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Temperature-dependent nonlinear screening of a proton in an electron gas
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Temperature-dependent local-density formalism is applied to the calculation of the

screening density profile around a proton embedded in an electron gas. Characteristic

quantities such as screening length, density at the proton site, and oscillations at low tem-

peratures are studied. The total energy of the impurity and the entropy are computed

and the existence of a bound state discussed. Comparisons are made with other linear

and nonlinear theories, particularly the random-phase linear-response theory.

I. INTRODUCTION

The recent development of diagnostic techniques
for laser produced plasmas has stimulated theoreti-
cal studies of the electronic structure of impurities
embedded in an electron gas. As these techniques
rest on the modifications of the impurity electronic
properties with density and temperature, an accu-
rate knowledge of the dependence of screening ef-
fects on the plasma parameters is of crucial impor-
tance.

The well-known Debye model gives a simple
description of the linear screening of a point
charge in a classical (high-temperature, low-

density) plasma. Such an approach is easily ex-
tended to all densities by using the linearized
Thomas-Fermi (TF) theory, which takes into ac-
count the degeneracy effects.

A complete treatment of the linear response of
an electron gas at any temperature and density, in

the random-phase approximation (RPA), has been

performed by Gouedard and Deutsch. ' These au-

thors have shown how the Debye model is
recovered from the RPA linear theory in the classi-
cal regime. At low temperatures and metallic den-

sities, they pointed out that the electron density ex-
hibits Friedel oscillations, a well-known phenom-
enon in solid-state physics. The parameters which
determine the transition between the two regimes

were defined, leading to a good understanding of
the physics of screening. The binding energy of a
ground-state electron in the potential of a proton
deduced from this linear theory has been calculated
by Gupta and Rajagopal for various densities and
temperatures.

The same model of an electron gas neutralized

by a positive background simulating the ionic
charges (jellium) has been extensively used in

solid-state physics, at zero temperature. The
screening of an impurity in the jellium has been

numerically studied in great detail, especially in the
case of a proton. ' The comparison of
quantum-mechanical nonlinear calculations in the
local-density formalism (LDF) with the results of
the linear RPA approximation has revealed the im-

portance of nonlinear effects, for instance: strong
enhancement of the electron density at the nucleus

and phase effects in the asymptotic form of the

density. We thought that a similar comparison
between linear and nonlinear screening of a proton
at any temperature would be useful.

In this paper, we present the numerical results of
complete nonlinear quantum-mechanical calcula-

tions of the screening of a proton in a dense elec-

tron gas at various temperatures. The exchange-
and-correlation effects are taken into account
within the temperature-dependent local-density for-
malism proposed by Mermin. ' Comparison is

made with TF and linear RPA theories. In Sec. II
we describe the theoretical model; the equations to
be solved are presented and the expressions of ther-

modynamic quantities of interest are given. The
numerical results are reported and discussed in Sec.
III.

II. THEORY

Following the zero-temperature approach of
Hohenberg and Kohn' and Kohn and Sham, ' for
the ground-state properties of an electron gas in an
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F[n]=F,[n]+ —, f n(rl) n(r2)drldr2
r12

+F„,[n]+ f u(r)n(r)dr, (2)

where F,[n] is the kinetic free energy of nonin-
teracting electrons with density n(r) and F„,[n] is
the exchange-and-correlation contribution to the
free energy. With a local approximation

F„,[n]= f a„,[n(r)] dr, (3)

where ~ „,(n) is a scalar function of the density
(the dependence of ~ „,on the temperature T is
not written explicitly), the minimum property of 0
leads to the functional equation

5F,[n] + V(r) —
IM =0,

5n(r) (4)

external potential v(r), Mermin showed that': (i)
the free energy F of an inhomogeneous electron gas
in thermal equilibrium is a unique functional F[n]
of the one-electron density n (r ); and (ii) the grand
potential

Q[n]=F[n] —p f n dr

is minimum for the equilibrium density n(r). The
free energy is defined by

lium at density n, p, the external potential is

Z 1v(r)= ——— np dr ',
r /r —r'/

so that the effective potential [Eq. (5)] is

V(r) = ——+ [n (r') —np]
Z 1

r /r —r'/

+V„,(n) .

5F, [np]
=JM —V„,p ——p,

6np

or, equivalently

-3nnp= 2 p Ilg2(pP ),

where the standard definition of the Fermi func-
tions has been used:

I (rI)= f dy .
1+e~

(12)

At large radii, the displaced electron charge van-
ishes, and the Coulomb part of V(r) also vanishes
due to the perfect screening of the proton, so that
the asymptotic value of V(r) is V„,p ——V„,(np).
Applying Eq. (4) at large r gives

da „,(n)
V(r)=u(r)+ f n(r ') dr '+

/r —r
[

6f7l

(5)

It is convenient to define a new potential

V(r) = V(r) —V„,p, (13)

da „,(n)
V„,(n(r)) =

ltd
(6)

Equation (4) is equivalent to the equation for
noninteracting electrons in the effective potential
V(r), so that its solution is given by the following
system:

( ——,6+ V)g; =e;g;,

where p is the chemical potential. V(r) defined by
Eq. (5) is an effective potential, including the
exchange-and-correlation potential

which goes to zero at infinity, and new eigenvalues
of Eq. (7):

e;=e;—V„,p . (14)

The potential V(r) may have bound states eb. The
treatment of the delocalized states proposed by
Friedel for impurities at zero temperature can be
applied in the nonzero case too. The eigenfunc-
tions elm of Eq. (7) for energy kk = —,k, satisfy-

ing the boundary condition 1(kl =0 at a very large
radius R, and normalized within the sphere r (R,
are

n= gf(e;)P;'P;,

where f(e; ) is the Fermi-statistics occupation
number

f(E; ) = I 1+exp[P(e; —p)]]

(8)
Okl ( r ) =~klm q kl ( r ) ~1m ( r )

where pkI has the asymptotic form

1
ykI(r)~ —sin kr —l—+gI

2

(15)

(16)

depending on the temperature (p ' =kll T) and the
chemical potential fixed by the total number of
electrons. For a proton (Z =1)embedded in a jel-

gI(k) being the phase shifts in the potential V(r).
A straight-forward derivation gives, for the density
defined in Eq. (8),
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n (r) np g f(Eb)lllbillb+ —,f f( ;-)dk y (21+ 1)[&bi k—ji (kr)l .
b 7T' I

The density of states in the continuum is modified by the potential V(r) and becomes

p(k) =p,(k)+ —g (21+1)2 6 gI

17 I dk
(18)

where po(k) is the density of states per unit of wave vector in the unperturbed electron gas. The following

generalized Friedel sum rule expresses the total screening of the point charge by the displaced density:

00 dpiZ= g f(eb)+ —f f(bb)dk g (21+1)
b m dk

The first right-hand side term is the amount of bound charge Zb', an integration by parts gives, with the
convention gI(0) =0:

ZI —Z Zb ——p —f kf(eb)[1 f(eb)] —g (2l +1)rli dk .2

I

(19)

(20)

The thermodynamic quantities are easily calculated in that model. Their modification from the perfect jelli-
um to the perturbed system are

(i) Entropy:

M =S[n] S[np]—=Mb+ESI+M„, , (21)

I Z—(n —no)dr2 —
2 T

~Sb = —X[fb 'nfb+ (1—fb )'n(1 —fb ) ]
b

(22)

x g(21+1)ql dk,
I

(23

grjth fb =f( —,k~). The term due to exchange and

correlation is

bS„,=P [F„,(n) —F„,(n )p] .
a

The approximation used for F„, will be defined

below.
(ii) Free energy:

(24)

~=F[n]—F [n p]

=Zp+ Mb+M]+hFp+AF3, (25)

~b = g fb ( Eb —P ) —Tlb.Sb
b

~l = ——f kfb g (2l+1)rli dk,
I

(26)

(27)

where we now use for brevity the notation

fb=f(eb). ESb is the contribution of the bound

states. The continuous spectrum gives

l),SI P f ——kfb(—1 fb )( , k P—)——

——, f (n +np)V&(r)dr, (28)

EF3 ——F„,(n) —F„,(no)

—f [nV„,(n) —npV„,p]dr . (29)

» Eq. (28), V, = V—[V„,(n) V„,p] —is the
Coulomb part of V.

For the exchange-and-correlation free energy we

have used the results of Gupta and Rajagopal'
who proposed a local-density functional for a wide

range of densities and temperatures, based on the
first-order exchange and sum of ring diagrams for
the interacting electron gas. We have performed

an analytical fit of their values of the ratio

F„,(n, T)/F„, (n, O). The Kohn-Sham-Wigner ex-

change-and-correlation functional has been taken

for F„,(n, O).
At this point, we should mention that the model

described here has several features in common with

the self-consistent model for condensed matter pro-

posed by Liberman. Liberman assumes that the
ions surrounding a particular atom in a condensed
material may be replaced by a positive charge dis-

tribution which is constant outside of a sphere con-

taining the atom and zero inside. Liberman's

model leads to the same kind of equations as the
present single-impurity model, but with the addi-

tional constraint of having the right number of
electrons inside the Wigner-Seitz sphere where the
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central atom is located. As further simplifications
have been made by Liberman, such as replacing
the electron density outside the cavity with its
volume average and including exchange at any
temperature by means of the n ' Kohn-Sham po-
tential, the physical meaning of the results is very
different, but the numerical techniques are similar.

As demonstrated in Ref. 1 within linear re-
sponse, Thomas-Fermi theory gives the correct
asymptotic limit for the impurity problem. In Sec.
III we shall naturally compare our results with
those obtained in TF theory, including the same
exchange-and-correlation contribution as in the
quantum model. In the TF case, the displaced
density is '

e(q) =1— 4~
+X(q) ~ (q),

q
(35)

d V„,(no)
X(q) =

dno
(36)

A numerical procedure due to Pelissier has been
used to compute m.o(q).

An interesting quantity measuring the extent of
the screening charge around the impurity is the
screening constant k. In the linearized TF approx-
imation, the density is given by

X(q) being the temperature-dependent local field
factor consistent with the exchange-and-correlation
functional:

n (r) no ——— p [I,/z(p(p —V))-sn

—Il/2(pP)] . (30)

2
TLF —kyFL i

n —no —— TFL

4~r

—i /2kTFL p I i/p(pp ) .

(37)

(38)

In the TF entropy, b,Sb ——0 and

Is.Sf=— p f dr (I3/z(p(p V)) —Is/i—(pp)]
5v2
3 2

With n —no given by Eq. (37), the integrated dis-
placed charge inside a sphere of radius
Ro =2/kTFL is

—pf drn(p V). — (31)

Ro
Q=0.594Z= f (n no)4mrdr —. . (39)

In the free-energy expression, AFi and ~s [Eqs.
(2S) and (29)] remain valid, but dd'b =0 and IsF,
must be replaced with

Now, for any density we calculate Ro satisfying
Eq. (39) and define the screening constant by
k =2/R .

2 W2 —sn
1

3

X f dr [I3/i(p(p V))—
13/2 (PP ) ] ~— (32)

(33)

where mo(q) is the RPA noninteracting electron po-
larizability

pro(q) =I'I' f kf, ln dk, (34)
1 ~ q —2k

q 0 q +2k

and e(q) the interacting static dielectric constant

The linear-response density profile, which will be
used for various comparisons is defined by

3 sinqr 4~Z ~0(q )
n —no ——(2m) d q

( )

III. NUMERICAL RESULTS AND DISCUSSION

Self-consistent calculations of a hydrogen impu-
rity in jellium have been performed for three
values of the density parameter r, = [3/(4mno)]'/
= 1, 2, and 4. In order to explore the degenerate
and nondegenerate regions, three temperatures
scaled on the Fermi temperature Tr[ks Tr
=

&
(3' no) ]: T/Tr ——0.5, 1.0, 2.0 have been

selected. The parameters corresponding to these
calculations are summarized in Table I.

The thermodynamic quantities are reported in
Table II. The impurity energy is AE =~+ThS
with AF and AS given in Eqs. (21)—(29). We
first notice a good agreement at T =0 between our
values AQ=EE —Zp= —0.696, —0.534, —0.464
a.u. at r, =1, 2, and 4, respectively, and the results
of Zaremba et al. , who found AO, = —0.692,
—0.537, —0.469 a.u. The TF values for AE are
always lower (as for free atoms) because the poten-
tial energy is larger in magnitude due to the in-
finite electron charge at the proton. The increase
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TABLE I. Parameters for the nonzero-temperature calculations. Three densities of the
electron gas have been studied, corresponding to the values r, =1, 2, and 4. (no ——1 a.u. is

equivalent to 6.75 X 10' e cm '.) At each density, three temperatures T/TF ——0.5, 1.0, and
2.0 are considered (1 a.u. of temperature =3.16X10' K). p is the chemical potential mea-
sured with respect to the exchange-and-correlation potential V„o'P /T is a function of T/TF
only.

rs no (a.u. ) T~ (a.u. ) t =T/Tp P (a.u. )

1.0
1.0
1.0
2.0
2.0
2.0
4.0
4.0
4.0

0.239
0.239
0.239
0.0298
0.0298
0.0298
0.00373
0.00373
0.00373

1.842
1.842
1.842
0.4604
0.4604
0,4604
0.1151
0.1151
0.1151

0.5
1.0
2.0
0.5
1.0
2.0
0.5
1.0
2.0

1 ~ 369
—0.0395
—4.533

0.3421
—0.0099
—1.133

0.0855
—0.0025
—0.2833

of AE with temperature, which is proportional to
the extra density of states at the Fermi level e=po
(at least at low T), is faster for the high densities.

This increase is in general slightly underestimated

by the TF model, but nevertheless the agreement
between LDF and TF is satisfactory for the ther-

mal part of hE. The entropies are very compar-
able too, except at low temperature and low density

(T/TF 0.5, r, =4).——The eigenvalue E]g [Eq. (7)]
exists at T =0 for r, )2 and decreases when T in-

creases. In the range of parameters studied here,

we never found a second bound state. But other
bound states are expected to appear at higher tern-

peratures.

Table III is concerned with the structure of the
displaced density. The screening constant kqFL
[Eq. (38)] obtained in the linearized TF approxima-
tion is tabulated first. The ratio of the screening
constant k, defined in Eq. (39), to k+FL is then

given for three models: the present local-density
functional (LDF) model, the linear-response (LR)
model, and the nonlinearized TF model with ex-

change and correlation. This ratio is always larger
than one in the LDF calculation: this means that
the use of the standard k&Fq may be a rather poor
approximation, particularly at r, & 2. The extent
of the screening charge is considerably smaller
than indicated by k+FL, as could be expected, the

TABLE II. Results for internal energy hE, entropy AS, and eigenvalue e with 1s sym-

metry, as obtained in the local-density functional formalism (LDF). The values of AE and

hS calculated in the Thomas-Fermi model (with the same exchange-and-correlation function-

al) are shown for comparison. All values in atomic units.

rs T/TF
LDF
hS E ls

TF

1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0

0.0
0.5
1.0
2.0
0.0
0.5
1.0
2.0
0.0
0.5
1.0
2.0

0.483
0.974
2.055
4.733

—0.427
—0.321
—0.019

0.713
—0.543
—0.531
—0.460
—0.253

0.0
0.898
1.678
2.462
0.0
0.658
1.542
2.535
0.0
0.053
0.879
2.088

~ ~ ~

—0.0006
—0.036
—0.00004
—0.006
—0.037
—0.105
—0.010
—0.023
—0.063
—0.148

0.070
0.534
1.659
4.365

—0.898
—0.804
—0.548

0.159
—1.061
—1.046
—0.998
—0.843

0.0
0.882
1.710
2.725
0.0
0.681
1.430
2.478
0.0
0.388
0.942
1.857
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TABLE III. Comparison between the displaced electron density at the proton in the present local-density functional
formalism (LDF) and in the linear-response theory (LR). n (0)—no is infinite in the TF model. The screening con-
stants, measured in units of kTFL (screening constant of the linearized TF model), as obtained in the LDF, LR, and TF
models, are also compared. All values are in atomic units.

rs T/TF kTFL n (0)—no

LDF
k /kTFL n (0)—no

LR
k /kTFL

TF
k /kTFL

1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0

0.0
0.5
1.0
2.0
0.0
0.5
1.0
2.0
0.0
0.5
1.0
2.0

1.563
1.380
1.137
0.863
1.105
0.976
0.804
0.610
0.782
0.690
0.568
0.432

0.966
0.841
0.682
0.486
0.478
0.428
0.349
0.235
0.346
0.338
0.306
0.222

1.245
1.176
1.122
1.075
1.496
1.490
1.385
1.195
1.904
2.066
2.228
1.942

0.402
0.365
0.320
0.259
0.093
0.086
0.077
0.064
0.022
0.021
0.019
0.016

1.123
1.067
1.044
1.027
1.094
1.093
1.088
1.057
1.031
1.083
1.147
1.133

1.164
1.177
1.144
1.080
1.386
1.446
1.411
1.250
1.858
2.056
2.237
1.943

discrepancy decreases when density and tempera-
ture increase. This shortcoming is clearly a conse-
quence of linearization since the values k/k~FL
calculated in the nonlinear TF model are very close
to the LDF values. The ratio k/k~FL obtained in
LR is always close to one (maximum deviation:
15%) and considerably too low at r, =4. We con-
clude that the RPA linear response does not im-

prove significantly the linear TF screening length
and may be relevant at high densities only.

The comparison of the electron densities at the
proton site, obtained in LDF and LR [TF has not
to be considered since it gives an infinite n i0)] is
shown in Table III. At zero temperature, the LDF
value of n (0)—no is much larger than the LR
value. The ratio increases from 2.4 at r, =1 to
15.7 at r, =4. In both models, the charge at the

proton decreases when T increases, the screening
cloud being more and more spread out. The ratio
of the LDF and LR values is slightly smaller at
T/TF ——2: it goes from 1.9 at r, =1 to 13.9 at
r, =4. The main features of the displaced charge
are very poorly accounted for by LR, particularly
at r, =2 and 4.

A different aspect of the screening-charge profile
is the possible existence of Friedel oscillations. In
Table IV we give the first node and the first
minimum of n (r) —no, where they do exist. We
see that the oscillations exist or do not exist, in

LDF and LR, for the same values of the parame-
ters. The first node is always farther from the
proton in the LR calculation, indicating a signifi-
cant difference in the phases given by the two

models. Gouedard and Deutsch' have shown that,

TABLE IV. Oscillations of the displaced electron density when observed. The first node of n —no is r& (a.u.). The
first minimum of the displaced density is shown in the column (n —no)/no. Oscillations have disappeared for the other
values of T/Tp. The last column gives the ratio of the damping constant of the Friedel oscillations at low tempera-
tures to the TF screening constant, as derived in linear theory.

T/TF
LDF

(n —no)/Plo
LR

(n —no)/no k LR /kTFL

1.0
2.0

4.0

0.0
0.0
0.5
0.0
0.5
1.0

2.88
2.37

10.7
3.30
3.48
5.56

—0.84X10 '
—0.18' 10
—0.87 X 10-'
—0.19
—0.78 x 10
—0.54' 10-'

3.13
3.01

1 1.5
4.90
5.33
8.41

—0.67X10 '
—0.14' 10-'
—0.19g 10-'
—0.10
—0.26' 10-'
—0.21 ' 10-'

0.0
0.0
1.39
0.0
0.98
2.12
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in linear RPA theory, the effect of low tempera-
tures is to damp the T =0 density with a factor
exp( —kL&r j. The screening constant kLR is twice
the imaginary part of the smallest pole of the Fer-
tni statistics occupation number fk

ktR=kFI2[ —y+(y +dr')' ]j' '.
with y=p/T~, t = T/Tz, and k~ being the Fermi
momentum. Gouedard and Deutsh concluded that
the condition kTpL & kLR defines the TF regime,
the Friedel-type behavior corresponding to the op-

posite inequality. The ratio ~=kLR/kTqL is given

in Table IV. We see that oscillations are still

present for w& 1, particularly for the lowest densi-

ty, indicating that r=1 is not a rigorous criterion
for the vanishing of the Friedel oscillations.

We have presented a temperature-dependent non-

linear calculation of the screening of a proton in an

electron gas at various densities, within the frame-

work of LDF formalism, including exchange-and-

correlation effects. Connection has been made

with (i) complete TF theory, (ii) linear-response

theory in RPA approximation, and (iii) linearized

TF theory. The important effects of nonlinearity

on the displaced density at the proton position,
screening length, and phase of oscillations have

been pointed out. The model used here can be

easily applied to calculations of higher-Z impuri-

ties in an electron gas, which are needed for plas-

ma diagnostics.
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