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We report a detailed experimental study of the decay rate of the order-parameter fluc-

tuations in the binary liquid 3-methylpentane and nitroethane near the critical mixing

point. This system has the advantage that the decay rate can be measured close to the
critical temperature without multiple-scattering corrections. The data cover a range
0. 1 & qua &27, where q is the wave number of the fluctuations and g the correlation length.
From the data we conclude that the decay rate I varies at the critical temperature as
1 ~ q' with z =3.06+0.02. The observed variation of the decay rate as a function of tem-

perature and wave number is consistent with the behavior predicted by the mode-coupling

theory of critical dynamics, but an accurate analysis of the data is limited by the lack of
a systematic theoretical procedure for dealing with the short-wavelength contributions to
the transport coefficients. The paper concludes with a discussion of the Stokes-Einstein

relation between the diffusion coefficient and the viscosity coefficient near the critical

point.

I. INTRODUCTION

A system near a critical point exhibits large fluc-
tuations in the order parameter associated with the
phase transition. The static order-parameter corre-
lation function close to the critical point is expect-
ed to satisfy a scaling law with universal critical
exponent values. These critical exponents have
been calculated theoretically, originally from tem-
perature series for the three-dimensional Ising
model and subsequently for systems with a
Landau-Ginzburg Hamiltonian by applying
renormalization-group techniques. ' Detailed pre-
dictions of the time dependence of the order-
parameter correlation function of fluids near a crit-
ical point have been made from the mode-coupling
theory of critical dynamics and, more recently, by
extending renormalization-group techniques to the
treatment of dynamic critical phenomena. For a
review of the theory of dynamic critical phenome-
na the reader is referred to the articles of Hohen-
berg and Halperin and of Gunton.

Critical fluctuations in fluids are investigated ex-
perimentally most conveniently by light-scattering
techniques. We have made such a study of the
concentration fluctuations in the binary liquid 3-
methylpentane and nitroethane near the critical
mixing point. This system has the advantage that
the refractive indices of the two liquid components
are sufficiently close so that the effect of multiple
scattering remains small even at temperatures

within a millidegree off the critical temperature.
At the same time the difference between the refrac-
tive indices is sufficiently large so that the ob-
served dielectric constant fluctuations may be attri-
buted to the fluctuations of the concentration
which is the order parameter for this transition.

In a previous paper we reported an experimental
study of the static correlation function of this mix-
ture near the critical point. The experimental
correlation-function data appeared to be in a good
agreement with the behavior predicted theoretically
for the universality class of three-dimensional sys-
tems with short-range forces and a scalar order
parameter. In this paper we report a comprehen-
sive experimental study of the decay rate of the
concentration fluctuations of the same system.
The data were obtained by measuring the auto-
correlation function of the scattered light intensity
using a digital photon-correlation technique.
Combining these results with our earlier data for
the static correlation function and with viscosity
data obtained by other investigators, ' we investi-
gate several predictions of the theory of critical

dynamics in considerable detail.

II. EXPERIMENTAL METHOD

A. Sample and temperature measurement

The experiments were performed with the same
binary-liquid sample for which we previously
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determined the static correlation function. The
liquid sample, under its own vapor pressure, is
contained in a 6-cm long Pyrex cylindrical tube
with an internal and external diameter of 1.0 and
1.3 cm, respectively. The critical temperature T,
of the sample is (299.545+0.002) K. To verify
whether the composition of the sample corresponds
to the critical concentration we determined the po-
sition of the meniscus below T, as a function of
temperature. After analyzing the data with the aid
of the coexistence curve data of Wims et al. and
the density data of Greer and Hocken and of
Reeder et al. ,

' we concluded that the actual con-
centration differed from the critical concentration
by only 0.6% (corresponding to 0.003-mole frac-
tion units), our sample being slightly richer in ni-

troethane. "
The sample cell is located in an oven and ther-

mostat as indicated in Fig. 1. A heating wire of
10 kQ is tightly wound noninductively around the
copper cylinder surrounding the sample cell. The
temperature is controlled to within about 0.3 mK
with the aid of a thermistor attached to the surface
of this cylinder. The thermostat, as well as the op-
tical arrangement to be discussed below, is located
in an air bath whose temperature was kept stable
within about 0.02 K. The actual temperature of
the sample was determined by measuring the fre-
quency of a quartz oscillator embedded in the
copper cylinder at a location close to where the
laser beam passes through the sample. We mea-
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FIG. 1. Sample cell and surrounding thermostat.

sured this frequency with an electronic counter us-

ing a rubidium clock frequency standard with a
long-term stability within 1)& 10 ' per month. In
a previous paper, we showed that the effect of pos-
sible concentration gradients induced by gravity
can be neglected when the data are taken at a level

corresponding to that of the appearance of the
meniscus after passing through the critical tem-
perature.

In each experimental run we started at a tem-
perature T well above the critical temperature T„
then lowered the temperature in small steps. In
order to obtain the light-scattering data as a func-
tion of T —T„ the frequency f, corresponding to
the critical temperature, was redetermined after
each experimental run. To determine the critical
temperature we observed the characteristics of the
transmitted laser beam. Upon passing through the
critical temperature it was noted that streaming oc-
curs when material is exchanged between the upper
and lower parts of the sample due to the density
differences between the two phases. In our sample
this streaming is clearly seen because of the low
turbidity of the mixture. The fact that this
streaming indeed indicated transition through the
critical point was confirmed by the observation
that after a long waiting period of 12 hours or so
invariably a splitting of the laser beam was ob-
served indicating the presence of a meniscus. In
practice we set the laser intensity at a low level be-
tween 50 and 100 pW to avoid local heating effects
as discussed in Sec. III. The transmitted beam was
allowed to pass through a thin glass plate produc-
ing interference when projected on a screen. When
the sample passes through the critical temperature,
these interference fringes begin to move within
about 20 min due to the phase delays caused by the
density variations associated with the streaming.
We found this test to be convenient and very sensi-
tive allowing us to determine the critical tempera-
ture to within 0.3 mK.

B. Optical arrangement

The optical arrangement for investigating light
scattered by the sample is schematically indicated
in Fig. 2. The light source is a 6.4-mW He-Ne
laser whose polarization is perpendicular to the
plane determined by the incident beam and the
direction in which the scattered light is observed.
After passing through an intensity stabilizer, the
incident beam is focused at the center of the sam-

ple cell by a lens with a focal length of 7.5 cm.
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FIG. 2. Top view of optical arrangement.

g'"(r) = l+f(A) i
g"'(r)

i
', (2.1)

where f (A) is a function of the coherence area A

at the position of the cathode of the photomulti-
plier. ' ' To obtain a satisfactory signal to base-
line ratio, f (A) should be close to unity. This
function f (A) depends on the separation Z and can
be estimated as indicated by Jakeman. ' The
separation Z used in our experiments at the

The intensity stabilizer is a variable attenuator con-
sisting of two neutral density (ND) plates; the at-
tenuation factor can be adjusted by moving both
plates along their lengths. This ND filter serves
two purposes. First, the incident light intensity is

kept constant by splitting off a part of the light ex-

iting from the attenuator and monitoring it with a
photodiode whose output is compared with a refer-
ence voltage; the amplified and integrated error
signal then drives a servo motor which adjusts the
optical density of the attenuator. In this way the
baseline of the measured correlation function is
stabilized against long-term drifts. Secondly, the
attenuator enables us to vary the incident light in-

tensity in a controlled manner and to study the de-

cay rate as a function of the incident light intensi-

ty.
In our experiment the scattered light was investi-

gated at scattering angles of about 30', 90', and
147'. The geometrical dimensions of the scattering
volume and the scattered beam are specified by a
pinhole with a diameter of 200 pm located just
outside the sample cell and the diameter of 1 mm
of the photocathode of the multiplier located a dis-
tance Z from the pinhole. In our experiment the
scattering volume was of the order of 10 mm .

The normalized time-dependent intensity correla-
tion function g' '(r) —= (I(r)I(0) ) /(I ) is related
to the normalized electric-field correlation function
g"'(r) = (&'(r)&(0) ) /(I ) by

scattering angles of 30', 90', and 147' was 40, 30,
and 27 cm, respectively, corresponding to the es-

timated values of f (A) =0.70, 0.65, and 0.55,
respectively. In the actual experiments, the coeffi-
cient f (A) is treated as an unknown parameter.

The thermostat is mounted coaxially with the
turntable. The pinhole and the photomultiplier are
mounted on the turntable so as to be colinear with

the laser beam in the absence of the focusing lens

and the sample cell. At this juncture the lens is

reinserted and adjusted so that the light illuminates
the photocathode. The turntable is then rotated to
bring the collection optics to the desired scattering
angle. The sample is then inserted and the oven

and beam paths sealed. Insertion of the sample
causes a slight deviation of the transmitted beam
due to the fact that the sample cell is not exactly
concentric with the oven. This deviation is record-
ed. At the end of an experimental run, after the
sample cell is rotated 90', the deviation is

remeasured. In this way we are able to determine
the precise location of the center of the sample cell
relative to the center of the oven leading to a max-
imum correction of 0.25' to the scattering angle as
measured with the turntable. If we assume that
the uncertainty in the scattering angle is of the
magnitude of the correction, we conclude that the
resulting error in the decay rate is negligibly small,
except for the data obtained at a scattering angle
of 30' where the corresponding uncertainty in I
becomes of the order of 2%.

C. Photon-correlation method

The autocorrelation function of the scattered
light intensity was determined by a home-built

clipped correlator with 128 channels which was
connected to the memory of a minicomputer. A
block diagram of the electronic detection system is
shown in Fig. 3. The scattered light is registered

by a Channeltron located in a photomultiplier tube
housing. The pulses emanating from the Channel-
tron are first passed through a preamplifier with a
gain of 10, placed close to the anode of the photo-
tube. The output of the preamplifier is transmitted
over a balanced twisted pair line and then coupled
via a transformer to a two-stage amplifier possess-

ing a total gain of 16. Transformer coupling al-

lows us to reject common mode noise, while also
enabling us to eliminate a ground loop. The am-

plifiers are followed by a discriminator which gen-

erates a standardized output pulse provided that
the input exceeds a specified threshold; a discrim-
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FIG. 3. Block diagram of electronic detection system.

=8[1+C
~

g" '(r)
~ ], (2.2)

where B is the baseline and C an instrument con-
stant related to the coherence area of the scattered
light as discussed above. The baseline can be
determined by observing the accidental coincidence
rate. That is, from the total number N of pulses in
the experimental run, the number of clipped events
Nk, and the total running time ~„„measured in
units of the sample interval, the baseline can be
identified as B =NNk /~„, . It can also be deter-
mined by observing the count rate at the 128th
channel which followed the preceding channel by a

ination level of 175 mV was found to be adequate.
It is estimated that the number of pulses rejected
by the discriminator is less than 1%. The width
of the output pulse from the discriminator was set
at 30 ns with a deadtime following each pulse of
also 30 ns. The standardized signal is finally
transmitted to the correlator. The count rates ob-
served in our experiments never exceeded 10
counts/s and were usually much smaller. A count
rate as high as 2X10 is near the damage threshold
of the channel-multiplier tube used. The operating
conditions imply that the amplifier will be driven
into saturation by a significant number of incom-
ing pulses. Since the deadtime after the pulses
generated by the discriminator is much longer than
the recovery times of the amplifiers, this has no
detrimental effect; rather, by using the amplifiers
under these conditions, the dynamic range of the
electronics is effectively increased. The advantage
of this method has been recognized by previous in-

vestigators.
The experimentally observed photoelectron-count

autocorrelation function G' '(w) is related to the
electric-field correlation function g'"(r) by

G' '(v)=8+
~

G'"(r)
~

delay line corresponding to 1208 channels. The
two methods for determining the baseline usually

agreed to within their standard deviations, typical-
ly within 0.1%. In a few cases where this condi-
tion was not satisfied the run was rejected as un-

reliable.
The time dependence of the correlation function

G'"(~) thus obtained can be affected by the oc-
currence of afterpulsing from feedback mechan-
isms in the photomultiplier tube. These effects
were accounted for by calibrating the afterpulsing
probability of the photomultiplier tube as described
elsewhere. ' For futher details concerning the ex-
perimental method the reader is referred to a
separate report. "

To examine the effect of possible local heating
of the fluid by the laser beam we made a prelirni-

nary analysis of the decay rate as a function of the
incident light intensity by varying the laser power
from 1 to 7 mW. The decay rate was found to in-

crease linearly with the laser power. From the
known temperature dependence of the decay rate
the effect could be interpreted as corresponding to
a temperature rise 5T= 1.0 mK/mW. If we as-
sume that this rise is proportional to the incident
power per unit area, i.e., proportional to U, and in-

versely proportional to the square of the focusing
length I,

5T=DU/l~, (2.3)

III. EXPERIMENTAL DECAY RATES

The autocorrelation function 6' '(~) of the scat-
tered light intensity was measured at three dif-

the effect implies D =0.0056 Km /W. A similar
heating effect in 3-methylpentane and nitroethane
was noted by Sorensen et al. ' In our previous
light-scattering-intensity measurements the effect
was accounted for by applying a correction to the
measured temperature. In the experiments report-
ed in this paper a different approach was adopted.
First, the power level was reduced substantially
and all data were taken at power levels between 45
pW and 3.4 mW. Second, at each temperature the
decay rates were measured with at least two dif-
ferent power levels and then extrapolated to a de-

cay rate corresponding to zero laser power. Except
for a few data points far away from the critical
temperature, the power levels were always chosen

so that the correction due to this extrapolation was

less than 0.2%.
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ferent scattering angles, namely, 0=29.8', 89.5',
and 146.8' which, with a refractive index value of
1.377, correspond to the wave numbers q =0.704
X10, 1.92X10, and 2.62X10 cm ', respective-

ly. A representative example of the experimental
results obtained for (G"'(~)) =G' '(~) —B is
shown in Fig. 4. The correlation function shown
in this figure was obtained at the scattering angle
t9=89.5' and at a temperature for which
T —T, =32.2 mK. We identify the decay rate I
of the order-parameter correlation function with
the decay rate of G'"(w):

G "(v) ~ exp( —I ~) . (3.1)

Hence, 2I is deduced from the experimental data

by fitting ln(G'"(r)) to a straight line, taking into
account the statistical errors in G' '(~) and the
baseline B. The correlation function (G' "(~)) is
plotted in Fig. 4 as a function of the dimensionless
time I w. At each temperature the time base of the
correlator was adjusted so that the autocorrelation
function was measured over a time interval corre-
sponding to one decay time, i.e., I ~=1. In all ex-

perimental runs this condition was satisfied to
within 20%.

The experimental correlation function data ob-
tained at 29.8' and 89.5' could be represented by
an exponential decay law within experimental pre-

cision except for the data at temperatures within

20 mK from the critical temperature, where small

but definite deviations from exponential decay were

observed. ' At these temperatures we continue to
define I as the effective decay rate when the data
are fit to an exponential decay law over the experi-
mental time interval which corresponds approxi-
mately to one relaxation time.

The experimental correlation-function data ob-

tained at 146.8' showed systematic deviations out-
side the experimental error when fitted to an ex-

ponential decay law with one relaxation rate. To
explain this effect it should be noted that the ob-

served scattered light intensity contains, in princi-

ple, contributions not only from light scattered
from the incident beam but also from light scat-
tered from the beam reflected by the wall of the
optical cell. The data obtained at 90' all corre-
spond to the same wave number q because of the
symmetry of the situation. For the data obtained
at 30' the effect is negligibly small, since the ratio
of the intensity of light scattered in the forward
direction to the intensity of light scattered in the
backward direction diverges as the critical point is

approached. However, the effect becomes signifi-
cant at the scattering angle of 146.8'. To account
for this effect we note that the intensity autocorre-
lation function is given by

(I(r)I(0) ) = (E (r)E(r)E*(0)E(0)) = (E"(r)E(r) ) (E*(0)E(0)) + (E*(r)E(0)) (E*(0)E(r)), (3.2)

E=Eq +Eq (3.3)

where we have again assumed that the electric field
E is a Gaussian random variable. ' The electric
field is now decomposed as

I

where q ~
and q2 are the two wave numbers of the

fluctuations probed by light scattered from the in-

cident beam and from the reflected beam. If we

assume Eq and Eq to be uncorrelated, we obtain

CV
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' +I2e

2r I+ &re 7 (3.4)

where I; is the intensity and I; the decay rate of
the electric-field correlation function with wave
number q;. The decoupling approximation is con-
sistent with the assumption that three-point corre-
lation functions can be ignored relative to certain
four-point correlation functions, as was shown by
Oxtoby and Gelbart for the static case. ' We then
conclude that the data should be analyzed as

G"'(~)=B+N'e "+N'e " 2N, N, e

(3.5)
FIG. 4. Experimental data obtained for G"'(rj as a

function of I ~ at T —T, = 32.2 mK. Since N~, N2, I ~, and I q are not known a priori,
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Eq. (3.5) as it stands is not suitable for an accurate
analysis; the equation contains too many free
parameters and the minimum in g under these
conditions is too shallow to obtain a reliable fit.
The number of free parameters can be reduced by
noting that in the Ornstein-Zernike approximation
the intensity ratio N2/N~ has the form

N~/N, =agGp(I+q, ( )/(l+q2( ) .

(3.6)

Here aR is a reflection coefficient which is as-
sumed to be 0.04 and Go a factor which takes into
account any error in the estimate of az and any
geometrical effects. The factor Go should be
slightly less than unity and it should be indepen-
dent of temperature, i.e., all fits for data at a
specific scattering angle should contain the same
value of Go. As further discussed in Sec. VI, we
note that a zeroth-order solution of the mode-

coupling equations indicates that the decay rate I
at a given temperature and scattering angle should
be proportional to q Qo(qg), where

Qo(x) = [1+x +(x —x ')arctanx] .
4x

while the data taken at the scattering angles of
29.8' and 146.8' yield supplemental information
concerning the wave-number dependence of the de-

cay rate. The decay rates I as determined from
the statistical analysis had typically a standard de-
viation of fractions of a percent. However, the ac-
curacy of the decay-rate data as judged from the
spread of the data at different temperatures and
scattering angles is of the order of 2%. For the re-
sults obtained at 0=146.8' and presented in Table
III, we give both the effective decay rate I,ff when
the correlation-function data are forced to be
represented by an exponential decay law with a sin-

gle decay rate, as well as the decay rate I after
correcting for a contribution due to scattering from
the reflected beam as discussed above. It ran be
readily verified that any errors due to the approxi-
mate nature of Eqs. (3.6) and (3.8) in determining
these corrections are well within experimental ac-
curacy.

In the tables we also quote the corresponding
values of the scaling variable x =qg. For our mix-

TABLE I. Experimental decay rates at q =0.704
)&10 cm ' (0=29.8).

(3.7)

The function Qo(x) (with or without the prefactor
3/4x ) is commonly referred to as the Kawasaki
function. ' It thus follows that the decay rates I

~

and I 2 are related by

I ] x~+p(x&)

x qQO(x2)
(3.8)

where x; =q;g.
The experimental data obtained at 146.8' were

fit to (3.5), subject to the constraints (3.6) and (3.8)
with N&, Go, and I

~
as the only adjustable param-

eters. We carried out the same procedure for the
data obtained at the scattering angle of 29.8'. In
this case the procedure yielded corrections less
than 0.5%%uo which are of little statistic significance
as expected.

The experimental decay-rate data obtained as a
function of AT = T —T, are presented in Tables I,
II, and III. The data obtained at the scattering an-
gle of 90' appear to have the higher precision be-
cause of the simplified geometrical configuration at
this scattering angle. At this scattering angle we
therefore made a comprehensive analysis of the
temperature dependence of I taking 54
correlation-function data in a temperature range
corresponding to the range 0.3 mK (5T( 1.3 K,

T —T.
(K)

0.4000
0.3173
0.2525
0.2014
0.1599
0.1284
0.1010
0.0818
0.0644
0.0512
0.0424
0.0326
0.0265
0.0215
0.0174
0.0140
0.0101
0.0084
0.0074
0.0062
0.0054
0.0043
0.0033
0.0024
0.0012'
0.0004'

x =qg

0.100
0.116
0.134
0.154
0.178
0.204
0.238
0.271
0.315
0.363
0.409
0.481
0.548
0.624
0.714
0.818
1.00
1.12
1.22
1.37
1.48
1.71
2.01
2.46
3.70
7.00

1824
1490
1332
1151
963.6
820. 1

716.7
640.6
557.4
484.5
432.0
369.3
335.4
303.7
282.5
259.8
234.7
221.2
217.4
206.7
202.7
192.2
184.8
182.0
175.8
172.8
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T —T.
(K)

1.2650
1.0036
0.7955
0.6381
0.5042
0.3995
0.3177
0.2547
0.2000
0.1600
0.1291
0.1015
0.0806
0.0655
0.0549
0.0464
0.0379
0.0322
0.0284
0.0245
0.0221
0.0199
0.0182
0.0166
0.0157
0.0145
0.0137
0.0130
0.0124
0.0119
0.0113
0.0108
0.0104
0.0099
0.0094
0.0090
0.0085
0.0080
0.0075
0.0069
0.0065
0.0060
0.0055
0.0050
0.0045
0.0039
0.0034
0.0030
0.0026
0.0022
0.0016
0.0012
0.0007
0.0003

0.134
0.155
0.179
0.205
0.238
0.275
0.317
0.364
0.424
0.487
0.557
0.647
0.748
0.851
0.950
1.06
1.20
1.33
1.44
1.57
1.68
1.79
1.89
2.01
2.08
2.18
2.27
2.34
2.41
2.48
2.55
2.62
2.68
2.77
2.86
2.95
3.05
3.17
3.30
3.48
3.61
3.80
4.02
4.27
4.56
5.00
5.36
5.80
6.34
7.14
8.59
10.3
14.4
24.5

r
(s ')

29918
25216
21654
18671
16080
13845
11998
10521
9127
8096
7211
6427
5820
5357
5039
4523
4781
4358
4252
4153
4084
4012
3979
3916
3915
3872
3839
3849
3812
3822
3819
3799
3785
3780
3769
3758
3766
3737
3739
3706
3708
3698
3696
3675
3680
3698
3663
3668
3663
3644
3655
3644
3661
3651

TABLE II. Experimental decay rates at q =1.92
)(10 cm ' (8=89.5).

ture the correlation length g is represented by

g=g (hT*)

where AT*=(T —T, )/T, and

$0=0.228 nm, v=0.625 .

(3-9)

(3.10)

I(8,$)=Bosin P/ (qog) + 2sin—
2

(3.11)

Here qo is the wave number of the incident light, P
the angle between the initial direction of polariza-
tion and the direction of scattering, and Bp a con-
stant which can be extracted from turbidity data.
To estimate the double-scattering contribution to
the time-dependent correlation function Ferrell and
Bhattacharjee expand the electric-field autocorrela-
tion function (E(r)E(0) ) as

1n(E(r)E(0) ) = lnI, —I',

+e g ( L)"C„(l,r)", —
n=p

where I, is the singly scattered light intensity and

I, the associated decay rate of the singly scattered
light. The parameters e is defined as

The errors in the parameters go and v are strongly
correlated when deduced from the light-scattering
data and the question arises what accuracy can be
attributed to the calculated correlation-length
values. When our previous light-scattering mea-
surernents for the static correlation function were
analyzed with a fixed exponent value v, we ob-
tained a two-standard-deviation error in (0 of
about 2%%uo. Furthermore, a comparison can be
made with an earlier determination of ( by Chang
et al. with a different optical-detection method.
While these earlier data were represented with a
different exponent value v, it appears that the actu-
al ( values from the two experiments agree to
within l%%uo in the overlapping experimental tem-
perature range. We are thus confident that (3.9)
and (3.10) do represent the correlation length to
within a few percent.

The experimental correlation-function data
could, in principle, be affected by double-scattering
contributions. ' For our experiment the effect
was analyzed by Ferrell and Bhattacharjee. To
estimate the effect it is again sufficient to use the
Ornstein-Zernike approximation for the scattered
light intensity I(8,$)
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TABLE III. Experimental decay rates at q =2.62X10' cm ' (0=146.8').

T —T.
(K)

r
(s ')

r
(s ')

0.7951
0.6325
0.5046
0.3997
0.3178
0.2544
0.1994
0.1594
0.1317
0.1018
0.0795
0.0614
0.0543
0.0465
0.0379
0.0321
0.0279
0.0240
0.0215
0.0172
0.0157
0.0142
0.0133
0.0116
0.0096
0.0089
0.0084
0.0071
0.0064
0.0054
0.0045
0.0034
0.0027
0.0020
0.0012
0.0004

0.243
0.281
0.323
0.374
0.432
0.496
0.578
0.665
0.749
0.879
1.03
1.21
1.30
1.44
1.63
1.81
1.98
2.17
2.32
2.67
2.83
3.01
3.14
3.42
3.86
4.04
4.19
4.65
4.98
5.53
6.21
7.39
8.53

10.2
14.0
27.8

40714
34871
29485
25738
23077
20389
18064
16122
14900
13482
12184
11474
11133
10764
10300
10118
9906
9706
9622
9383
9327
9381
9270
9174
9043
9064
8970
8890
8860
8831
8694
8595
8286
8389
8470
8610

42185
35406
30622
26412
23777
20760
18160
16330
15389
13595
12212
11386
10942
10911
10348
10395
10188
9983
9894
9822
9801
9742
9629
9448
9575
9660
9519
9704
9463
9482
9289
9586
9400
9491
9599
9637

e =4m.rpBp, (3.13)

where rp is the radius of the scattering cell

(rp ——0.5 cm). The analysis of Bhattacharjee and

Ferrell indicates that at the critical temperature

that the effective decay rate when the data are

represented by an exponential decay law with a sin-

gle relaxation rate, becomes

y,ff= [1—1.16K'yo (1nyo —O. 11)]I, .

EC, = —0.17eyp 1n(yp —2.2), (3.14) (3.15)

where yp=2rp/h, h being the height of the ob-

served volume. For our experiment e =2.1& 10
yp-50, and thus eC& -1.2&(10 . We conclude
that I, may be identified with the coefficient in

(3.12) that is linear in r. The same authors showed

From the above expression we conclude that at the
critical point I,f~ can still be identified with I; to
within 0.3%.

The experimental decay-rate data are shown in

Fig. 5 as a function of hT=T-T, . The data taken
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FIG. 5. Experimental decay-rate data as a function
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l00
at 6T & 0. 1 K correspond to the hydrodynamic re-
gime qg & 1, where the decay rate decreases upon
approaching the critical point. The data taken at
hT &0.01 K correspond to the critical regime

qg & 1, where the decay rate approaches a value

which is almost independent of the temperature.
This qualitative behavior of the decay rate in the
critical region has been observed by many previous

investigators as reviewed by Swinney and Henry.

FIG. 6. Log-log plot of the viscosity ratio g, /g, of
3-methylpentane and nitroethane at the critical
concentration as deduced from the measurements of
Tsai and McIntyre (Ref. 7) as a function of the
correlation length g.

trapolating data away from the critical point. For
liquids it is often represented by an Arrhenius

equation of the form

IV. VISCOSITY
g, =A„exp(8&/kz T), (4.2)

=(Qok) "
9$

(4.1)

where x„ is a critical exponent further discussed in
Sec. V and Qo a system-dependent amplitude. The
coefficient g, is interpreted as a background or
bare viscosity coefficient, i.e., a viscosity in the ab-
sence of critical fluctuations. In practice, it is
identified with the viscosity values obtained by ex-

In order to compare the decay-rate data with
theoretical predictions one also needs information
concerning the shear viscosity g, of the fluid. For
3-methylpentane and nitroethane the viscosity was

measured by Stein et al. and by Tsai and McIn-
tyre. The measurements of Tsai and McIntyre
have a very high precision, but Stein and co-
workers paid more attention to the calibration of
the viscosity on an absolute basis. As argued in a
previous publication we accept as the most accu-
rate values the data of Tsai and McIntyre, but
shifted by (3.1+0.7)% so as to conform to the
calibration of Stein et al.

The viscosity diverges weakly at the critical
point and it is currently often represented by a
power-law divergence of the form

where kz is Boltzmann's constant. Tsai and McIn-
tyre deduced estimated values for the background
viscosity g, of 3-rnethylpentane and nitroethane as
well, by interpolating between the viscosity data at
low and high concentrations at various tempera-

tures; these values for g, can be represented by
(4.2) with the parameters A =2.431)& 10 Pa s

and 8„=1.133)& 10 J. The values thus deduced
for g, /g, are plotted in Fig. 6 on a double-

logarithmic scale. If we substitute (3.9) and (4.2)
into (4.1) and fit the resulting equation to the
viscosity data at the critical concentration, we ob-

tain

Qo ——(1.35+0.18) nm

(4.3)

x„=0.0635+0.0004,

where the quoted errors represent two standard de-
viations. The statistical error in x„ is small due to
the smoothness of the data. If we analyze the data
of Stein et al. by the same procedure we obtain

Qo ——(1.2+0.8) nm ' and xv ——0.062+0.002. If we
consider the differences in x& deduced from the
two data sets as an estimate for the accuracy, we
conclude
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x~ =0.063+0.001, (4.4)

not counting, however, any possible bias due to the
extrapolation procedure in determining g, .

To our knowledge, use of Eqs. (4.1) and (4.2) to
represent the viscosity of liquid mixtures near the
consolute point was first proposed by Debye and
coworkers, ' and an early fit of these equations
to the viscosity data for 3-methylpentane and ni-

troethane is, among other possible representations,
already found in the original thesis of Tsai.

V. DYNAMIC-SCALING EXPONENT

The principle of dynamic scaling, originally for-
mulated by Ferrell et al. and by Halperin and

Hohenberg as a phenornenological postulate and

subsequently confirmed by the renorrnalization-

group theory of critical dynamics,
' asserts that

at temperatures sufficiently close to T, and at
wave numbers sufficiently large, the decay rate I
of the order-parameter fluctuations should ap-
proach a scaled behavior of the form

I =q'Q(qg) . (5.1)

In addition it is predicted that the shear viscosity

g, will diverge as

(5.2)

The dynamic-scaling function Q(y) satisfies the

boundary conditions
—(1+x„)

lim Q(y) =Coy
y~o

lim A(y) =C„,
y~ oo

(5.3a)

(5.3b)

where Co and C„are constants. The dynamic
critical exponent z and the viscosity exponent x&
should satisfy the relation

z =3+x& . (5.4)

At a given temperature, i.e., at a given value of g,
I will vary as q for qg« I in agreement with

the laws of hydrodynamics, while in the critical re-

gime qg» I, I will vary as q'.
The exponents x„and z should be the same for

all systems belonging to the dynamic universality
class of fluid systems. The scaling function Q(y)
should also be universal after being properly nor-
rnalized as discussed later. A simple analysis of
the mode-coupling equations yields as a first ap-
proximation x& ——8/15~ =0.054. More detailed
theoretical calculations have produced slightly

larger values of this exponent. ' The best

theoretical values currently available are

x„=0.065, z =3.065, (5.5)

obtained both from the renormalization-group
theory and the mode-coupling theory of critical
dynamics up to second order of a perturbation
solution in terms of @=4—d, where d is the
dimensionality of the system. The scaling function

Q(y) is not known very accurately.
It is now well established that the thermo-

dynamic properties of fluids approach a simple

asymptotic power-law behavior with universal ex-

ponent values provided that the critical tempera-
ture is approached to within 10 . Hence, one
must expect a priori that the validity of the
asymptotic dynamic behavior is restricted to a
similarly small range in temperature. However, it
appears that the restrictions in dealing with
dynamic critical phenomena are even more severe.

In deriving the asymptotic equations one assumes

implicitly that the critical point is approached suf-

ficiently closely so that the singular contribution to
the shear viscosity is large compared with the nor-

mal shear viscosity g, . ' In fact, the rnode-

coupling equations do indicate small deviations

from the scaled behavior (5.1) even in a tempera-
ture range where the static correlation function as-

sumes its asymptotic critical behavior. '

In the case of the viscosity it is usually assumed

that the anomaly is rnultiplicative, i.e., the ratio
x

r), /r), is assumed to diverge as g
" as given by

(5.1). Taking into account the temperature depen-

dence of g, we do find a value x =0.063 as quoted
in (4.4) in good agreement with the theoretical pre-
diction.

Several investigators have attempted to measure

the dynamic-scaling exponent from light-scattering
data and a value for z close to 3 is usually

found. However, the literature data do not
allow us to discriminate between 3.00 and 3.06. In
fact, the value recently reported for 3-methyl-

pentane and nitroethane by Sorensen et al. ' is
z =2.992+0.014 in good agreement with an earlier
determination by Chang et al. , but in disagree-

ment with the theoretical prediction (5.5). Because
of the small difference between 3.00 and 3.06 we

do not want to determine the exponent z by fitting
the data to (5.1) with an approximate expression
for the scaling function Q(y) of unknown accura-
cy. Instead we prefer to make an asymptotic
analysis following a procedure previously con-
sidered by Chang et al. and by Chu and Lin.
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For this purpose we fit the decay-rate data I (T) at
each temperature to a power law of the form

I (T) q
'" (5.6)

From the boundary conditions (5.3) it follows that
z ff( T) should approach the value of 2 away from
T„while it should approach the dynamic-scaling
exponent value z in the limit T~T, . The values

obtained for z,f~ as a function of temperature are
presented in Fig. 7. The data clearly show the
transition from the hydrodynamic regime to the
critical regime. In Fig. 8 we show the values ob-
tained for z,ff, together with their standard devia-

tions, over the last ten millidegrees from the criti-
cal temperature. Extrapolating these data linearly

to T, we obtain as the limiting value

(5.7)z = lim z,f~(T) =3.063+0.024,
T~ Tc

where the quoted error represents two standard de-
viations. This result is in excellent agreement with
the theoretical prediction (5.5), as well as with the
value xz ——0.063+0.001 deduced from the viscosity
data for this mixture, as announced in an earlier
letter.

VI. COMPARISON WITH THE
MODE-COUPLING THEORY

(6.1a)

r=ar+r . (6.1b)

Unfortunately no systematic theoretical treatment
for dealing with the bare contributions is currently
available. In practice, the background contribu-
tions are treated empirically by extrapolating ex-
perimental information for the transport properties
away from the critical region smoothly into the
critical region. The contributions from the long-
wavelength fluctuations are treated with the
methods of generalized hydrodynamics. Retaining
only bilinear coupling contributions one obtains'

In the mode-coupling theory of the critical
behavior of the viscosity g, and the decay rate I a
distinction is made between anomalous contribu-
tions hg, and AI due to the long-wavelength fluc-
tuations and so-called bare or background contri-
butions due to the short-wavelength fluctuations'

hr), (q)= fdkk f d5sin @f d((Isin (('I —,(6.2)
k&T

&
w

3
n' . & l l X(k)X(q —k)

(2~) 2q X(k) X(q —k) [I (k)+1 (q —k)]

El(q)= q fdkk f d5 i 5f dPq q
X(q) k t), (k)+pl (q —k)

(6.3)

I I I I
)

I I I I
)

I I I I
(

I I I I
(

I I I I
l

I I I I
)

I I I I
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FIG. 7. Values of the effective exponent zdf as a
function of T —T, .

where X(q) is the Fourier transform of the static
order-parameter correlation function, p is the den-
sity and where 0 and I)) are the polar and azimu-
thal angles of k in a coordinate system with the
polar axis in the direction of q. Equation (6.2) im-
plies that the viscosity hg in the hydrodynamic
limit q~O will diverge as xzln(QI&g) with

3.IO

3.05

3.00—

2.95—

2.90—

2.85— KP
K&

I I I I I I I I

2 4 6 8 lO

T—Tc (mK)
FIG. 8. Values of the effective exponent zdf as a

function of T —T, close to the critical temperature.
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x& ——8/15m . To a good approximation xz may be
identified with the critical exponent in the power
law (4.1} for the viscosity. However, it is known
that vertex corrections lead to a slightly larger
value xz -0.065. ' ' It is difficult to evaluate
the vertex corrections, but we account for them ap-
proximately by multiplying the right-hand side of
(6.2) with a factor

where xz will be taken as x =0.063 as quoted in

(4.4}. This correction factor ensures that the
mode-coupling integrals in this approximation will

be consistent with the observed asymptotic critical
behavior of the viscosity. The Fourier transform

X(q ) of the static correlation function can be
represented as (hT') rg(qg), where g(qg) is a
correlation scaling function. We thus obtain

15
Xp ——

8
x~ (6.4)

2

( )
o"s «k~ desi„3~ 1 1 g«f}g(ls —klan}

16/q' o g("(} g(
l q —k lg) 1(k)+I (

l q —k
l

)
(6.5)

k T
ar(q)= ' ' f«k~f

4n g(qg)

1

k'r},(k)+pl (
l q —k

l
)

(6.6)

where we have integrated over the azimuthal angle

r= L
X(q)

(6.8)

This background contribution has often been
neglected in the analysis of experimental decay-rate
data in binary liquids, but arguments indicating
its presence were given by Chang and co-workers
and by Oxtoby and Gelbart. ' Introducing the
Ornstein-Zernike approximation for X(q), we prefer
to write I in a form analogous to a form proposed
by Bhattacharjee and coworkers

The correlation scaling function g(x) was deter-
mined previously from light-scattering-intensity
measurements and it was shown that the data
could be represented by various approximants.
Among those approximants we find the Fisher-
Burford approximant the easiest to use in prac-
tice and we adopt

( 1 +$2x 2)'g/2

g(x) = (6.7)
1+(1+1(g/2)x

with g=0.024 and /=0. 014.4

An equation for the background viscosity g, of
our mixture was presented in Sec. IV. In the case
of fluids near the gas-liquid critical point one can
calculate the background decay rate I from the
thermal conductivity and the specific heat at con-
stant pressure. ' In the case of mixtures near the
critical mixing point it is related to the background
contribution L to the Onsager coefficient associat-
ed with the diffusion equation

k3 Tq2 1+q&g2

6ng, g
. qc(

(6.9)

where, in the small temperature range under con-
sideration, qc may be treated as a constant with
the dimension of a wave number. Since the back-
ground contributions to I turn out to be small,
this approximate expression is adequate for our
purpose.

In the absence of experimental information for
the coefficient L, and hence, for qc, Oxtoby and
Gelbart ' proposed that it be estimated from the
experimental viscosity data by inverting (6.5), given
an approximate solution for EI from (6.6). In our
terminology their procedure yields

qc=~Qo (6.10)

where Qo is the amplitude of the power law (4.1)
for the viscosity. The estimate of Oxtoby and Gel-
bart implies '

u= 1.5,4
3C

(6.11)

which may be compared with the estimate
u =4e /3~=1. 6 used by Bhattacharjee et al.
Using this procedure with Qo

——1.35 nm ' as
quoted in (4.3) we estimated the background con-
tribution I for the data obtained at the three
scattering angles. The resulting corrections relative
to the experimental decay rate I are represented by
the full curves in Fig. 9. The background contri-
bution is completely negligible for qg& 1. For
small qg the contribution increases up to 5.1% at
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FIG. 9. The relative background contribution I /I as
estimated from the viscosity data. The full curves
correspond to the assumption qD

' ——0 and the dashed
curves to the assumption qD

' ——0.14 nm.

with

kg Tqr, = n(g)+r,
6m.2),g

(6.12)

O(x) =Ap(x)C(x)(1+p x ) " (6.13)

The function O(x) in (6.12) reduces to the
Kawasaki function Op(x), defined by (3.7), when

g(x) in (6.6) is approximated by the Ornstein-

0 = 147', up to 6.3% at 0=90' and up to 3.3% at
9=30'.

The mode-coupling integrals are usually solved

by an iterative procedure. That is, a zeroth-order
solution for the decay rate I is substituted into
(6.5) to yield the viscosity which in turn is substi-
tuted into the integral (6.6) for the decay rate. As
a suitable zeroth-order solution we propose an

equation of the form

Zernike form g(x) =(1+x ) ', when the viscosity

g, (k) is treated as a constant independent of k and
when the term pI in the intergrand of (6.6) is
neglected. ' ' ' The function C(x) is a correction
factor which accounts for the difference between

the Ornstein-Zernike function and the Fisher-
Burford approximant for g(x) in evaluating the de-

cay rate from (6.6) ~ We calculated C(x) numeri-

cally and found it to be close to unity ranging
from 1.003 at x =0 to 1.012 at x = 100 and

beyond, in good agreement with the results report-
ed by Swinney and Saleh when adjusted for our
exponent value g = 0.024. This factor, therefore,
can be neglected, but in practice we retained the
correction. It is our experience that the iteration
procedure does not converge rapidly when Q(x) in
(6.12) is identified with the Kawasaki function
Op(x) and two or three iterations are then needed
to obtain results consistent at the 1% level. The
reason is that the Kawasaki function implies that
I in the limit x~oo will vary as q in contrast to

3+x
the theoretical and observed variation as q
We therefore impose the correct asymptotic

2x /2
behavior by introducing a factor (1+p x ) " . In
Fig. 10 we compare the experimental decay rates I
with the zeroth-order representation I p as defined

by (6.12) and (6.13) with p = —,. We conclude that
I p is a reasonable empirical approximation of the
experimental data. With this zeroth-order approxi-
mation no successive interactions are needed in
solving the mode-coupling integrals.

To investigate whether our decay-rate data are
consistent with the experimental viscosity data we
substitute the zeroth-order approximation (6.12)
into the integral (6.5) for the viscosity taking the
hydrodynamic limit q~0:

~'g (0)=
2 J dk

Xpkg T k 6/4

1202r rp(k ) 1+(1+1(22)/2) k 2(2

2

1 +$2/ 2/2

Xpkg T
dk

30~ (1+k 2g2) 2r, (k)

(6.14)

We calculated this integral numerically. The
differences between the values thus calculated for
the viscosity g, =kg, +g, and the experimental
viscosity data as represented by (4.1) with (4.2) and
(4.3) are indicated by the curve labeled qD

' ——0 in
Fig. 11. It is seen that the integral reproduces the
experimental viscosity data within about 2%.

Having verified that our decay-rate data are con-
sistent with the available information for the
viscosity, we now substitute I p into (6.5) to calcu-

late Ag, (q) as a function of q at each temperature
and substitute the results into the integral (6.6) for
the decay rate EI (q). The two-dimensional in-
tegrals were evaluated numerically with Gaussian
quadrature. For completeness we also retained the
term pr(

I q —k
I

) =prp (
I q —k

I
) in the in-

tegrand of (6.6), but its effect was found to be
small and never contributed more than 1.5% in the
calculated decay rate. In Fig. 12 we compare the
experimental critical decay rates, defined as
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I with the values EI „~, thus cal-

culated from the mode-coupling integrals. We first
consider the experimental data obtained at a
scattering angle of 90 which have the highest pre-

cision. Most of the data at 90' are reproduced by

the mode-coupling integrals to within 1%. Very

close to the critical temperature at x=10 a small

increase of a few percent can be noticed. However,

in the analysis of the mode-coupling equations we

have neglected any frequency dependence of the

decay rate which indeed was observed in the last

10 m deg. ' The calculations of Garisto and

Kapral ' and of Lo and Kawasaki indicate that

frequency corrections may indeed increase the ef-

fective decay rate by a few percent. We conclude

that the data at 90' are consistent with the mode-

coupling integrals to within 2%. The data ob-

tained at 147 exhibit larger deviations which may

FIG. 10. Comparison between the experimental decay

rate I and the zeroth-order approximation I o defined

by (6.11) and (6.12). The background contribution I
was estimated with the assumption qD

' ——0. The syrn-

bols are the same as in Fig. 5.
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O. I I 10

x=qg

FIG. 12. Comparison between the experimental
critical-decay-rate data d I,„~,=I,„„,—I and the values

calculated from the mode-coupling integrals with

qz
' ——0. The symbols are the same as in Fig. 5.

be due to the fact that a correction had to be made

for scattering from the reflected beam. The data

obtained at 30' have a tendency to be slightly

larger than those obtained at 90' except far away

from the critical temperature. This could in part
be due to an error in the determination of the

scattering angle which is most serious at this

smaller scattering angle as discussed in Sec. II C.
On the whole, the data are consistent with the
mode-coupling integrals within about 4%.

In Fig. 13 we compare the critical decay rate
AI „~, as calculated from the mode-coupling

intergrals with the critical decay rate EI o
——I o

—I
as implied by the proposed zeroth-order solution

(6.2). The ratio I =AI „~,/b I o is indeed close to

unity. The behavior of this ratio in the limit x~0
may be affected due to the difficulties in obtaining

an accurate estimate of the background
contribution I .
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FIG. 11. Comparison between the viscosity calculated
from the mode-coupling integral (6.13) and the
experimental viscosity data for various values of qD
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FIG 13 The ratio F=hl
~

/EI o where hl
~

is

the critical decay rate as calculated from the mode-

coupling integrals and where AI o——I o
—I is the critical

decay rate implied by the proposed zeroth-order solution
(6.12). In making this plot we have assumed qD

' ——0.
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The quantities Ag, and AI are supposed to
represent the long-wavelength contributions to the

viscosity and the decay rate, i.e., contributions
from wavelengths larger than the average
intermolecular distances. In comparing the data
with the theoretical predictions we have, like most

other investigators, integrated the mode-coupling
integrals over all values of the wave number k.
This procedure is justified if the contributions to
the mode-coupling integrals for large values of k
are negligibly small. Bhattacharjee and co-workers
recently pointed out that this assumption is, in

fact, not valid. For instance, instead of (6.14)
where the integral is taken over all wave numbers,

they proposed that the viscosity Ag, (0) be
evaluated from

Xokg T
Ag, (0)= dk

30m2 0 (1+k g ) 1'0(k)

(6.15)

of Bhattacharjee et al. we conclude that (6.10) is

to be replaced with

1

Qo

1 1+
qc 2qD

(6.16)

The relative background decay-rate contributions

obtained with qD
' ——0.14 nm are indicated by the

dashed curves in Fig. 9. In Fig. 14 we compare
the critical decay rates hl deduced from the
experimental data with the values calculated from
the mode-coupling integrals. The data in this

figure are to be compared with whose in Fig. 12
for qD

' ——0. The pattern is the same as in Fig. 12
and the agreement between experimental and
calculated values is comparable. We conclude that
the data are consistent with the mode-coupling
equations with or without a cutoff parameter, but
the procedure is clearly hampered by a lack of
knowledge of how to separate the short-wavelength
from the long-wavelength contributions.

where qD is a maximum cutoff wave number. Un-

fortunately, the value of the cutoff wave number is

not known. To investigate which values of qD

would be compatible with the experimental data
for 3-methlypentane and nitroethane, we evaluated

(6.15) for various values of qD using for I o(k) the
zeroth-order representation (6.12) earlier adopted
for our experimental decay rate data. The differ-

ences between the values thus calculated for the
viscosity g, =kg, +g, and the experimental

viscosity data as represented by (4.1) are indicated

by the various curves in Fig. 11. It is seen that the

integral (6.15) reproduces the experimental data
within l%%uo for 0.07 nm & qD

'
& 0.14 nm. The

maximum possible value of qD
' ——0.14 nm is

surprisingly small, and much smaller than the
values adopted by Bhattacharjee et al. from an

analysis of viscosity data of fluids near the gas-

liquid critical point. We do not know why this is

so. One problem is the lack of a precise theoretical
definition of the bare viscosity n, . Since the viscos-

ity anomaly is very weak, different values adopted
for n, will seriously affect the amplitude Qo in the

power law (4.1) for the viscosity and, hence, in the
value found for qD . In any case, we reevaluated

—1

the mode-coupling integrals introducing in both
(6.5) and (6.6) a cutoff qD

' ——0.14 nm. Introduc-
tion of a cutoff wave number into the mode-

coupling integrals also affects the relationship be-

tween the parameter qc in the expression (6.9) for
the background decay rate I and the amplitude Qo
of the power law for the viscosity. From the work

VII. DYNAMIC-AMPLITUDE RATIO

The theory of critical dynamics predicts that
sufficiently close to the critical point the diffusion
coefficient D should satisfy a Stokes-Einstein
relation of the form

RkgTD=
6ng, g

'. (7.1)

where R is a universal constant. This diffusion
coefficient is related to the critical part of the
decay rate by

D = limhI (q)/qq~ (7.2)

1.04—

I.02—

I 0 IOO

0.98

096—

0.94 I I I I III I I I I I IIII
IO

x=q$

FIG. 14. Comparison between the experimental
critical-decay-rate data EI,„~,= I",„~,—I and the values

calculated from the mode-coupling integrals with qD
' ——

0.14 nm. The symbols are the same as in Fig. 5.
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6trti, g
R (x)—:

q Qo(x) kg T
(7.3)

where Qo(x) is again the Kawasaki function
defined by (3.7). Since lim Qo(x) = 1, we identified
R with

The mode-coupling integrals to the approximation
considered here imply a value of R close to unity
as further discussed below. Siggia and co-workers
evaluated R to first order in @=4—d from a
renormalization-group treatment of critical
dynamics; they obtained two estimates R = 0.79
and 1.20, and judged the latter value to be more
reliable.

Any experimental value of R is affected by the
combined errors in g, tl„and D, or b,I, and it ap-
pears to be difficult to determine R accurately.
Experimental arguments in favor of a value R=
1.20 have been reported by Chen et al. for the
mixture n-hexane and nitrobenzene, and by Soren-
sen et al. ,

' for the same system considered in this
paper. The result has been interpreted as imply-
ing R/6m=1/5m, which corresponds to Stokes's
law for a spherical droplet moving in a medium
with the same viscosity as that of the liquid in the
droplet. ' It has led Beysens et al. ' to assume
R/6~=1/5~ and then use (7.1) and (7.2) for deter-
mining the correlation length g from experimental
decay-rate data . On the other hand, we de-
duced from our light-scattering data for 3-
methylpentane and nitroethane R =1.02, a value
confirmed by Guttinger and Cannell from light-
scattering data for xenon near the gas-liquid criti-
cal point. Subsequently, Beysens has reported a
revised value R=1.16. Because of the controver-
sies surrounding the experimental determination of
the dynamic-amplitude ratio R we discuss the issue
here in some further detail.

In our previous approach we introduced a
quantity R (x) defined as

1.04 3- Oo

R 1.02—

1.00—

0. 1

I g, g ~
~ ~

~ p
0.2 0.3 0.4 0.5 0.6 0.7

x=q(

FIG. 15. The coefficient R (x) as a function of x for
small values of x =qg, deduced from the light-scattering
measurements at 30' (squares), 90' (circles), and 147'

(triangles). The background decay rate I was estimated
with the assumption qD

' ——0.

For completeness, we repeated the analysis by es-

timating I with the assumption qD
——0.14 nm.

The results thus obtained are shown in Fig. 16 and
we arrive at the average value R =1.029+0.026.
Allowing for a 2% error in the correlation length
and a 1.5% error in the viscosity data, we con-
clude

R =1.03+0.06 . (7.5)

In order to interpret this result we note that the
decay rate I exhibits a strongly singular behavior
and the viscosity q, a weakly singular behavior.
Hence, in taking the limit q~0 we can make a
distinction between a regime of temperatures where

hg, « g, and a fully asymptotic regime where
The value for R quoted above was

determined in a regime where Ag, « g, . The
value calculated theoretically by Siggia et al.
corresponds to the fully asymptotic regime. The
values of R will not be necessarily the same in the
two regimes.

In the previous section we concluded that the
experimental decay-rate data are consistent with
the mode-coupling integral (6.6). This integral
implies a value for R close to unity at all

temperatures. When Ag, «g„ the viscosity g, in

R =limR(x) .x~ (7.4)

1.06—
o

1.04—

I.02—

o o
zoo

~ g ~ 0
The values deduced for R (x) from the experimen-
tal data are plotted in Fig. 15 over the range
0.1&x &0.7. We note that in this range R(x) is
independent of x within the experimental accuracy
and we conclude R =1.020+0.028, where the quot-
ed error represents two standard deviations. In
deducing EI" from the decay-rate we estimated the
background contribution I from (6.9) by the pro-
cedure discussed in Sect. VI and assuming qD

' ——0.

1.00 — O
O. I

0 I I I I I I I I I

0.2 0.3 0.4 0.5 0.6 07
x=q$

FIG. 16. The coefficient R (x) as a function of x for
small values of x =qg, deduced from the light-scattering
measurements at 30' (squares), 90' (circles), and 147'

(triangles). The background decay rate I was estimated
with the assumption qD

' ——0.14 nm.
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the integrand of (6.6) is essentially independent of
k, while the term pI is negligibly small, and we
recover the zeroth-order solution (6.12) with R =1.
In the fully asymptotic regime the viscosity will

satisfy a scaling law of the form

&t), (q)=tt, (q)=t), (0)/( I+a'q'g') "/2, (7.6)

x
so that limqg rl (q) =(Qp/aq) ", where a is a

constant. ' It thus follows from (6.6), that in the

fully asymptotic regime,

2y" (1+ax )"2x /2

R=— dx
1+x

1r —— r( —)
a

r 1—"
2

XF —,——;1—1 x, x„a'—1

2'2 2' 2' 2

(7.7)

where F is an hypergeometric function. An

approximate analysis of the nonlocal viscosity by

Perl and Ferrell suggest a=0.5, so that (7.7)

implies R=1.02. To the extent that our data are

consistent with (6.6) we recover a value of R close

to unity at all intermediate temperatures of our

experimental data. However, we cannot justifiably

extrapolate the mode-coupling integrals (6.5) and

(6.6) to the fully asymptotic regime where

hg, /q, && 1, because of the approximate nature of
the treatment of the vertex corrections and because

of the neglect of any frequency dependence, the

importance of which has been emphasized by

Ferrell et al. ' ' Our data points closest to the

critical temperature (b T*=10 ) correspond to
x =7 at 0=30' and x =28 at L9=147' as can be

seen from the information in Tables I and III. An

extrapolation of the power law (4.1) for the

viscosity suggests that even at AT*=10 or 10
the background viscosity n, is still of the same

order of magnitude as hg, . Hence, we are unable
to probe experimentally the fully asymptotic
regime where x « 1 and Ag, /g » 1.

VIII. CONCLUSIONS

We have determined the decay rate I of the
order-parameter fluctuations in the binary liquid
3-methylpentane and nitroethane near the critical
mixing point as a function of temperature and

wave number. From the data we conclude that the

decay rate varies at the critical temperature as

I ~q' with z=3.06+0.02 in good agreement with

the theoretical predictions. The observed

dependence of the decay rate on temperature and

wave number is consistent with the predictions of
the mode-coupling theory of critical dynamics, but

a complication arises due to the lack of detailed

theoretical predictions for the short-wavelength

contributions to the transport coefficients. A
dynamic-amplitude ratio R may be defined as

lime~6vrrj, (AI /q kqT. From the data we con-
clude R =1.03+0.06 at temperatures where

4g, /g, « 1, but we are unable to determine R in
the fully asymptotic regime where Ag, /g » 1.
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