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Laser cooling of ions stored in harmonic and Penning traps
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Laser (light-pressure) cooling of two-level ions stored in a Penning trap is treated
theoretically, in the limit that the frequencies of motion of the ions are much smaller
than the natural linewidth of the optical transition. Rate equations for the mean-squared
amplitudes of motion are derived from a semiclassical analysis, which is confirmed by
quantum-mechanical perturbation theory. Simultaneous cooling of all three modes of
motion is shown to require a spatially nonuniform laser-beam profile, unlike the case of
the harmonic trap. Comparison is made with recent experiments. Also, the three-
dimensional harmonic trap is treated by two simple methods. One is based on the energy
rate equations and the other on Langevin-type equations. Identical results are obtained
by the two methods for the steady-state energies. These results are compared with the
works of others.

I. INTRODUCTION

Laser (light-pressure) cooling of atoms and
atomic ions has been demonstrated in recent exper-
iments which were stimulated by the original pro-
posals for laser cooling of free atoms' and of ions
bound in electromagnetic traps. Cooling is of in-
terest for high-resolution spectroscopy largely be-
cause all Doppler effects are fundamentally re-
duced. Cooling of Na atoms in an atomic beam
has been reported by Balykin et al.

Two types of electromagnetic traps have been
used for the laser-cooling experiments on ions.
Cooling of Ba+ ions stored in an rf quadrupole
trap was demonstrated by a group at Heidelberg '

and of Mg+ ions stored in a Penning trap by a
group at the National Bureau of Standards
(NBS). The rf quadrupole trap uses an alter-
nating inhomogeneous electric field, whose average
effect is to create a three-dimensional harmonic
potential well. The Penning trap uses a static uni-
form magnetic field. The ions undergo harmonic
motion along the magnetic field and a superposi-
tion of circular motions in the plane perpendicular
to the field.

Laser cooling of neutral atoms has been treated
theoretically by several authors. " ' Various
proposals have been made for trapping neutral

atoms in potential wells created by nearly resonant
optical fields &o—i2

by static electric fields &8 and by
static magnetic fields, ' all of which include laser
cooling. Previous theoretical treatments of laser
cooling of trapped ions have been restricted to har-
monic potential wells. ' '

The purposes of this paper are twofold. First,
we augment the work of Ref. 16 by explicitly in-
cluding the effects of light and atomic polarization
and of the angular distribution of scattered pho-
tons. Unpolarized atoms and isotropic scattering
of reemitted photons were usually assumed in Ref.
16. Cooling limits are derived from energy rate
equations and also from a simple force fluctuation
model. These results are briefly compared with the
work of others.

Second, we discuss laser cooling of ions stored in
a Penning trap. The natural linewidth of the opti-
cal transition used for cooling is assumed to be
much greater than any of the frequencies of
motion of the trapped ions. This is the case which
is most easily realized experimentally. Rate equa-
tions are obtained for the mean-squared values of
the amplitudes of motion of the ion. Saturation
effects are not included, so the results are valid
only for low light intensity. Configurations of
light beams which can cool all three modes of os-
cillation are described. For the Penning trap, un-
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like the harmonic trap, this requires a spatially
nonuniform laser beam profile. Some of the gen-

eral methods were discussed in our previous pa-

per, ' in which they were applied only to laser

cooling of free and harmonically bound atoms.
Some of the results of the calculations presented
here have been quoted in a previous publication,
in which the laser cooling of a single Mg+ ion in a
Penning trap was reported.

Laser cooling of an atom bound in a harmonic
well is treated in Sec. II, in order to illustrate the
basic ideas in some simple cases. A model of laser

cooling of an ion in a Penning trap in which the
motion of the ion is treated classically is given in

Sec. III. These results are briefly compared with

experiment. A quantum-mechanical treatment is

given in Sec. IV. The results are discussed in Sec.
V.

II. LASER COOLING IN A HARMONIC TRAP

A. Formulation of the problem

The problem to be considered here is the laser

cooling of a two-level atom bound in a three-

dimensional harmonic well. The term atom in-

cludes atomic ions. The ground electronic state

~ g ) is assumed to be stable; the excited electronic

state
~

e ) is assumed to decay only to
~ g ) by a

one-photon electric-dipole transition at a rate y.
The energy difference between ~g) and

~

e) is

%coo.

Two-level atoms do not exist, but in practice
they can be approximated. In zero external field,
either the ground or excited states have some Zee-

man degeneracy, since a (J =0)-to-(J'=0i transi-

tion is forbidden for any one-photon process. (J
and J' are the electronic angular momentum quan-

tum numbers in the ground and excited states,
respectively. ) If a strong magnetic field is applied

so that the Zeeman splitting of the optical transi-

tion is greater than either the Doppler or natural

broadenings, then the laser can be tuned close to
resonance with one Zeeman component. The
corresponding magnetic sublevels of the ground
and excited states will form a two-level system,

provided that the excited-state sublevel cannot de-

cay to any other ground-state sublevel. The sim-

plest case involves J=0 and J'=1. More general-

ly, if J'=J+1, then the M =J ground-state sub-

level and the M'= J+1 excited-state sublevel or
the M = —J ground-state sublevel and the
M'= —J —1 excited-state sublevel will form two-

hv:—v' —v =Pi(k —k, )/M,

AE =——,M(v') ——,Mv

=Pi (k —k, ) /2M~A'(k —k, ).v,

(2)

(3)

~i =
2 M(vi ) 2 Mvi

A(ki kgi ) /2M+A(k; —k„.)v;(i =x,y, ~)

(4)

level systems. There are also possibilities when

hyperfine structure is present. If the Zeeman split-

ting is not large compared to the Doppler broaden-

ing, it is still possible to form an effective two-level

system, but only for certain polarizations and

directions of propagation of the light. Systems

which are not effectively two level, including those

in which hyperfine and Zeeman structure must be

taken into account, can be treated by straightfor-

ward extension of the two-level methods. For such

cases, it may be necessary to introduce additional

optical or rf frequencies to ensure that the atoms

continue to interact with the laser beam or beams

used for cooling. For the Ba+ experiments, ' the

magnetic field is zero and the 6s S&&2~ 6p P&~2

transition is used (J=J'= —, ), so four levels are in-

volved (for I =0 isotopes}, aside from the meta-

stable D states, but this case can be treated with

only minor modifications to a two-level theory.
The harmonic potential causes the atom, which

has mass M, to oscillate in the x, y, and z direc-

tions at angular frequencies 0„,0„,and 0,.
These frequencies are assumed to be much less

than the natural linewidth y, which is much less

than the optical transition frequency coo. This is

the "weak binding" case of Ref. 16. This case is

easily satisfied in practice, since, for a typical reso-

nance line, y/2m )20 MHz, and for an rf quadru-

pole trap, 0;/2m. & 2 MHz (i =x,y,z).
The atom interacts with one or more mono-

chromatic polarized laser beams. The electric field

of such a beam is assumed to be given by a classi-

cal plane-wave solution:

E(r, t) =e ReEoexp(ik r —icot),

where Re stands for the real part, e is a unit polar-

ization vector perpendicular to k, and
~

k ~—:k
=CO/C.

Consider a scattering event in which a free atom,

moving with velocity v, absorbs a photon of wave

vector k, emits a photon of wave vector k„and
has its velocity changed to v'. From conservation

of energy and momentum in the nonrelativistic

(v/c «1) limit,
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The subscripts i denote Cartesian components of
vectors, except in AE;, which is the kinetic energy
due to motion in the i direction. These relations
were derived for a free atom, but they also hold for
the harmonically bound atom if the scattering
takes place in a time much shorter than the period
of oscillation, since the atom behaves as a free par-
ticle for such short times. Since resonance scatter-
ing takes place in a time roughly equal to y ', this
condition is equivalent to our weak binding as-
sumption. The conservation laws which led to
Eqs. (2) —(4) do not depend on the photon scatter-
ing being near a resonance. However, we wish to
consider only the near-resonance case, where co is
within roughly the combined Doppler and natural
broadening of the optical transition frequency.
Since it was assumed that v/c « 1 and that

y « coo, this implies that k =-coo/c =ko. We will
also assume that R « fiy, where R =(haik) /2M
=(Rko) /2M. This is easily satisfied for an al-
lowed optical electric-dipole transition. For exam-

ple, for the 6s Si&z~ 6p Pi&q 493-nm resonance
line in ' Ba+, R =h &5.9 kHz, @=2m)&21
MHz, and R/fry=2 8X10 . .For the
3s Si~q~ 3p P3/p 280-nm resonance line in

Mg+, R =h )& 106 kHz, y=2n. &43 MHz, and
R/Ay=2. 5)(10 . Since the fractional change in
k,

I

k —k,
I
/k, is at most about 2v /c+2fik/Mc,

we can also assume k =k, . Equation (4) can be
rewritten as

hE; =R(k; —2k;k„+k„)+A(k; —k„)v;, (5)

where k; and k„are the i components of the unit
vectors k = k/k and k, = k, /k, .

The angular distribution of the scattered photons
depends only on the orientation of the electric-
dipole moment of the transition dg, = (g I

d
I
e &.

We note here that the ground and excited states we
consider are single M states and that an effective
two-level system has been created by, for example,
applying a magnetic field large enough to resolve
the Zeeman structure. The probability that a pho-
ton is emitted into a solid angle dO in the k,
direction is

P, (k, )dQ=(3/8m. ) g I dg, c,.(k, )'
I

'dQ, (6)
J

where

dge = dge/ I dge I

and the summation is over the two unit polariza-
tion vectors for propagation in the k, direction.
These vectors must satisfy

~eg(k )* ej(k ) 5gj

P, (k, ) =(3/8~)sin 0, .

For a 5M=+1 transition

(8a)

P, (k, ) = (3/16m )(1+cos 0, ) . (8b)

Here 8, is defined by 8 k, =cos0, . The isotropic
distribution, which has been used in much of the
previous work, ' ' ' corresponds to letting
P, =1/4~. This is not of the form of Eq. (6).
Given P„we can average Eq. (5) over all angles of
the scattered photon

(bE; &, = f P, (k, )bE;dft=R(f;+f„)+4k;v;,

(9)

where

(10a)

and

I„—= f P, (k, )k,', dn .

The terms linear in k„. drop out because P, (k, )

=P, ( —k, ) for any P, of the form of Eq. (6) or for
the isotropic distribution. The total energy change
per scattering event, averaged over all angles of the
scattered photon, is

(10b)

&~&&, =(b&„&,+&b«, &, +&b&, &,

=2R+Ak. v .

This is the same as Eq. (3) of Ref. 16.

eI, (k, ) k, =0,
where 6;~ is the Kronecker delta, but are otherwise
arbitrary. The normalization is such that

f P, (k, )dQ=1. Equation (6) applies to a non-

moving atom, but it is approximately true for a
moving atom, provided v /c « 1, which has been
assumed. This treatment could be generalized to
include other types of multipole radiation, such as
magnetic dipole or electric quadrupole. The decay
rates for such transitions are usually so slow
( & 10 s ') that it becomes difficult to satisfy the
weak binding condition, so they are not treated
here. Equation (6) can be evaluated if

I
g& and

I
e & are eigenstates of the component of the total

angular momentum along a quantization axis de-
fined, for example, by a magnetic field. For a~=0 transition (M is the eigenvalue of the total
angular momentum in the 8 direction) we have
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ap=6mg
~

a d~ ~', Q—=c/cop. (13)

This is Eq. (24) of Ref. 16. Terms of order (v/c)
and (v/c)(R /%co) are neglected (see Secs. IV A and
IVB of Ref. 16). If we take

~

e d
~

= —,, which

is the average over all polarizations e, then

crp ——2m.kp. As a more realistic example, for the

3p P3/Q (MJ —+ —,)~3s S&c2 (MJ ——+ —, ) transi-2 2 1

tions in Mg+ excited by light polarized perpen-
dicular to the magnetic field, ap ——3mQ. (Note that
the expression given in Ref. 7 is too small by a
factor of 2.) The rate equations for the energies in

the x, y, and z vibrational modes, which in the ab-

sence of collisions are separately conserved, are

The average rate of energy change is obtained by

multiplying the scattering rate by the average ener-

gy change per scattering event. The scattering rate

y, is equal to the product of the number of pho-

tons per unit area per unit time I!%co and the ab-

sorption cross section for photons of that particu-
lar polarization and propagation direction (I
=c

~
Ep

~

/8m. ). For a particular atomic velocity

v, the cross section can be obtained from perturba-

tion theory, ' provided the intensity is below sa-

turation. This is proportional to the Doppler-
shifted natural line shape

a(co, V)=ap(y/2)'/[(cop+k v

+R/A' —co) +(y/2) ], (12)

where

de'
+(I/fico)(o(co, v)[fik;v;+R(f;+f„)])„

dt
(i =x,y,z) .

(14)

Here the velocity average (g( v })„ofan arbitrary
function g( v ) is defined in terms of the velocity

probability function P ( v ) as (g( v })„=—f P( v )

Xg(v)d v. If a form for P(v } as a function of
[E;] is assumed, then Eq. (14) can be solved to ob-

tain t E;] as a function of time. This might, for
example, be a product of Maxwell-Boltzmann dis-

tributions for motion in the x, y, and z directions,
characterized by three temperatures, which need

not be equal, ' ' unless there is rapid energy

transfer between modes by collisions between

bound atoms. A special case of Eq. (14), with ad-

ditional collisional relaxation terms, was discussed

in Sec. V F of Ref. I6. If more than one laser

beam is present, this can be taken into account by

adding additional terms of the same form, with

different e, Ep, k, and co, to the right-hand side of
Eq. (14). Equation (14) holds for a single atom or
for the ensemble average of a cloud of noninteract-

ing atoms. If collisions between atoms are impor-

tant, they can be taken into account by introducing
phenomenological relaxation constants which tend

to equalize the energies in the different modes. '

If the evolution of the entire velocity distribution,
and not of just the average kinetic energy, is of in-

terest, methods based on the Fokker-Planck or
another kinetic equation can be used i3—is, 2P—23,26

B. Cooling limits derived from energy rate equations

1. One laser beam along x axis

Consider a single laser beam propagating along the x axis (k =kx }. Equation (14) becomes

dE„
=(I/fico)(o(co, v)[fikv„+R(1+f )])„,

dt

de =(I/Ace)(a(co, v ))„Rf~,
dt

dEz

dt
=(I/fico)(a(co, v ) )„Rf

(15a}

(15b)

(15c)

(16)

For negative laser detuning (co & cop+R /%=cop) cT(co v ) is larger for negative u„ than for positive u„so
that the right-hand side of Eq. (15a) is negative, until very low teinperatures are reached. This is the basic

principle of laser cooling. If considerable cooling has already taken place, so that the Doppler broadening is

much less than the natural linewidth or the detuning, i.e., k(u„),« y/2 or k(u ),«(cop+R/4 —~),
then Eq. (12) for the cross section can be approximated by

o(co, v)=op(y/2) [(y/2) +( p coco) ] '[1——2(cop —co)k V/[(y/2) +(cop —co) ]] .
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R has been dropped, because it is assumed that R/R ~& (roe —co). Note that

(o(co, v))„-=no(y/2) [(y/2) +(ioo—ro) ]

provided P(v )=P( —v), which we assume to be true. Let y, be the average scattering rate:

y, =(I—/Ra))(o(ro, v) )„.
Equations (15a)—(15c) now become

(17)

(18)

di
=y, [

—2(coo —co)A'k (v„)„l[(y/2) +(cop —io) ]+R(1+f,„)],
de
dt
' =y,Rf~,

dE,
dt

(19a)

(19b}

(19c)

The motion in the y and z directions is heated by recoil and does not reach a steady state. ' The kinetic en-

ergy in the x direction reaches a steady-state value when the right-hand side of Eq. (19a) is zero:

E~„=—,M( v„)„

=&(1+f )[(y/2)'+(coo —~)']/8(coo —~) .

The minimum value is obtained by setting (coo —co) =y/2:

(20)

Eg„——(1+f~ )A'y/8 . (21)

For isotropic scattering, f = —, , so the minimum Ez„fiy/6 ——This .agrees with the result of Javanainen

and Stenholm, in the unsaturated limit. They treated this situation by using a Fokker-Planck equation. If
the atomic electric-dipole moment is oriented along a quantization axis perpendicular to the x axis, corre-
sponding to a dBf =0 transition, then from Eqs. (8a) and (10),

1 2m
2 2

f~=(3/8m. ) J I sin 8(sin8cosg) dPd cos8= —, , (22}

where 8 and P are spherical polar angles, so the
minimum Ez„——7'/40. This is in agreement

with the results obtained by Cook, ' who used a
Fokker-Planck equation, for the one-dimensional

cooling of an unbound atom in a weak standing

wave, when the dipole is perpendicular to the light

propagation direction. This is essentially the same

problem that we have treated here. For an un-

bound atom, a standing wave is required in order
that the average radiation pressure force be zero, so
that is not accelerated continuously in one direc-

tion. Cooling from a single running wave can oc-
cur for the harmonically bound atom, since a
steady force only shifts the equilibrium point in

the potential well. The harmonic restoring force
was required in order to ensure that
P( v ) =P( —v ), which led to the cancellation of a
term in deriving Eq. (16) from Eq. (14). The
method we have used here and in Ref. 16, which is

based on calculating the average energy imparted
to the atom in the photon scattering process, takes

into account heating due to both induced fluctua-
tions (recoil on absorption) and spontaneous fluc-
tuations (recoil on emission}, at least in the low-

intensity limit. These two sources of fluctuations
were introduced separately in Ref. 14. In our
treatment, the induced fluctuations are associated
with the term proportional to f; and the spontane-

ous fluctuations with the term proportional to f„
in Eq. (14).

The treatment of the atomic motion has been

essentially classical. This should be valid in the
limit of large harmonic oscillator quantum num-

bers. The mean occupation number for motion in
the x direction is (n ) -=2E~„/fiQ )y/30„, so
in the weak binding approximation the motion
remains in the classical regime.
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2. Laser beams along x, y, and z axes

In Sec. II B 1 it was shown that a single laser beam parallel to one of the principal axes of the harmonic

potential cools motion parallel to the beam but heats the perpendicular motion by recoil. One simple config-

uration which is capable of cooling all modes of oscillation consists of three laser beams, one along each of
the x, y, and z axes. Denote the laser frequencies hy co; (i =x,y, z) and assume that all are tuned below reso-

nance (co; & coo). Then the atoms are cooled, and, assuming that the Doppler widths are small compared

with either the natural linewidth or the detunings, [k;(v;),« y/2 or k;(u; ),« (cup —cp; }, where

k;—:cv;/c],

dt
= —2y„(cop —co;)Ak (u; )„/[(y/2) +(rpp —cu;) ]+R[y„+(y,)„J;;], (23)

where y„. is the average scattering rate due to the laser beam along the i axis and (y, )t t f +pgy+y . In

the steady state,

E»; = 2M(u; )„

=A'[1+f;(y )t /y;][(y/2) +(~p —rp;) ]/g(cup —~;) ~ (24)

This is minimized, [for constant (y, )„,/y„. ], by setting (cop —ro;) =y/2:

E»; = [ I +f„(y, )t.t ly; ] y/g .

The total mean kinetic energy can be minimized by adjusting the relative laser powers so that

(y„)l(y, )...=(f„)'"l[(f )'"+(f )'"+(f„)'"].

(25)

(26)

For the isotropic case, the minimum kinetic energy in each mode is fiy/4, which agrees with Ref. 16 (Sec.

V E2).

3. One laser beam at oblique angle to axes

Another method of cooling all three modes of oscillation is with a single laser beam which is not parallel

to any of the principal axes. Equation (14) can be used to obtain the cooling rate. As has been pointed out

previously, it is necessary that all of the motional frequencies (0„,0», and 0,} be different. '6'23 Otherwise

there is at least one mode of oscillation perpendicular to the laser beam which is not cooled, but rather is

heated by recoil, like the y and z modes discussed in Sec. IIB 1. In the low Doppler limit [(k v), « y/2
or ( k v ),« (cup —co )],

dE;
=y, [ 2(rpp rp)Ak f—;(u; )„/—[(y/2) +(rpp —co) ]+R(f;+f„)J,2. 2 2 2 (27)

where we have assumed that (u;vj )„=0if i+j This sh.ould be valid if the frequencies are sufficiently dif-

ferent and the intensity is sufficiently low. In the steady state,

E» =&(I+f;lf )[(y/2) +(rpp —rp) ]/g(rpp —rp)

and this is minimized by setting (ao—m) =y/2.
Then

E»; =(1+f„/f;)hy/8 . (29)

If one has control over the direction of the beam,
then the total average kinetic energy can be mini-
mized if

f; =(fg()' l[(f )' +(f~)' +(f„)' '] . (30)

For an isotropic angular distribution, this can be

(28)

I

accomplished by pointing the laser along the

+y+z direction, in which case, E~; ——A'y/4.

This is close to the configuration used by
Neuhauser et al. Equation (29) is equivalent to
the low-intensity limit of Eq. (31) of Javanainen.

C. Cooling limit derived from force fluctuations

The steady-state cooling limits derived in Sec.
II B can also be obtained from a simple classical
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model, in which the effect of the scattered photons
on the atomic motion is divided into an average

damping force and a random, fluctuating force.
The advantage of this approach is its great simpli-

city; it uses concepts which are familiar from the
theory of noise in electronic circuits.

The one-dimensional cooling case, which was
solved by the energy rate equation method in Sec.
II B 1, will be treated, in order to demonstrate the
basic method in the simplest case. The method
can also be applied to the other cases treated in
Sec. II B.

The equation of motion (Newton's second law)
for the x coordinate of the atom is

Mx +MA„x =Fx(t), (31)

where F„(t) is the x component of the force on the
atom due to photon scattering. Each scattering
event imparts a momentum impulse A(k —k, ) in a
time less than about y ', which we have assumed
to be very short compared to the period of oscilla-
tion. Therefore we can represent F„(t) by a sum of
Dirac delta functions:

F„(t)= g 5(t —t, )A'[k —k,„(l)], (32)

where k (I) is the value of k for the lth scatter-
ing. The scattering events, take place at random
times at an average ratero(rp, v)/fico. The time-

averaged force on an atom of velocity v is

(F„)=(I/fico)o(rp, v }4k, (33)

—=y, h'k —MI x .

The equation of motion can now be written as

(34)

MX+Ml X+MQ„X=F'(t}:F„(t)—(F„)—,
(35)

which describes a damped harmonic oscillator
driven by a random force F'(t). We have eliminat-
ed the constant force y, kk by shifting the origin,
so that X(new) =x(old) —y, Rk/MQ„. This equa-
tion has the same form as the one which describes
the response of a series RCL (resistance-
capacitance-inductance) circuit to a fluctuating
emf.

The fluctuations in X can be calculated by stand-
ard methods. Let G(f) be the complex gain
function which describes the steady-state response
X to a sinusoidal F' with frequency f, and which is

since the k,„(l}terms average to zero. In the low

Doppler limit,

(F„)=y, [1 2(rpp rp—)kx/[(—y/2) +(rpp —tp) ]]flak

defined by

X(f)exp(2n ift) =G (f)F'(f)exp(2irift ) . (36}

Here the physical quantities X(t) and F'(t) are
given by the real parts of X(f)exp(2irift) and

F'(f)exp(2irift), respectively. Let w(f) be the
one-sided power spectral density of F'(t), defined

by

w(f)=4 f (F'(t)F'(t+r))tcos2irfrdr .

Then the mean-squared value of X is

(X'&= f, IG(f)I'w(f}df.

For the system described by Eq. (35),

G(f) =1/M[Q„(2irf) —+i 2irI f] .

(37)

(38)

The spectral density function can be calculated by

following the standard derivation for the power
spectrum of shot noise. The only difference is

that the impulses vary in size because of the ran-

dom direction of the emitted photon. A derivation

is given in the Appendix. We have

w(f)=2y, A' ((k —k ) ),
=2y, iri'(k'+ (k' ), )

=4My, R (1+f,„), (39)

=y,R(1+f )/MI'Q„'. (40)

The average kinetic energy is

E „=, M(U')= —,MQ„(X—)=—,y R(1+f )/I

=Pi(1+f )[(y/2) +(rpp —rp)']/g(happ —rp) .

(4&)

which is valid for frequencies f less than about

y/2ir. The fact that Eq. (39) is plausible can be

seen by examining the more familiar expression for
the spectral density of current for shot noise,

wr(f) =2er =2e N, where I is the average current,
and N is the average number of electrons per
second passing through a temperature limited
diode. Substituting the rms change in momentum

for e and the average scattering rate for N, we ar-
rive at Eq. (39).

The term
~

G(f)
~

in the integrand in Eq. (37)
is sharply peaked around f=Q, /2m. , where w(f)
is nearly constant, so

(X )—=w(Q„/2') f ~

G(f)
~

df

4y R ~ df(1+f„)M p [Q„' —(2irf )']'+ (2irl f )'
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In the last step Eq. (34) was used to express I in
terms of other parameters. This is the same result
obtained previously from the energy rate equation
[see Eq. (20)], and the minimum energy is obtained
when (cop —co) =y/2 [see Eq. (21)]. Equation (35)
is the Langevin equation, with the addition of the
harmonic restoring force. Therefore the theory
developed for the solution of the Langevin equa-
tion could be applied to the present problem. ' '

ro, =(4qAp/M)' (46a)

We have assumed that q, Ap, and Bp are all posi-
tive. The amplitudes (r, r, r, ), defined to be
greater than or equal to zero, and the phases
(0,0„0,) are determined by the initial conditions.
The frequencies are the magnetron frequency co

the modified cyclotron frequency co,', and the axial
frequency co„where

III. LASER COOLING IN A PENNING TRAP
(SEMICLASSICAL TREATMENT)

A. Classical motion of an ion in a Penning trap

co =co /2 —(co /4 —co /2)

co,
' =co, /2+(co, /4 —ro, /2)'i

(46b)

(46c)

V(x,y, z)=Ap(2z —x —y ) . (42)

Consider an ion of mass M and charge q. The
equation of motion for the ion position r is

M v = —q V V(r)+(q/c) v X B (v —= r ) (43)

and the equations for the Cartesian components
(x,y,z) of r are

The classical motion of a single ion in a Penning
trap has been treated previously. ' Here we sum-
marize the important results.

The idealized Penning trap consists of a uniform
magnetic field B=Bpz along the z axis and a quad-
rupole electrostatic potential of the form

Here co, =qBp/Mc is the ordinary cyclotron fre-
quency. These solutions assume that co, & 2'„
since otherwise the motion is unstable. A typical
experimental configuration might have M =25u,
q =e, Bp ——1 T (10 kG), and Ap ——10 V/cm . For
these values of the parameters, co, =2m. )& 197.7
kHz, co =2m X33.7 kHz, and co,'=2m. )(580.6
kHz. The ion executes simple harmonic motion at
frequency co, in the z direction and a superposition
of circular motions at frequencies co,

'
and co in

the xy plane. Figure 1 shows a typical xy orbit for
the case co «co,' and r &r, . In this case the
magnetron motion can be interpreted as an EXB
drift of the center of the cyclotron orbit around the
trap axis.

U„=(2qA p /M)x + (q8p /Mc) 0„,
Uy {2qA p /M)y —(qBp /Mc )U»

U, = —(4qAp/M)z .

(44a)

(44b)

(44c)

july

The general solutions to these equations are

x(t) =r cos(co t +0 )+r,cos(co,'t+0, ),
(4Sa)

y(t) = —rms (~mt+0m) csin(coct+0c) s

(45b)

z (t)=r,cos(co, t +0, ) . (45c)

We can also write the expressions for x and y in
the complex form

x(t)+iy(t)=r exp[ i(ro t+8 )]-
+r, [ i(ro,'t+8, )] . — (45d)

FIG. 1. Orbit of an ion in a Penning trap, projected
onto the xy plane. The magnetic field direction is out of
the drawing and the charge of the ion is assumed to be
positive.
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The kinetic energy of the ion is

1 2 1 2 2 1E»= lMV = zMr~co~+ lMrzcoz +Mr~rzco~cozcos(co~t co—zt+8~ —8z)+ zMrzcozslll (cozt+8z) .

The potential energy is

Ep=qV(r)= , M—co,[r,cos (cozt+8, ) ,—(r—+r,) r~—r, cos(co t co,'—t+8 —8, )] . (48)

The total energy is a constant of the motion,

E=E»+Ep ——, Mr, co,—+MQ(co,'r, co r —),

Q =
z (coz —co~ } .

%e are interested primarily in reducing E~, rather

than E, since this will reduce Doppler shifts. The

time-averaged kinetic energies in the axial, mag-

netron, and cyclotron modes are

(E», & = —,
'
Mr,'co,',

(E» )= , Mr co—

(E», ) = —,Mr, co,
'

I

Hence, we are interested in reducing r„r, and r, .
Note, however, that an increase in r leads to a de-

crease in the total magnetron energy, because of
the potential energy contribution. Therefore, the

orbit is unstable toward an increase of r if the ion

is perturbed, for example, by collisions with neutral

molecules. In the following, the term "cooling"
will refer to the reduction of the kinetic energy,

regardless of what happens to the total energy.
We note that the canonical momentum p is de-

fined by p =M v+(q/c)A, where A is the vector

potential. %e choose the symmetric gauge, where

A(r)= —,BXr. In this gauge, the axial component

of the canonical angular momentum is a constant

of the motion given by

I.,=xp» —yp„=MQ(r r, ) . —

S. Effect of photon interactions

%'e treat the effect of a laser beam on the motion of an ion with essentially the same assumptions that

were made for the case of a harmonically bound atom. The ion is assumed to have only two internal energy

levels, which are connected by an electric-dipole transition. The decay rate of the upper state is assumed to
be much greater than any of the frequencies of motion (co,', co, and co,). Hence a photon scattering event

can be considered to take place instantaneously, as far as the motion of the ion is concerned. In this sem-

classical treatment, the ion moves according to the classical equations of motion between scattering events,

which perturb its velocity. The scattering events occur at a rate determined by quantum-mechanical pertur-

bation theory. We consider only the limit of low laser intensity. The various quantities cop p, R f; f„
dg„P„and oo are defined as in Sec. II.

Consider an event in which an ion moving according to Eqs. (45a}—(45c) absorbs a photon of wave vector

k and emits a photon of wave vector k, at time to. For t ~ to, the motion is described by the amplitudes r;

and the phases 8; (i =m, cz};for t&tp they are modified to r and 8,'. let hv=—A'(k —k, )/M. Then

hr, =—(r,' ) r, =(huz lcoz }— (2r, huz/coz )s—in(coztp+8z ),
grl =(r' )l—r =[(hu„)'+(hu») ]/4Q +(r~/Q)[sin(co tp+8~ )bu„+cos(co~tp+8 Qu»],

hr, =(r,' ) —r, =f(du„) +(hu»—) ]/4Q —(r, /Q)[sin(co,'tp+8, )hu„+cos(co,'tp+8, )hu»] .

These equations are derived from combinations of Eqs. (45a}—(45c} and their time derivatives. Equation

(53a) is, of course, equivalent to Eq. (4), since the axial mode is harmonic. From Eqs. (53b) and (53c) it can

be shown that the magnetron radius is reduced if hv is tangential to and in the same direction as the mag-

netron motion, while the cyclotron radius is reduced if hv is tangential to and in the opposite direction as

the cyclotron motion. The radii are increased for the opposite cases. This behavior has been noted previous-
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ly. The requirements for cooling the cyclotron mode are similar to those for a harmonic oscillator, while

those for the magnetron mode are different.

C. Rate equations for mean-squared amplitudes

Uniform laser beams

Here we consider the effect of a plane-wave laser beam of the form given by Eq. (1). We assume the in-

tensity to be constant over the orbit of the ion. Consider a laser beam parallel to the z axis. If the laser fre-

quency co is less than coo, the axial motion is cooled. Throughout the rest of Sec. III we neglect 8/fi com-

pared with (cop —co) or y. The magnetron and cyclotron modes are heated by recoil. As far as the axial

mode is concerned, this is the same as the problem treated in Sec. II81. In the steady state

&E .) =e 1+f.)[(y/2)'+( .— )']/g( .— ),
and for the optimum detuning,

(~p —~o)=y/2, &E~, )=(1+f )+Ig.

(54)

+r, to,'sin(co,'t+8, )]/[(y/2}2+(cop to} ]j . —

For an individual ion, the amphtudes and phases (r,r„8,8, ) are perturbed by each scattering event. To
find the average rate of change of (r, ), (r ),(r, ), we multiply (I/fico) by the cross section [Eq. (55)] and

by the change per scattering [Eqs. (53a}—(53c)] and average over r, r„8,8„and k, :

d (r,')
+2y, Rf /Mto, ,

dt

dt
=y, I(top cobe co~(r —)/MQ[(y/2) +(top —to} ]+R(1+f +f~)I2MQ J,

d (r,')
8t

(56a)

(56b)

=y, {—(cop —to)irtk to,'(r, )/MQ[(y/2) +(cop —co) ]+R(1+f~+ f~)/2MQ ] . (56c)

I

ve laser detuning, (co &cop), Eq. (56c) ducing a laser beam with some component along z,

(r, ) is reduced until it reaches a with negative detuning. However, there is no com-

value, while Eq. (56b) predicts that bination of uniform laser beams which is capable
es without limit. This is because the of cooling a11 three modes.

For negatl
predicts that
steady-state
(r~ ) lilcreas
Doppler shift causes the scattering rate to increase
when either the cyclotron or magnetron contribu-
tion to the velocity is opposed to k. For positive
laser detuning, (~ p ~0), the opposite occurs. The
Doppler shift due to the heated mode will eventu-
ally cause the approximation for the cross section
[Eq. (55)] to break down, which will modify the
heating and cooling rates, but not change these
qualitiative features. The axial motion is heated
regardless of detuning. It could be cooled by intro-

2. Nonuniform beam along x and uniform beam

QI07tg 2

Cooling of both the magnetron and cyclotron
modes can be accomplished with a laser beam
whose direction of propagation is in the xy p1ane

and whose intensity increases on the side of the z
axis on which the magnetron velocity is a1ong the
direction of propagation. The photon scattering

The second terms on the right-hand sides of Eqs. (53b) and (53c) average to zero; therefore, the heating rates

of the magnetron and cyclotron modes are given by

dt dt
=y,R (f +f~)/2MQ

The brackets around r and r, denote ensemb1e averages. Now consider a laser beam propagating along

the x direction (k =kx ). Assume that the system has somehow been cooled, so that k (U~), &&y/2 or

k(U„),«
~

pip —to
~
. Then, using Eqs. (16), (45a), and (45b), the scattering cross section is

tt(co, v):0p(y/2) —[('y/2) +(cop co) ] I
—1+2(cop—co)k[r ed~sin(to t+8~)
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then tends to cool the magnetron motion. With
negative laser detuning, the cyclotron motion will
be cooled, due to Doppler effect velocity selection.
This method has been demonstrated experimental-
ly. ' The axial motion can be cooled with a
separate beam or by tilting the nonuniform beam
so that it has a component along the z axis.

Here we treat the case of a nonuniform beam of
frequency co] and wave vector k]x and a uniform
beam of frequency m2 and wave vector k2z which
cools the axial motion. The laser intensity of the
nonuniform beam is assumed to be a function of y
with value I& at y =0 and a positive slope I] /yo at
y =0 (see Fig. 2). %e approximate the intensity
profile by I(y)=I, (1+y/yo) for ~y ~

&&yo. The
rms magnetron and cyclotron radii are assumed to
be much less than yo, so that this linear approxi-
mation is valid. Let I2 be the intensity of the laser
beam along z. Let the scattering cross sections for
the beams along the x and z axes, which depend
upon the light polarizations through Eq. (13), be
o &(co, , v ) and cr, (ro2, v ), respectively, with resonant
(v=0,co=coo) cross sections cro, and o02. The rate
equations for the mean-squared amplitudes are

d (r,')
dt

=(I2/fuo2)(cr2(c02, v)b, r, )

+(I,/~, )((1+y/y, )cr, (co&, v )hr, ),

-y 0

FIG. 2. Intensity profile of nonuniform laser beam.
Il is the intensity at y =0 and Il /yo is its slope. The
tangent to the curve is used as an approximation to the
actual profile in the calculation.

d (r,') =(I, /Ace, )((1+y/yo)cr, (co, , v)Ar )
dt

+(I(/ficus')(cr2(c02, v)hr; ), (57b)

where i =m, c. The 4r, and b,r; are evaluated
from Eqs. (53a) —(53c) using the k appropriate to
each laser beam. %e now make the low Doppler
approximation to the cross section and perform the
ensemble average. The average scattering rates y,I

(I =1,2) are given by

yg( =(I(cro(/~()(y/2)'/[(y/2)'+ (coo ()c'o] —.
The rate equations become

d( )
2 2 2

dt
= —2y, z(coo —co&)hk2 (r, ) /M[(y/2) +(coo—co2) ]+(2y,2R /Mco, )[1+(1+y„/y,2)f„l,

2 2 2 2

dt
= —y, (A'k, (r )/2MQyo+y, ((coo—a), )A'k, co (r~ )/MQ[(y/2) +(c00—co, ) ]

(58)

+(y„R /2MQ') [1+(1+y„/y„)(f,„+f„)],
d (r,')

=y, (A'k((r, )/2MQyo —y, ~(c00—co()Ak(co,'(r, )/MQ[(y/2) +(coo—co() ]2 2

+(ys(~/2MQ')[1+(1+F2/ys()(f~+f~)] .

The axial motion can be cooled if co2 & coo [see Eq. (59a)]. The first term on the right-hand side of Eq.
(59b) shows cooling of the magnetron motion due the intensity gradient (for yo «0), the second shows heat-
ing due to Doppler selection (for cu] «coo), and the third shows heating due to recoil. For yo «0 and ~] «uo,
the first term on the right-hand side of Eq. (59c) shows heating of the cyclotron motion due the intensity
gradient, the second shows cooling due to Doppler selection, and the third shows heating due to recoil. Some
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terms have been neglected in Eqs. (59b) and (59c) because they are at most of relative order (kiu„/y)(y/yp)
compared to the recoil heating term. The term in the first set of parentheses is small, by the low Doppler
assumption, while the term in the second set is small because (r ), and (r,), are assumed to be much
less than yp. The condition for simultaneous cooling of the magnetron and cyclotron modes, for yp &0 and

coi (cop~ is

~~ & [(y/2) +(p —~o&) ]/2" 13'p(~p —i) &roe

Assuming this condition is satisfied, as can be obtained experimentally, the steady state is given by

( r') = &[1+ (1+y* 1/y. 2)f 1[(y/2)'+(rop —ro2)']/2M''(p —ro2»

&ku p[1+(1+y.2/y*l)(f +fp )l
rm 2 22MQ[1 —2k|yp(cop —ro))co /[(y/2) +(cop —ro)) ])

~k13 p[1+(1+Y 2/Y l)(f +f~)l
rc ——

, 2 22MQ[ktyp(rop —coi)co,'/[(y/2)2+(cop —co, )']—1 j

(60)

(61a)

(61b)

(61c)

The average kinetic energy can be obtained by in-

serting these values into Eqs. (51a)—(51c). The
parameters y, q/y, ~, (cop —col), (cop —co2), and yp can
be adjusted in order to minimize the kinetic ener-

gy. In the general case, this is complicated.
We consider a simple case which can be experi-

mentally realized. For this case, the Doppler selec-
tion cooling rate of the cyclotron motion is much
greater than the intensity gradient heating rate, and
the Doppler selection heating rate of the mag-
netron motion is less than and not too close to the
intensity gradient cooling rate. These condition are
most easily satisfied when co,'/co » 1, which is
obtained by reducing the electric potential. Also,

yp must fall within a certain range, so that

kiypco,'/y» 1 and (1—2kiypco /y) is not too
small, assuming that (cop —co~) =y/2. Then the

magnetron kinetic energy is much less than the cy-
clotron kinetic energy. We have

&Ex, &=&[1+(1+y,i/y, 2)f ]

X[(y/2) +(cop —~op) ]/8(rop —Nz) .

(62a)

I

The total kinetic energy can be minimized by ad-
justing the relative laser beam intensities so that

y, i/y, 2=[2(f +f )/f ]'~'. (64)

3. Nonuniform beam in xz plane

Cooling of all three modes can be accomplished
by rotating the direction of the nonuniform beam

For the isotropic angular distribution, this con-
dition is y, ~ly, z ——2, in which case, (Ex, )

, (Ez, ) =f—iy/4 This gi.ves the same average ki-
netic energy in the x, y, and z directions as for the
harmonic trap discussed in Secs. II B2 and II B3.
The minimum energies are slightly different for an
anisotropic distribution, as is the case for the har-
monic trap.

&Es; & =[1+(1+y,i/y, 2)f 1%/g (63a)

&E~, &
=[1+(1+y.2/y 1)(f—+fg )l&/4.

(63b)

&E», & -=&[1+(1+y,2/y, i)(f +f~)l
X [(y/2)'+ (~p —~ ~ )']/4(~p —~ ~ ),

(62b)

and we neglect (Ez ). For constant y, ~ and y, 2,

the kinetic energies are minimized if we set

(cop —co2) =(a)p —coi) =y/2:

FIG. 3. Nonuniform laser beam configuration which
is capable of cooling all three modes of motion of an ion
in a Penning trap. The trap coordinate axes are indicat-
ed. The ion cloud is at the origin, and the direction of
the magnetron rotation is indicated by an arrow. The
laser light propagates in the f direction, which lies in
the xz plane. The laser beam is focused so that it is
more intense for y &0 than for y (0.
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described in Sec. III C 2 so that it has a component
along z and eliminating the uniform beam. Let
k=k sinOx+k cosOz, (0&0&@/2), be the wave

vector for the nonuniform beam, which has fre-

quency co. The geometry is shown in Fig. 3. Let
y, be the average scattering rate. In the low

Doppler approximation,

2

dt
2y (cop co)Rk eos 8& r ) /M[(y/2) + (cop —co) ]+(2y R /Mco )(cos 8+f )

d&rm & = —y, Ak sinO&r )/2MQyp+y, (cop co—}4k sin Oco &r )/MQ[(y/2) +(cop co) —]2 2 2 2 2

(65a)

+(y,R/2MQ )(sin 8+f +f~),

d&r,')
2 ' 2 & 2 2 2

dt
=y, haik sinO&r, )/2MQyp y, (cop —co)haik s—in Oco,'&r, )/MQ[(y/2) +(cop —co) ]

(65b)

+(y,R/2MQ )(sin 8+f +f&) . (6Sc)

Some small terms have been neglected. The axial motion can be cooled if co &mp. The condition for simul-
taneous cooling of the magnetron and cyclotron modes, assuming yp )0 and co & cop, is given by Eq. (60),
with k sinO substituted for k]. If this condition is met, which is feasible experimentally, the steady-state
mean-squared amplitudes are given by

& r, ) =Pi(1+f /cos~O)[(yl2)~+(cop co) ]/2—Mco, (cop co}, — (66a)

fikyp(sin 8+f +f~ )
&rm

2 22MQsinO[1 —2k sinOyp(cop —co)co /[(y/2) +(cop —co) ]]

A'kyp(sin'8+ f +f~ )

2MQsinO[2k sinOyp(cop —co)co,'/[(y/2) +(cop —co) ]—1]

(66b)

(66c)

We consider the same limit as in Sec. III C 3, i.e., the Doppler selection cooling rate of the cyclotron motion
is much greater than the intensity gradient heating rate, and the Doppler selection heating rate of the mag-
netron motion is less than and not too close to the intensity gradient cooling rate. Then

&E~)=N 1+f Icos 8)[(y/2) +(cop —co) ]/8(cop —co},

&Ecc, ) -=fr[1+(f~+fp, )/sin 8][(y/2) +(cop —co) ]/4(cop —co),

(67a)

(67b)

and &Ez ) is negligible. These quantities are
minimized by setting (cop —co) =y/2:

&Ecc, ) =(1+f Icos 8)hyl8,

&Eg, ) =[1+(f +f~)l»n'8]Ay/4.

(68a)

(68b)

tan48=2(f +f )/f„. (69)

For the isotropic angular distribution, this condi-
tion is, 8=tan '(W2) =54.74, in which case,
&Ez,):—, &Ez, ) =—Ry/4. Thi—s is the same limit
obtained in Sec. III C 3.

The total kinetic energy is minimized with respect
to 0 for

4. Comparison with experimental data

The most unambiguous comparison between
theory and experiment can be made for the case of
a single ion. The details of energy exchange due to
collisions are not precisely understood for the case
of a cloud of ions; moreover the frequencies of os-
cillation co„co,', and co are all shifted by the pres-
ence of space charge. Both of these problems are
absent for a single ion, and the simple theory dis-
cussed above should apply.

Laser cooling of a single Mg+ ion in a Pen-
ning trap has been performed previously. The
cooling achieved was such that the Doppler
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broadening was significantly less than the natural
linewidth of the transition, so the results of the last
section should apply. For this experiment, a sin-

gle Mg+ ion was stored in the trap and cooled.
The trap parameters were 80=-1.01 T and

Ao ——Vo/ (ro+2zo)—:2.95 V/cm, where the in-

terelectrode voltage was Vo =-2 V and the electrode
dimensions, in the notation of Ref. 4, were such
that ro+2zo =0.678 cm . This gave approximate
observed frequencies of co,

'
=—2m. X638.5 kHz,

co, =-2~X106.9 kHz, and co -=2m. X8.95 kHz.
The laser beam intensity profile in the vicinity of
the ion was measured. to be
I(y)=I'exp[ —2(y —d) / wo], where d-=15 pm
and mo -—25 pm.

From this expression, we estimate

1 1 dI 1

yo I(y =0) dy 10.4@m

The transition involved in the laser cooling was the
Mg+ (3p P3/2, Mq ——, )~—(—3s S,ri, MJ —

g )

transition at A. =279.6 nm; for this case [see Eqs.
(Sb) and (10b)] f = —, and f +f~= —,. Froin Eq.
(69), the angle of laser propagation that minimizes
the total kinetic energy is 0=tan '(3' )=52.77'.
Experimentally, 0 could be varied between 82' and
90', and it was set at 82'. The laser detuning was
such that (coo—co) -=2m. &25 MHz.

From Eqs. (66a) —(66c) we predict (r, ) =(4.17
X 10 cm), (r, ) =(2.07X10 cm), and

(r ) =(5.25X10 cm) . An important parame-
ter in very high resolution spectroscopy is the

1

second-order Doppler shift Leo&&/coo-=——, (U ) /c .
Because this shift is proportional to the kinetic en-

ergy of the ions, it is convenient to define a "tem-
perature" in terms of the kinetic energy. The con-
cept of a temperature may not be valid for a single
ion, but it is reasonable to define temperatures for
the axial and cyclotron degrees of freedom in
terms of the time-averaged kinetic energies as

(Ex, ) = , klan T, and (Ex, )—=k&T„where klan is
Boltzmann's constant. For the magnetron degree
of freedom, there is an additional problem since
the total energy is negative (when the electric po-
tential is defined to be zero at the origin) and de-
creases to minus infinity as (r~ ) goes to plus in-
finity. However, it is still useful to define, by anal-

ogy with the cyclotron motion, (Ex ) =k&T
Using these definitions, we find for the experiment
of Ref. 9, T, =—11 mK, T, =1.0 mK, and

Tm =—1.3 X 10 K. From the residual Doppler
broadening of the optical lines measured in Ref. 9

we estimated that T, =(50 +30) mK and T (1
mK. At the present time we do not understand
why the measured temperatures are higher than
predicted. One difficulty not mentioned previously
is the possible collisional heating due to impurity
ions, such as NH3+, H30+, N2H+, and HCO+,
that might be simultaneously trapped.

IV. LASER COOLING IN A PENNING TRAP
(QUANTUM-MECHANICAL TREATMENT)

A. Quantum states of an ion in a Penning trap

and

Hz=pz/2M+ 2 Mezz (71b)

Here r and p are operators and L, is an opera-
tor defined by L, =—xpy —yp„. This Hamiltonian
has been dealt with by other authors. ' ' Here we
summarize the useful results. H, is the Hamiltoni-
an of a one-dimensional simple harmonic oscilla-
tor. Therefore it can be rewritten as

Hz =(Nz+ 2 )~z ~ (72)

where

N, =a, a, ,

z =zo(a, +a, ),
p, =izoMco, (a, —a, ),
zo ——(A/2Mcoz )

'

(73a)

(73b)

(73c)

(73d)

Hxy is the Hamiltonian of a two-dimensional iso-
tropic oscillator, plus a term proportional to L,. It
can be rewritten as

Hxy =(Nc+ 2 )~c (Nm + 2 )~m

where

(74)

N; =a; a; (i=c,m)

ac =(ax+iay )/2

(75a)

(75b)

The Hamiltonian operator for a single ion in the
same idealized Penning trap which was treated
classically in Sec. II A, is

H=[p —(q/c)A(r)]i/2M+qV(r)—:H~+H, ,

(70)
where

Hxy =(px+py )/2M+ 2MQ (x +y ) 2cLz ~

(71a)
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a~ =(a„—ia& )/2

x =ra(a„+a„)/2'~, y =ro(a~+a~)/2'

(75c)

(75d)

where I is the identity operator. The axial com-
ponent of the angular momentum operator can be
written in the form

p =rpMQ(a —a )/2' (j =x,y)

r =(fi/Mn)'

(75e)

(75f}

[a;,aj]=0,
[a;,aJ ]=0,
[a;,aj ]=5JI (i =z,c,m)

(76a)

(76b}

(76c)

The three sets of raising and lowering operators
satisfy the commutation relations

L, =(N~ —N, )fi . (77)

The complete set of eigenstates of H is given by
the set of simultaneous eigenstates of N„N, and

N, . We label these states
~
n„n, n, ), where n„

n, and n, are the eigenvalues of N„N, and N,
and can be any set of nonnegative integers. They
can be generated from the

~

0,0,0) state by apply-
ing the raising operators. The normalized states
are

~
n, n~, n, ) =(n, !n !n,!) '~ (a, ) *(a ) (a, )

'
~0,0,0) .

the coordinate-space representation of
~

0,0,0) is

(x,y,z ~0, 0,0) =m ~ (2'~ zoro) '~ exp[ —z /2zii (x +—y )/2rii] .

(78)

(79)

Explicit expressions for the wave functions for arbitrary quantum numbers have been given by Sokolov and
Pavlenko. ' By comparing the classical expressions for the energy [Eq. (49)] and the axial angular momen-
tum coinponent [Eq. (52)] with the corresponding quantum-mechanical operators, [Eqs. (72), (74), and (77)],
one obtains the following correspondences between classical amplitudes of motion and the quantum num-
bers:

2 2r, -(n, + —, )rp,

r (n + 2)rp,2 2

r, -4(n, + —, )zo .2 2

(80a)

(80b)

(80c)

B. Transition rates

We treat the interaction of the ion with the electromagnetic field by second-order time-dependent pertur-
bation theory, in the form of the "golden rule. " The motion of the ion as a whole, as well as its internal
structure, is described by wave functions. In Sec. III, only the internal structure was treated quantum
mechanically. Consider the transition rate from

~

n„n, n, )—:
~

[n ] ) to
~

[nf] ) induced by a near-
resonant uniform laser beam described by Eq. (1). The ion is in its ground electronic state

~
g) before and

after the transition. This is a kind of spontaneous resonance Raman scattering, through the intermediate
electronic state

~

e ). The cross section for this process is given by Eq. (19) of Ref. 16. We make the
electric-dipole approximation and sum over all polarizations and directions of the scattered photon.

This cross section is

(81)
( [n/]

~

exp( i k, r)
~
[n—J] ) (.{n/]

~

exp(i k.r)
~
[n ] )

coo co iy/2—+co—( [n'] )—co( [n'] )

t i & ~ iwhere co( I n'] )
—=(n,'+ —, )co, +(n,'+ —, )co,

' (n' + —, }co—, and the other terms have been defined previously.
We have replaced x of Ref. 16 with r here. The transition rate is obtained by multiplying this cross section
by I/%co.
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The transition rate due to a nonuniform laser beam can also be calculated by perturbation theory. The

only difference is that the electric field vector due to the laser perturbation —d.E(r, t), which induces tran-

sitions to the intermediate state, is no longer a uniform plane wave of the form of Eq. (1). We consider only

the low-intensity limit, in which case the transition from the intermediate state to the final state is induced

by the zero-point field. Consider a nonuniform beam like the one treated in Sec. III C 3, which has an inten-

sity gradient in the y direction and has a wave vector k =k sin0x+k cosOz, (0 & 0 & m/2). Let the electric

field be

E(r, t) =e(1+y/2yo)ReEoexp(i k r ic—ot),

which gives the intensity profile

(82)

(83)Ib ) =Iol I+&/yo+(y/2yo) 1=—Io( I+V/yo)

for ~y ~
&&yo. We c'an use this E in the perturbation matrix element to reproduce the case treated classi-

cally in Sec. III C 3, provided that the wave functions are localized in the region
~ y ~

&&yo. The transition

rate is

y( [ n j ~ t n j )=(Io /fico )cr ( [ n j~ t
nf j ),

where the effective cross section o* is given by

~'(In'j - [nf j )

(84)

2

( j nf j ~

exp( i k,—r)
~

[.n'j ) ( j n'j
~
(I+y /2y, )exp(i k r )

~

[n'j )
=oo(y/2)2 . i P, (k, )d Q . (85)

coo co —iy/—2+ro([nJ j )—cu([n'j )

C. Rate equations for average quantum numbers

We calculate the rate equations for the ensemble averages of the quantum numbers (n, ), (n ), and

(n, ). We do not consider coherences between
~
n„n, n, ) states. Let P(jn j) be the probability that the

ion has the set of quantum numbers j n 'j. We can derive the rate equations for any of the cases considered

in Sec. III. For the sake of brevity we consider only the case of the nonuniform laser beam propagating in

the xz plane [Sec. III C3], using the effective cross section defined by Eqs. (84) and (85). The rate equations

are given by'

d(n;)
P( j n j )y([n j~ t

nf j )(nf —n;),I I I (86)

where

i =z,m, c .

We make the low Doppler approximation. In this limit we can make the approximation

[cop co iy/2+co( I
n'—j )——co( I n'j )]

=(coo co iy/2) '[1+[co(jn —j ) ——oi( jnj j )]/(coo co iy/—2)j—
in Eq. (85). Equation (87) is valid for

~
[co(jn'j) —co(jnjj)]/(coo co iy/2) —

~

&—&1.

(87)

This condition is violated for some terms in Eq. (85), which correspond to large differences in quantum
numbers, since the summation is over all possible j n j, but these terms are of negligible size, because the
matrix elements are very sma11. With this approximation, Eq. (86) can be evaluated by straightforward alge-
bra. We outline the important steps here. The method was previously used for the harmonic trap in Ref.
16. We note that
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& [n']
I
A

I
[n'] )[~(!n'] }—~({n'!}l= & [n']

I
[A»«] I

[n'I )

for any operator A. The summations in Eq. (86) over [n ] and jnj] can be carried out using the closure

property, and we obtain

(88)

Here

=y, QP([n']) f &[n') ~A [N;,A]
~

[n'])P, (k, )dQ.
)nlI

(89)

A—=exp( ik—, r)[(1+y/2yp)exp(ik r)+[(1+y/2yp)exp(ik r), H/A(pip co—iy—/2)]], (90)

y, = (ipa p/W)(y/2)'/[(cop c—)0 +(y/2) ] (91)

is the average scattering rate. We define the ensemble averages &r; ), using Eqs. (80a) —(80c) by

& r, ) —=4z p&n, + i )—=4zp g P([n'] }(n,'+ ~ },

&r; ) =rp&n;+ —, ) =rp g P([n ])(n;+ —,) (i =m, c) .

(92a}

(92b)

The rate equations for &r; ) (i =z, m, c), obtained

by evaluating Eq. (89) and dropping sinall terms,
are identical with Eqs. (65a) —(65c). This is not

surprising, because the average quantum numbers
are large. The other cases treated in Sec. II C can
be treated by the same methods. The rate equa-
tions obtained are identical to those obtained from
the classical analysis. Here the following quanti-
ties are regarded as small: r lyp, r, lyp, co ly,
co,'/y, co, /y, R/fiy, kco r /y, kco,'r, /y, and

1/kyp.
The quantities kzp and krp are assumed to be

not too large, so that when multiplied by a small

quantity, the result is still small.

V. DISCUSSION

We have carried out a semiclassical calculation
of the laser cooling of an ion in a Penning trap, for
the case where the frequencies of motion are much
less than the natural linewidth of the optical tran-
sition. The results are confirmed by a quantum-
mechanical calculation based on perturbation
theory. Also, some simple calculations of laser
cooling in a harmonic trap are presented. Where a
direct comparison can be made, the results agree
with those obtained by more formal methods.

Experiments have confirmed the qualitative
features of the present analysis. Cooling to
average kinetic energies so low that the Doppler
broadening of the optical transition is smaller than

I

the natural linewidth has been observed. Howev-

er, the ultimate limits predicted by the theory have
not been achieved in these experiments.

Useful improvements to the theory would in-

clude taking into account Coulomb forces between

ions and assuming a more realistic laser beam pro-
file. Saturation of the optical transition has not

been included. However, this is not a severe re-

striction, especially for the final stages of cooling,
since we would expect the minimum energies to be
obtained in the low-intensity limit, as for the har-

monic trap. It would be interesting to apply the
Fokker-Planck formalism to the Penning trap as

has been done for the harmonic trap.
In this paper, the case of resolved sidebands

(co,',~„~ && y) has not been treated but should

be quite straightforward and could follow the
development of Ref. 16 and this paper. We re-

mark that when the mean occupation numbers

& n; ) are small enough, then all sidebands can be

well resolved. This means that cooling can be
achieved using spatially uniform plane waves pro-
vided the lasers are tuned to the correct sidebands.

Motional sideband cooling of the magnetron
motion of an electron in a Penning trap has been

demonstrated and is closely related to laser cooling.
Here the axial resonance, which is analogous to the

optical transition of the two-level ion, is driven by
an inhomogeneous rf field at the sideband frequen-

cy co, +co . The modes are coupled by the field in

such a way that the magnetron motion is cooled.
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We also remark that, in general, the reduction of
the magnetron orbits can be achieved by other
means which add (total} energy to the magnetron
degree of freedom. This could be achieved, for
example, by coupling the magnetron motion to a
negative resistance or by collisions with atomic
beams that preferentially interact with the side of
the cloud where the magnetron motion is in the
same direction as the beam. This effect could be
important in certain collision experiments.

All previous detailed theoretical treatments of
laser cooling of trapped ions have assumed har-
monic potential wells. The experiments which
most closely approach this situations are per-
formed with rf quadrupole traps, in which the
motion of an ion consists of the high frequency,
small amplitude "micromotion" superimposed on
the low frequency, large amplitude "secular
motion. " Approximating such a trap by a har-
monic potential neglects the micromotion. The
average kinetic energy in the micromotion, aver-
aged over an rf cycle, is just an effective potential
energy for the secular motion. A formalism which
could take account of the micromotion, either clas-
sically or quantum mechanically, might be useful
for the interpretation of the experiments.

Finally, we wish to point out that Einstein, in
the same paper in which the A and B coefficients
for spontaneous and stimulated emission were in-
troduced, treated a problem which is closely related
to laser cooling. He showed that a gas of two-level
atoms comes into thermal equilibrium with radia-
tion having the Planck spectrum, as a result of
light pressure forces. In this case, since the radia-
tion is broad band and isotropic, the average
damping force is mostly due to an effect that we
have neglected: The apparent intensity of a light
source increases if the observer moves toward the
source, as a result of the transformation law for
the electric and magnetic fields. The Doppler shift
and angular aberration of the light must also be
taken into account. The damping force due to the
average light pressure competes with the fluctuat-
ing force due to photon recoil so that, in the steady
state and in the nonrelativistic limit, Ez„——2 kz T,
if the radiation has the Planck spectrum for tem-

perature T. Recently, the calculation has been ex-
tended to demonstrate that the gas has the rela-
tivistic Boltzmann distribution after it comes into
thermal equilibrium with the radiation.

This work was supported in part by the Air
Force Office of Scientific Research and the Office
of Naval Research.

APPENDIX: SPECTRAL DENSITY OF
A RANDOM SERIES OF IMPULSES

We calculate here the one-sided (i.e., defined for
positive frequencies} power spectral density of
G (t), where 6 (t) is a stationary, random function
of time consisting of a series of Dirac delta func-
tions. These impulses occur at an average rate y
and they may vary in amplitude. This calculation
follows that of Rice.

First we calculate the correlation function,

R(r): (G(t)G—(t +r) ), (Al)

K

GKk(t)= g gKkl5(t —tel) .
1=1

(A2)

The amplitudes g«1 can vary, but are not correlat-
ed in any way with t~k1, K, or I. The I index does
not indicate an order in time. For fixed E and I,
t~k1 can be anywhere in the interval from 0 to T
with equal probability. We define ensemble aver-

ages over the index k as

(gKkl ~k = (g ~ (A3)

(A4)

where (g) and (g ) are independent of l and E.
The product G«(t)G«(t+~) takes the form

where the angular brackets denote an ensemble
average, and R is independent of t, by the assump-
tion of stationarity. We consider G(t) during the
time interval 0 & t & T, where T is arbitrary. We
denote a particular member of the ensemble by
Gttk(t}, where It is the number of impulses that oc-
cur in the period, and k uniquely identifies the
member. This function takes the following form:

K K
Gkk(t)GKk(t+r)= $ $ gKklgKkl'@t tKkl }@t+r tKkl'}

1=i 1'=&

=S)+S2, (A5)

where
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and

K
Si ——g (gtrk() 5(t ttr—kt )5(t +r t—trkt )

1=1

S2 = g gKklgKkl '5('t —tKkl)5(t+0 —ttrkt ) .
1+1'

(A6)

(A7)

Now we carry out the ensemble averages over the index k for fixed It::
K T

(Si &k= Q ((g &/T) f It tKkl)—5(t+r tKkt)—dtttkt
1=1

K
= g ((g &/T)5(r)=K((g &/T)5(r) (AS)

and
T T

(Sz &k = g ((g &/T) f 5(t tkkt)dtt—tkt f 5(t+r trek( )d—4kt
l+l'

= y ( &g &/T)'=It(& —1)((g &/T)' .
I+I'

(A9)

The ensemble average over E is carried out using the Poisson distribution function

p(E)=(yT) e ~ /K!,
where p(E) is the probability that E impulses occur during the period T. Finally, we have

(A10)

R(r)= g p(K)((S, &k+(S2&k)=y(g &5(r)+y (g&
K=0

The spectral density is given by

ui(f) =4 f R(r)cos2nfrdr=2y(g &+2y (g & 5(f),

(A11)

(A12)

which is defined for frequencies f&0. The first (white noise) term corresponds to the spectral density cal-
culated in Eq. (39). The second (dc) term comes from the average value of G, which correspond to (F„& de-
fined in Eq. (33).
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