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Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors
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An algorithm proposed by Takens, which can determine the capacity (generalized dimen-
sionality) of a dynamical system from the time series of a single observable, is tested numerical-
ly for several intrinsically stochastic models. The algorithm is found to converge too slowly (if
at all) to be useful for the analysis of experimental data.

In a recent series of papers’2 Takens suggested an
algorithm for computing the capacity of a dynamical
system from the measurement of a single observable.
The capacity is a particularly useful number to com-
pute for experimental data taken near the onset of
turbulence where the issue is to determine the
number of degrees of freedom involved. If the capa-
city is a finite number, then the time dependence
arises from a finite-dimensional deterministic
mathematical model. If the capacity is nonintegral
then the data are inconsistent with Landau’s deter-
ministic theory of turbulence’ in which phase-space
motion occurs on a high-dimensional torus. A theory
based on a strange attractor* is then likely to be
correct. On the other hand, an infinite capacity im-
plies that an infinite number of degrees of freedom
are needed to describe the dynamical system which
would rule out both Landau’s theory and the hy-
pothesis of strange attractors.

We shall see below that there are severe computa-
tional difficulties in calculating the capacity of any set
whose capacity is greater than two and that box
counting by Takens’s algorithm converges too slowly
to be useful for the analysis of experimental data.
The impracticality of using box-counting algorithms
has been previously suggested in the literature,*¢ but
our calculation is the first to demonstrate quantita-
tively the limits of this approach. Takens’s idea of
reconstructing an attractor from a time series has also
been independently proposed and studied,® but the
emphasis was on obtaining the integral part of the
capacity by fitting linear subspaces of appropriate
dimension to sets of points on the reconstructed at-
tractor. In the following, we describe Takens’s algo-
rithm and why the method converges so slowly.

The capacity of an attracting set M which we as-
sume is contained in an invariant manifold of some
dynamical system, is easily calculated in principle if
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the coordinates of each point of M in phase space are
known. If N, is the minimum number of boxes of
side € in phase space needed to cover the set M,
then, by definition, the capacity C is given by the fol-
lowing limit”:

C=£i_1‘r})lnN./ln(l/e) . ¢))

Intuitively, if a set has volume V, the number of
boxes of side € needed to cover the set is roughly
N.= Ve € for sufficiently small e. This relation may
be rewritten as

InN.=CIn(1/e) +InV 2)

which provides a more practical method of computing
C than Eq. (1), since the latter has a slowly vanishing
correction to the capacity ¥/In(1/€).> By plotting
logoN  against log;o(1/€) for decreasing values of e,
Eq. (2) gives the capacity as the asymptotic slope (see
Fig. 1).

The definition, Eq. (1), cannot be applied to exper-
imental data which, typically, provide information
about one phase-space coordinate only. Several ways
of getting around this problem have been suggest-
ed %% and, with the recent work of Takens, they
have been placed on a rigorous foundation. Takens
showed that for nearly all smooth dynamical systems
it was possible to construct from a single-time series
(observable) a new manifold whose essential proper-
ties (in particular, the capacity) are the same as those
of the original manifold M. If the time series is
represented by the infinite sequence of real numbers
{a;} =\ then the infinite set of D =n + 1 dimensional
vectors

Sp={a;, ... .42, n=0 3)

will give an embedding (a one-to-one differentiable
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map whose inverse is also differentiable®) of the ori-
ginal manifold for almost every choice of the observ-
able, provided that the integer » is not less than twice
the capacity of the original manifold.! This require-
ment is actually much stronger than what is needed
to calculate the capacity. If we relax this condition
and only require that » not be less than the capacity
of M, the map, Eq. (3), will not necessarily be an
embedding (e.g., one-to-one) but will generally suf-
fice to determine the capacity.’

Takens’s algorithm for computing the capacity is
then the direct application of the box-counting
method described by Egs. (1) and (2) to the set of
points given by Eq (3). For points a; sampled at
equal-time intervals, the method is equivalent to that
of Ref. 6 where n +1 delay coordinates are used to
create a phase-space representation of the data and
n + 1 dimensional boxes of side € are used to cover
the representation. For a finite-time series of length
N, la}}L1, Sp will be a finite approximation of M,
provided transients have been allowed to decay; one
attempts to calculate the capacity of the (N —n) vec-
tors in Sp for several increasing values of N and for
several choices of the integer n. For N and n suffi-
ciently large (n must be at least the capacity of M),
the capacity of Sp will be independent of both param-
eters and will give an approximation, whose accuracy
depends on ¢, to the true capacity. The magnitude of
the errors in the data (arising from noise, for exam-
ple) must be smaller than the smallest € used in tak-
ing the limit, Eq. (1), in order to obtain a meaningful
estimate.

We emphasize that the most important part of
Takens’s analysis is that the set, Eq. (3), will almost
always be an embedding which can then be used to
obtain information about the manifold M. Given the
set Sp, there are more or less straightforward ways to
calculate the capacity.’ If the set Sp has a large
capacity (say, greater than 3), then the numerical cal-
culation is difficult no matter which technique is
used.

We have tested Takens’s algorithm on several sets
and dynamical systems for which the capacity is
known by other methods.’ Our results are summa-
rized in Table I and in Figs. 1 and 2. For low-
dimensional sets (C =< 2) the method works and a
reasonable number of points suffice to determine the
capacity to several significant figures. The depen-
dence of the capacity of Sp [Eq. (3)] on n is shown in
Fig. 1 for the Hénon map.!° We see that for n =2,
the capacity is independent of n and is about
1.26 £0.01, in excellent agreement with Ref. 5.

We have also applied the algorithm to two hydro-
dynamical models, a three-variable model by
Lorenz!! and its extension to 14 variables by Curry.!?
In a certain parameter range and for certain initial
conditions, these models have intrinsically stochastic
solutions whose corresponding strange attractors
must have capacities greater than two. For sufficient-
ly large €, Takens’s method converged, but did not
yield meaningful estimates of the capacity. For
smaller €, the algorithm failed to converge for both
models even when about a million points were used.
The lack of convergence for the Curry model is

TABLE 1. Comparison of Takens’s and other methods to obtain the capacity.

Max number of points Capacity by other

System Capacity by Takens’s method in series means
2 Cantor set* 0.630.02 10000 0.631
Quadratic return map® 0.98+0.02 50000 1.000
Hénon map® 1.26+0.01 200000 1.261+0.003
Lorenz modeld No convergence 200000 2.06 +£0.01
Curry modeld No convergence 800000 24 $0.1

®Defined recursively by a;=0; a Ky

=a;+2/3k*! 1=<i=<2¥*for k =0. Reference 7 demon-
strates that the capacity is exactly In2/In3 = 0.6309.

YThe series is defined recursively by a;=0.2, a,4,=4a,(1—a,) for n = 1. The capacity can be
analytically proven to be exactly one for nearly all starting conditions 0 < a; < 1. See Ref. 14.
°See Ref. 10 for the definition and parameter values and Ref. § for the value given in the last

column.

dSee Ref. 11 for the Lorenz model and Ref. 12 for the Curry model. The numbers in the last

column are not the capacity but the Lyapunov dimension (Ref. 13), which is a lower bound to the
capacity and in a previous study (Ref. 5) found to be equal to the capacity. For a detailed compar-
ison of these and other definitions of dimension, see D. Farmer, Ph.D. thesis (University of Cali-

fornia at Santa Cruz, 1981) (unpublished).
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FIG. 1. Example of how Eq. (2) of the text can be used
to calculate the capacity of a set, in this case the Hénon at-
tractor (Ref. 10). The asymptotic slopes for n =2, 3, and 4
[see Eq. (3) of the text] are 1.18, 1.26, and 1.26, respective-
ly, to three significant digits. A time series containing
200000 points was used for these results. The values of
have been normalized to the range of the time series, the
maximum value (1.27) minus the minimum value (—1.28).

shown in Fig. 2. For fixed ¢, N, does not stop grow-
ing as a longer and longer time series is used.

There are several reasons why enormously long-
time series may be needed to calculate the capacity of
a particular dynamical system by box-counting
methods.!® As has been mentioned several times in
the literature,”® the most fundamental is the ex-
ponential dependence of N, on the capacity [Eq. (1)]
which poses a seemingly insurmountable difficulty for
large capacity manifolds. A second reason is that the
set Sp often fills out the attractor in a highly nonuni-
form way. Many points are needed in Sp to obtain
those few points that provide a covering, especially
for the parts of the attractor that are rarely visited. A
simple example is a one-dimensional return map
which ergodically fills out the unit interval, but with a
vanishing probability density near 0 and 1.!* A third
reason, which applies to dissipative systems, is that
the dynamical system may rapidly contract volumes
in phase space, making it difficult to obtain the
nonintegral part of the capacity which arises from the
fractal structure.” The size of € needed to resolve the
fractal structure is then much smaller than a length
scale which can cover the attractor in a reasonable
number of points. The Lorenz and Curry attractors
have high dimensionality, certain parts are visited
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FIG. 2. Number of D-dimensional boxes of side €, N,
that contain at least one element of the set S, [see Eq. (3)
of the text] vs the number of points in the time series. The
number N fails to reach a constant value even for 800000
points. The results are for the g, variable (which varies
between —80 and -+ 80) of the 14-variable Curry model
(Ref. 12) in a parameter range which gives an intrinsically
chaotic solution. The values of € have been normalized to
the range of the time series, the maximum value (80) minus
the minimum value (—80).

rarely and nonuniformly, and they rapidly contract
phase space so that they provide an extreme test of
Takens’s algorithm. On the other hand, the low
dimensionality and slow rate of phase-space contrac-
tion for the % Cantor set and the Hénon map (see

Table I) facilitated rapid convergence to a nonintegral
capacity.

A general statement about the number of points
required to obtain convergence for a given € cannot
be made, considering the diverse possibilities for at-
tractors. For the same reason, a general statement
about how noise will affect the calculation to some
given precision cannot be made. Our results for the
Lorenz and Curry models suggest that for higher-
dimensional manifolds an utterly impractical number
of data points would be needed just to obtain the
capacity to one significant figure.!*> The slow conver-
gence of N, with the length of the time series sug-
gests that the calculation of other useful numbers,
such as the topological entropy,' or the calculation of
the capacity by a probabilistic approach, !¢ will also not
be possible.
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In summary, we have tested Takens’s algorithm on
several mathematical models. While we obtained
meaningful results for sets contained in a two-
dimensional phase space, the algorithm did not con-
verge for higher-dimensional models even when
nearly a million points in the time series were used.
The essential reason for the slow convergence was
not the manner in which the manifold was recon-
structed [Eq. (3)] but the inherent difficulty of using

box counting on a high-dimensional set. There might

be experimental systems'’ of sufficiently low dimen-
sionality and slow contraction that a box-counting al-
gorithm could successfully be applied, especially if a
Poincaré section were used to reduce the dimen-
sionality by one (see Ref. 5). However, alternative

ways of quantitatively comparing experimental data
with deterministic models are needed.
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