and safety. Therefore, it is necessary to
know the temporal behavior of precursors by
analyzing neutron signal. In other words, it is im-
portant to identify the system by processing infor-
mation contained in observed data, in order to
understand physical phenomena occurring in the
system.

The time-series analysis provides a useful
method for this identification. In this analysis, a
basic model is assumed to be linear and stationary.
The system is identified with multivariate time-
difference equations, such as an AR (autoregres-
sive) model and an AR-MA (autoregressive moving
average) model. The basic structure of the models
is non-Markovian. Namely, the AR-MA model is

M
y(n)= QA~y(n i)—

L
+si(n)+ QBt.ri(n —j),

where y(n) is an observable state vector, matrices
A; express autoregressive effects, g(n) is the residu-
al with white noise, and the last term is the one
with colored noise. The order M represents the
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non-Markovian effect. The order L expresses the

nonwhiteness. If the noise force is white (L =0),
an AR-MA model reduces to the AR model. The
orders M and/or L are fixed by information cri-
teria such as FPE (Ref. 9) (final prediction error)
and AIC (Ref. 10) (Akaike's information criterion).
Then, the coefficient matrices of the model are
determined from correlation functions of observed
time-series data.

The time-series model can provide us with
several statistical properties of system, e.g., power
spectral density, coherence function, impulse

response function, and relative power contribution
of noise forces. Successful applications have been

reported in many fields. For example, in the case

of a cement rotary kiln" the observable vector con-

sists of cooler pressure, exit gas temperature, and

kiln drive power; in the case of a nuclear power

reactor the variables are number of neutrons, va-

por pressure, and coolant temperature. Control of
such an engineering plant becomes easier by fitting

a time-series model to data obtained from the sys-

tem. The time-series model is applied also to the

analysis of the rotation of the Earth to estimate'

the power spectrum of the Chandler wobble.

Furthermore, it is used to forecast concentration of
air pollution by analyzing the atmosphere which is

a large and open system.
On the other hand, time-series analysis has the

disadvantage that the physical processes are not

clarified at all because of its methodical nature. It
treats a complicated actual system as black box; a
time-series model is determined from observed data

in the manner as in the method of least-squares

analysis. Therefore, the physical understanding'

of the model is needed for practical system identi-

fication and for making a reliable diagnosis possi-

ble.
Our interest in this paper is how an "empirical"

equation like Eq. (1) is related to physical equa-

tions that describe the actual phenomena occurring
in a system far from equilibrium. We have the

following questions.

(a) Though there are many models used in the
time-series analysis, which type of equation is the
most reasonable for describing a system far from
equilibrium from the viewpoint of statistical phys-
ics?

(b) Once a system is identified by a model, then
the characteristics of the model should be related
to the phenomena occurring in the system. How

should the orders of the model be affected from

elemental processes involved in the phenomena?

How should the coefficients of the model be con-

nected to transition probabilities associated with

the phenomena?
(c) How should the noise force i)(n) in Eq. (1) be

related to the physical noise force?

II. PHYSICAL FOUNDATION OF
AR-MA MODEL

A. Non-Markovian equation

In a macroscopic world, van Kampen' and

Kubo et al. have developed the system-size expan-

Langevin (State) Eq. Kalman Filter

Non-Markovian Eq. AA-MA Model

FIG. 1. Commutative diagram of manipulations. P
denotes the projection of state variables onto the space

spanned by observed quantities and E represents the el-

imination of irrelevant variables.

We, thus, hope to bridge the gap between a physi-
cal model and a time-series model by clarifying the
physics involved in the time-series model. To
derive a time-series model, we shall start with a
physical Langevin equation, make a coarse grain-

ing in time, eliminate irrelevant variables, and pro-
ject relevant variables on a space spanned by ob-
served variables. It is also shown that, if the pro-
jection is made before eliminating the irrelevant
variables (i.e., if the irrelevant variables are also
projected), we obtain the same model via a Kalman
filter well known in control theory. The manipula-

tions and equations are summarized in the diagram

of Fig. 1. This schematic diagram helps us under-

stand the physical meaning of the time-series

model. It should finally be mentioned that the

present approach is useful not only for identifica-

tion but also for diagnosis as in the noise analysis

in nuclear reactors. '
In Sec. II, a multivariate AR-MA model will be

derived from a Langevin equation. The relation-

ship among the Langevin equation in physics, the
AR-MA model in the time-series analysis, and the
Kalman filter in control theory will be clarified in

Sec. III.
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sion method using the scaling relation in order to
obtain the asymptotic nature of a Markovian sys-
tem far from equilibrium. Tomita and Tomita
have derived a linear Fokker-Planck equation for
fluctuations in a normal scaling case. Since the
linear Fokker-Planck equation can be transformed
into an equivalent Langevin equation, let us begin

by assuming that the system in a steady state is
described by the linear Langevin equation

x(t)—=Kx (t)+r {t),d
dt

(2)

where x (t) is the fluctuation with (x (t)) =0, and

where the causality condition (x (0)r r(t) ) =()
(t & 0) and the whiteness of the random force
(r(0)r (t)) =D5(t) are assumed. The vector x(t)
is a d-dimensional state variable at time t, E the
regression matrix, r (t) the Gaussian white noise, D
the diffusion matrix, and ( . . ) the ensetnble

average. The superscript T denotes transposition.
The matrices E and D are related physically to ele-

mental quantities such as the transition probabili-
ties. The vector x(t) must consist of a sufficient
number of physical quantities so that the system is

expressed by the Markovian process.
On the other hand, it is plausible from the prac-

tical limitation of data processing or of measure-

ment in macroscopic systems that the complete set

x (t) of state variables consists of observable or

known variables y(t) and hidden variables g(t).
Since in this case the number of observable state

variables is not enough for the Markovian descrip-

tion, the possible way for the description is that

the information on unobservable variables can be

equivalently expressed in terms of that contained

in observed time-series data. So, in what follows

in this paper, let us start with the assumption that

data of observable variables are given.

By introducing the matrix H=[I,O], where I is

a q-dimensional unit matrix (q &d), the contrac-

tion of information on hidden variables can be ex-

pressed by

y(t)=Hx(t)=[I, O] y '

It is easy to understand that the hidden variables

make the basic equation non-Markovian as fol-

lows

d t

dt
—y (t) =K]ly (t)+K)z exp[(t —r)Kzz]Kz&y (r)dr+K&zexp[(t —tp }Ezz]g(tp)

tp

t
+r«(t)+ t K~zexp[(t r)Kzz]rs(r)—dr, (4)

where x (n) =x (n ht),

and

+11 +12X=

r«(t)r(t)= «(
)

4=exp(Kht),
nh, t

f(n)= f exp[K(nest s)]r(s)ds—,

V= J exp(Ks)D exp(Krs)ds .

The measurement equation (3) is also rewritten as

y (n) =Hx (n ), (6)

x (n) =Ax (n —1 )+f(n), (5)

with (f(n)) =0 and (f(n)f (m)) = VB„~, where

5„ is the Kronecker's symbol and the coarse-
grained variables are defined by

In this naive prescription, there remain ambiguities

in the differences between the integration form (4)

and the summation from (l},and in the appearance
of the additional term K~zexp[(t —tp)Kzz]g (tp).
To avoid these difficulties, we now introduce
another way of contraction of information and
make the coarse graining in time. Integrating Eq.
(2) from (n —1)ht to nest, we have '

where y(n) =y(nest). The framework of Eqs. (5)

and (6) is called the state-space representation in

control theory.
It is convenient to introduce a time-evolution

operator z such that zx (n) =x (n + 1); then our

basic equations [(5) and (6)] are

zx (n) =4x (n)+zf (n),
y(n) =Hx(n) .

The direct relation between the input f(n) and the

output y (n) is obtained by elimination of x (n)
from Eq. (7):

y(n) =G(z)f (n),
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where G(z) =H(zI 4—) 'z is called the transfer

function matrix. Formally expanding G(z) in

powers of z ', wecan rewrite Eq. (8) as

y(n) = g W(i)f (n i)—,
i=0

which is an MA model of an infinite order, where

W(i) =HO' is the impulse response function. In

order to obtain a time-series model of finite order,
the rational matrix G(z) must be decomposed into

the q Xq and q &(d polynomial matrices

M

A(z)= QA, z
i=0

and
L

B(z}=g B;z
i=O

another decoinposition G2(z) =A2(z} 'B2(z), where

A2(z)=Q(z)Ai(z} and B2(z)=Q(z)Bi(z) with any

q)&q nonsingular matrix Q(z). Since the coinmon

factor Q(z) cannot be uniquely determined in the
identification of model from observed data, we

consider it the most suitable, if A(z) and B(z) are

polynomials of minimum degree in z. The decom-

position form minimizing the degrees M and L has
been studied in the realization problem of control
and system theory. We now use the Luenberger
method' to find the decomposition.

If Eq. (7} describing the system satisfies the con-
dition of observability, we can choose d linearly in-

dependent column vectors from those of the matrix
defined by

~=[Hr@Hr . .

where rank N =d. With these d-independent
column vectors selected from N, we define a
transformation matrix

respectively, such that, G(z)=A(z) 'B(z). How-

ever, this decomposition is not unique. If we

decompose Gi(z) =A i(z) 'Bi(z), then we also have
I

T=[hi, (4 }hi, . , (4 )
' hi, h2&, (4 ) h2, , hq, , (C& ) ' h ]r,

where g~ i o; =d, h; is the ith row vector of H,
and 0.; is the Kronecker index which depends on
the structure of 4 and H. Then, we can define a
new state vector x'(n) through the inverse matrix
S(=T ') as

0 1 0

0

0

0 0.;rows,

1

x (n) =Sx'(n) .

The basic equations are transformed into
r

~'(n) =4'x'(n}+ Tzf (z),
y(n }=H'x'(n)

Here, the regression matrix is

o-; columns

0

cr;rows (i')
@11 @ iq

O'= T4S=
+q 1

with the submatrices

cr~ columns

T +i
whereas~i=h; 4& 'sk i+, (kj=gj=, o;) ands; is

J
the ith column vector of S. The observation ma-
trix H' is

H'=HS =

1 0 0
P 0 . . . P

0 0 . . 0

Q Q 0 ~ 0 0
Q o ~ o Q

p p o ~ o Q

0 0 0
p p o ~ o Q

0 0 . . . 0

q rows ~

Q p 0 ~ 0 Q

Q P o ~ e Q

Q p 0 ~ 0 p

Q Q o ~ o Q

0
1

0 000 0
Q o ~ o p

~q columns
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As shown in Appendix A, observable variables satisfy

q ~J' 1 k —1

z 'y;(n} —g g a,JIz yj(n)= g h; 4 'z ' f(n) —g g g aj kh; 4'z f(n) .
j=1 1 =1 1=1 j=l k=1 1=0

(12)

Comparing Eq. (12) with Eq. (8), we have

G(z}=A (z) '8(z),

where A (z) = [A,J.(z)], 8 (z) = [b ~ (z), . . ,bq (.z)], and

o.
A;J(z}=z '5;1 —g a,jtz ' (ij =1,2, . . . ,q)

1=1

a;
b;(z|= g h; 4 'z ' —g g g zz zhz 4z (i=1,2, . . . ,qI .

1=1 j=l k=1 1=0

(13)

By putting M=max(o;), we can symbolically
rewrite A (z) and B(z) as

and

M
A(z)= QAkz

k=0

M —1

8(z}= g Bkz M —k

k=0

Hence, it is concluded that, in the model with
minimum orders, the degree L of 8 (z) is M —1

when the degree of A (z) is M. From the above
algebraic transformation, we have a discrete non-
Markov Langevin equation A (z)y(n) =8(z)f(n):

B. AR-MA model

y(n)=y(n) y(n
~

—n —1), (15)

Equation (14) is an AR-MA model in a wide
sense: Statistical quantities of noise force f (n),
however, cannot be identified from observed data,
while we assume that time-series data of observable
variables are given in our formalism. It is neces-
sary to further replace f (n) by an equivalent quan-
tity which generates the same output y (n) and can
be determined from the data. Such a quantity is
called an innovation in time-series analysis. As
will be shown in the remaining part of this section,
the noise force in Eq. (14}can be expressed in
terms of the innovation

M —1

gA;y(n i)= g 8;f(n—i) . — (14)

where y(n
~

n —1) is the least-squares estimator,
i.e., the most probable estimator under the condi-
tion that

i=0 i=0
Y(n —1) =[y(n —1)ry(n —2)T, ...J

The coefficients A; and 8; are uniquely determined
by the structure of matrices 4, H, and T. The
structure of T depends on the selection of Kro-
necker index I o; j.

is given. When the system is in a normal case, the
state variables possess the Gaussianity. ' Hence,
the value of estimator y (n

~

n —1) can be evaluated
by the Gaussian conditional mean value:

y(n
~

n —1)=E[y(n)
~

Y(n —1) ]

=(y(n)Y(n —1)T)(Y(n —1)Y(n —1)T) 'Y(n —1) .
Geometrically, y (n

~
n —1) is the component of y(n) orthogonally projected upon the linear manifold

spanned by the vectors Y(n —1 ).
By taking the conditional average E[

~

Y(n —1) I of both sides of Eq. (14), we have
M M —1

Aoy (n
~

n —1)+ gA;y (n —i) = g 8f(n i
l

n —1), —
i=0

(16)
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where

f(k
I
m)=EI f(k)

I
I'(m) I

=(f(k)I'(m) )(I'(m)I'(m)r) 'I'(m) .

As mentioned in Appendix B, we can see that the projected noise force satisfies a recursion relation,

f(k
I
m)= VW(m —k) I (m) 'y(m) —(f(k)I'(m —1) )8(m)y(m)+f(k

I
m —1),

where IV is the impulse response function in Eq. (9), and 8 is ddined by

8(m)=(I'(m —1}I"(m—I) ) '(Y'(m —1)y(m) )r(m)-'.
If we use the causality condition to truncate the recursion relation, we can obtain

f(k
I

m)= g Rk(m i)y—(m i),—
i=0

Z„(m —~)= VW(m k —i)'r(m —n-' —{j (k) r(m i)'&8(m —i) .

Substituting Eq. (17) into Eq. (16), and rearranging the terms, we have

M —li —1

~OX (n In —1)+ QA y (n i)=—g g B R (n —j—1).y(n —j —1) .
i =1 j=0

We now obtain from Eqs. (15) and (18) the AR-
MA —type equation:

W,y ( n) +g a y(n —i) =a,y(n)

M —1

+ g Cy(n i), —

tion, we can expect a kind of Auctuation dissipa-
tion theorem between the coefficients A;, 8;, C;,
and the new random forces. Comparing Eq. (19)
with Eq. (14},we can find the relation between the
physical random forces and the innovation forces:

Aoy(n)+ $ C;y(n i)= $—B;f(n i) . —

(19)

M —1

C, = g B(B„((n i) . —

It is concluded that the system described by the
I.angevin equation with the observability condition
has the AR-MA representation with the orders
determined from the structure of matrices H' and
4' in Eq. (11). The coefficients of AR-MA model
have been related to the matrices of physical model
(7).

Since Eq. (19) is a non-Markovian physical equa-
I

By virtue of the whiteness of «(n) and the orthog-
onal property of y(n), the evolution equation of in-
novation variance I (n)=(y(n)y(n) ) is

M —1 M —1

W r(n)W + g C;r(n —&)C, = g B;VB;
i=0

Since the steady variance of Eq. (S) for an aged
system satisfies

(xx r& =4(xx T)@r+V,

Eq. (20) provides the generalized Einstein relation

M —1 M —1

~,r( )~,'+ g C, r( )C,'= QB,-((xx') —e(xx')e')B,'.
III. CONTRACTION OF INFORMATION

A. Kalmsn filter

In Sec. II, the two operations have been performed on the basic equation (5): (i) elimination of the ir-
relevant variables, and (ii} projection on the observable variable space. It is interesting to note that another
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relationship is found between the physical state equation and the AR-MA model, when we change the order
of the operations. By projecting the physical state equation on the observable space before eliminating the
irrelevant variables, we will find an equation called a Kalman filter without observation noises in control
theory. This procedure also gives the evolution equation of the residual of the state variables.

The state equation (5) is first transformed by taking the conditional average into

x(n
~

n —1)=E{x(n)
~

Y(n —1) {

=4E {x (n —1)
~

Y(n —1) I

=4E{x(n —1)
~

Y(n —2) {+@E{x(n —1}
~

y(n —1}I

=4x(n —1
~

n —2)+4P(n —1)H I'(n —1) 'y(n —1), (23)

where E(n)=x(n) —x(n
~

n —1) is the residual of the state variables and P(n)=(e(n)e(n) ). The projected
equation (23) is easily rewritten as

x (n
~
n) =4x (n —1

~

n —1)+F(n)y(n), (24)

which is the Kalman filter' in control theory, where F(n) =P(n)H I'(n)
Since we have the relation I (n) =HP(n)H from the definition of the innovation y(n) and the residual

e(n), with I (n) being evaluated by Eq. (20), we can find the evolution equation of P(n). It follows from
Eqs. (5) and (23) that

e(n) =@{I F(n)H —je(n —1)+f(n) .

If we square both sides of this equation and take an ensemble average, we obtain

P(n)=@{I F(n)H —IP(n —1){I F(n ——1)H { 4 + V

=4{P(n —1) P(n —1—)H I'(n —1) 'HP(n —1) {4 +V, (25)

which is the Riccati equation well known in the
Kalman filter theory. Thus, it is concluded that
Eq. (20) is closely related to the Riccati equation.

B. Markovian representation

As the manipulation of projection has been tak-
en, let us next eliminate irrelevant variables. By
taking the conditional average, the measurement
equation (6) is projected as

I

where 4' and H' are the same as those in Eq. (11).
Equation (27} is called the Markovian representa-
tion. '

Since the conditional average of x (n +I}for
1)1 is

E{x(n +1)
~

Y(n) j =Ox (n
~

n),

the state vector x'(n
~

n) is rewritten by using the
definition of the transformation matrix and the re-
lation (26) as

y(n)=Hx(n
~
n) . (26)

The difference between the physical basic equation
(5) and Eq. (24) is that the noise force f(n) in Eq.
(5) is replaced in Eq. (24) by F(n)y(n). Since the
canonical form of Luenberger, T, depends only on
the matrices H and 4 involved in Eqs. (24) and
(26), the matrix T is the same as that in the basic
equations of Sec. II A. Therefore, we have for the
variables x'(n

~
n) = Tx (n

~
n),

h)

hi@

x'(n
~

n)= hindi
'

hq

he+ '

y, (n)

yi(n+1
~

n)

x(n
~
n) = y, (n+o i

—1
~
n)

y~(n)

yv(n+o~ —1
~

n)

x'(n
I
n) =4'x'(n —1

~

n —1)+TF(n)y(n),

y(n)=H'x'(n
~
n),

(27)

(28)

(29)

Then, an AR-MA —type equation may be derived
by elimination of the estimators in Eqs. (27) and
(28). However, this derivation is tedious, not lucid
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and complicated except when the ratio n/m of the
dimension of the state variables and that of the ob-
servable variables is an integer. Therefore, let us
derive, conversely, the Markovian representation
from the AR-MA equation (see Fig. 2).

By taking the conditional average of both sides
of the AR-MA equation (19), we have

where the impulse response weights W(j} satisfy

the equations

AgW(j(+ $4;W(j —(I C(=

M

gA;y(n+M i
~

—n)=A(z)y(n
~

n)=0, (30)
i=O

M

AOW(j)+ gA;(j —i)=0

for j=1,2, ...-,M —1,

where

zy(n
~
m)=y(n+1

~
m) .

We can rewrite each component as

O'J

y;(n+o;. ~n)= g oJ. &yj(n+oj —l
~
n)

j=1l=1

(i =1,2, ...,q) (31)

by using the expression A,j(z) in Eq. (13). The rep-
resentation (29) and Eq. (31) provide us with the
relation

for j&M,

we obtain from the orthogonal property of y(n) the
relation

y(n+i+1
~
n+1)=y(n+i+1

~
n)

+ W(i)y(n +1),
which is rewritten in the vector form as

x'(n +1
~

n +1)=x'(n +1
~

n)+Gy(n +1) .

(33)

x'(n+1~ n)= iP'x(n
~

n), (32)

y(ji)= g W(j)y(ji —j),
j=0

where 4' has the canonical form of Luenberger.
As the relation between the input y(n} and the out-

put y(n) of the AR-MA model (19) can be put as

Combining Eqs. (32) and (33), we have the Marko-
vian representation of the AR-MA model

(xn+1 ~n +1)=4' x(n
~

n)+Gy(n+1},

(34)

where G is defined by

G;j = Wpj(l)

Markov Process

(1)
I(

Langevin Eq.
(2)

State Space Qep.
(3)

Kalman Filter

(4)

for I =i —kz 1
—1 andi, j =1,2...,q.

Comparing Eq. (34) with Eq. (27), we can find

that G is equal to TF(n+1}. This is because the

linear equations have the same coefficient matrix
4', and they possess the same input and output.

Non-Markovian Eq.

I I

Markovian Pep.

J
(s)

AR-MA Model

region I region II

FIG. 2. Conceptual flow chart of contraction of in-

formation: (1) the system-size expansion method with a
normal scaling relation in a steady state; (2) coarse
graining in time; (3) mapping or projection from state
space to observable space; (4) transformation by using
the Luenberger canonical form in the minimum realiza-
tion problem; (5) contraction of information on ir-
relevant variables; (6) transformation; (7) innovation pro-
cess of noise force.

C. Contraction of information

We can summarize our formalism in Fig. 2 (Ref.
19): The irrelevant variables have been eliminated

to derive macroscopic non-Markovian equations as
in the statistical physics. ' After this manipula-
tion, the state variables have been projected on the
space spanned by observed quantities to derive the
time-series models. Since the basic equations for a
finite dimensional system are linear, the two mani-
pulations are commutative as shown in Fig. 1; that
is, P E (Langevin Eq.)=E.P (Langevin Eq.)
= AR-MA model. The order of the manipula-
tions is, however, important. If we change the or-
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der of manipulations, we can derive the Kalman
filter in the control theory as seen above. There-
fore, this schematic diagram of Fig. 1 is essential
to understand the contraction of information in

macroscopic systems. Furthermore, the noncom-
mutativity, [E,P]=E P PE—+0, will become im-

portant in a non-normal or a nonstationary case,
where nonlinear effects cannot be neglected. In the
nonlinear case, the physical way P E is not the
same as the control or mathematical way E P.

From the viewpoint of the contraction of infor-
mation, it should be noted that there are two kinds

of Markovian equation in Figs. 1 or 2: The equa-
tion (24} of Markovian representation determined
from the AR-MA model has the noise term dif-
ferent from that in the original Markovian or
physical state expression (5), even if the time-series

model is obtained so as to properly identify the
system. Since the eigenvalues of the regression

matrix are conserved in the Luenberger transfor-
mation, the dynamical property of the original sys-

tem and the statistical property of the observable
variables can be reproduced by incorporating the
time-series data of the observable variables instead
of the eliminated variables. The reproduction is,
however, not complete for the total system. We
lose the information by the contraction or projec-
tion. From this viewpoint, it should be noted in

Fig. 2 that the stochastic state vector x (n) plays an
important role in the region I including the state-

space representation and the non-Markovian
Langevin equation, and that the conditional state
expectation x (n

~

n —1) plays a dominant role in

the region II including the Kalman filter, the Mar-
kovian representation, and the AR-MA model.
Therefore, let us consider the change of informa-
tion between the probability and the conditional
probability, which may be represented by

I„=—f P[x(n) ]lnP[x(n) ]dx(n)+ f P[x{n),Y(n —1) ]lnP[x(n) [
Y(n —1) ]dx(n)dY(n —1)

= f P[x(n), Y(n —1) ]In
P[x(n)

~

Y(n —1) ] dx (n)d Y(n —1)
P[ x(n)]

P[ x(n} [
Y(n —1) ]

P[x(n) ]
(35)

This quantity, which is called a mutual information, is interpreted as the difference between information in
the physical model and that in the time-series model. The normality of the system guarantees Eq. (35) to be
transformed into

I„=—,in[ det[X(n}P(n) '] ]

+ —,'E[ x(n) X(n) 'x(n) ]
—,'E[ [x(n) x(—n

~

n ——1)] P(n) '[x(n) —x(n
I

n —1)] ]

= —,In[ det[X(n)P(n) '] ],
where X(n) = (x (n)x (n)r). In the steady system, the mutual information is expressed by

I= —,in[ det[X(0o)P(0o) '] ] .

(36)

(37)

Finally, it is worthwhile to interpret the change of information as follows: Since I„can be written as

I = —f P[ x(n) ]lnP[ x(n) ]dx(n)+ f P[ x(n), Y(n —1) ]1nP[ x(n)
[

Y(n —1) ]dx(n)dY(n —1)

= —f ((P[x(n)
I

Y(n —1) ] ~)ln((P[ x(n)
~

Y(n —1) ] ))dx(n)

+ f ((P[x(n)
I

Y{n —1) ]luP[x(n) [
Y(n —1) ]))dx(n)

= —f (H[((P[ x(n)
~

Y(n —1) ] ))]—((H[P[x(n)
~

Y(n —1) ]])))dx(n),

where H[.]=[ ]ln[ ] and (( . ))= f dY(n —1) P[ Y(n —1) ]. The mutual information
corresponds to the noncommutativity of H[ ] and (( . . ) ).

(38)
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IV. A SIMPLE EXAMPLE

(39)

Let us examine a system with two degrees of freedom to illustrate the present theory briefly. The physi-
cal equations [(5) and (6)] are summarized as

x1(n} x1(n —1} f1(n)+x2(n} x2(n —1) f2(n}

and

x1(n)y(n}=(1 0) (40)

with a steady variance 0. of Eq. (21)

o =Pa/ +v,
where

{41}

V11 V 12

V 12 V22
and 0.=—1 1 —co

The canonical form of Leunberger is defined as

0 1 0T=
1

and S=
and then the AR-MA model (19) becomes

+11 012

012 O22

y(n) —y(n —1)+(—co +co+ l)y (n 2) =y—(n)+ay(n —1),
with the evolution equation (20) of the innovation variance

(42)

1a~(n)+ =p2,o.~(n —1)

where

(43)

a= t (a) —1)"11+v12 }Za~{n —1)

p1 =
f (co —1)v11+V12 1

P2 ——(co —2co+2)v11+(co—1)v12+v22 .

From Eq. (27) or (34), the Markovian representation of the AR-MA model is also expressed as

y(n) 0 y(n —1) + 1 („)y(n+1 In) A@2—co —1 l, y(n In —1) + a+1 {44}

When a two-dimensional system is properly identified as the time-series model (42) by using a suitable in-
formation criterion, we can see the following.

(i) The time-series model we have found is the AR-MA type, and not the AR type.
(ii) The AR order M of the time-series model (19) is 2 and the MA order I. is 1.
(iii) The coefficients in AR and MA terms are

$22v1 1 +4'12V12
A1 ———tr4= —1, A2 ——det4= —co +co+ 1, and C1 —— =a.

~n

These relations are uniquely determined, since the
number of observable variables is one.

(iv) In Eqs. (39), (42), and (44) eigenvalues are
common, so that the dynamical properties are con-
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4-

1 ~'. V !J
/ y

r q ~r

to 0., the variance of innovation smoothly varies
without divergence. Therefore, the mutual infor-
mation has the same pattern as that of variance as

seen from Eq. (37). The quantity I is shown in

Fig. 3, where the determinant of P( co ) in the Ric-
cati Eq. (25) is given by

detP( ao ) = I (1—ru) uii —2(1—co)u12+u22 )crrr( co )

~)ull u12 I
2

-0.5

8 C 0
F 0 1.5

FIG. 3. Mutual information on contraction of infor-

mation. Lines AB and CD are stable regions, where
parameters are V= Vp(b ), Vp=100, and (a,b) —————for (1.0, 0.5), —- —-for(1.0, 0.05), for (0.01,
0.05), —————- for (25.0, 0.5).
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served.

Finally, let us treat numerically the contraction
of information as follows: When the value co is
treated as a parameter of a dynamical system, the
stable regions are determined from the linear sta-
bility criterion. The stable regions are
(1 —v 5) /2 & co & 0 and 1 & ru & ( 1+~5 )/2 as
shown in the abscissas of Fig. 3. Both the ends of
lines AB and CD are instability points. The two
points B and C represent the hard-mode instabili-
ties. The other A and D are the soft-mode instabil-
ity points. The solution of variance equation (41)
is given by

APPENDIX A

To obtain Eq. (12), the state vector is subdivided as

xi(n)
x'(n) =

xq(n)

where each component is

x (n)=
x l(n)

x (n)

x~ +l(n)

xk (n)
(i =1,2, ...,q) .

Then, Eq. (11) is expressed in terms of the components as

o= g (()'u(P )',
i=0

(45) q
zx (n)= g 0&,'Jxj'(n)+T;zf(n)

and increases divergently as co approaches a value
corresponding to the ends of each axis. In contrast

I

y, (n)=x, (n)=x„' „(n)

where T; =[h;,1Ii h;, ..., (qi )
' h;]. Furthermore, the first equation of above state-space representation is

rewritten as

zx J(n)=x 1+1(n)+h; & 'zf(n) (J' =1,2, . ..,o; —1)

J
zx, . (n)= g pa, j&x/~+1 1(n)+h; C ' zf(n) .

j=1 l=l

Eliminating the state variables except those identical with observable variables, we can have Eq. (12).

APPENDIX B

In this appendix we represent the conditional random force f(.
~

.) in terms of the innovation y( ). The
causality condition and Eq. (9) give the relation
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0 (k)m)
(f(k)Y(m) ) = '

V(W(m k)r W(m k 1)r,W(0}r0...] (Ic &m)
'

The inverse of the covariance matrix of Y(m) is given' by

(y(m)y(m) ) y(m)Y(m —1) )

(Y(m —1)y(m) ( (Y(m —1)Y(m —1) )

I'(m) ' —8(m)
—8(m) %(rn)

where

I (m)=(y(m)y(m) )

=(y(m)y(m) ) —(y(m)Y(m —1)T)(Y(m —1)Y(m —1) ) '(Y(m —1)y(m) )

8(m) = ( Y(rn —1)Y(m —1) ) '( Y(m —1)y(m) ) I (m)

%(m)=8(m)(y(m)Y(m —1) )(Y(m —1)Y(m —1) ) '+(Y(m —1)Y(m —1) )

By using the above relations and writing as Y(m) = [y (m), Y(rn —1) ], we see that the projected noise

force satisfies the recursion relation,

f(k
~

m)= VW(m —k) I (m) 'Iy(m) —(y(rn)Y(m —1)r)( Y(m —1)Y(m —1) ) 'Y(m —1) ]

—(f(k)Y(m —1) )8(m)(y(m) —(y(m)Y(m —1) )(Y(m —1)Y(m —1) ) 'Y(m —1) I

+f(k ~m —1)

=VW(rn —k) 1(m) 'y(m) —(f(k)Y(rn —1) )8(m)y(m)+f(k
~

m —1) .
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