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Effects of transverse beam variation on bifurcations in an
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Instabilities associated with bistable branches of positive differential gain are investigated nu-

merically in a ring-cavity bistable device, allowing for transverse variation of the laser beam.

Additional instability domains beyond those predicted by plane-wave analysis are shown to oc-
cur. The nature of the bifurcation sequences within each domain is different from the plane-

wave case and is characterized by quasiperiodic and frequency-locked behavior. Some sequences
are very similar to experimentally observed bifurcations in hydrodynamics.

Recently there has been considerable interest in

the question of the stability of optically bistable de-
vices. Ikeda' ' predicted that ring-cavity devices in
the dispersive, good-cavity limit could go unstable
and give rise to periodic and chaotic outputs. This
type of behavior has been confirmed2 in a hybrid bi-
stable device, as predicted in Ref. 1(b), but as yet
there has been no experiment to verify the instability
in a ring cavity.

In this Communication we consider the effect of
spatial transverse dependencies in the field on the
Ikeda prediction. Laser beams have finite diameters
and a nonuniform profile. Plane-wave results are al-

ways somewhat suspect when self-focusing nonlinear-
ities are present. We find that the inclusion of the
transverse profile in the Ikeda analysis leads to
greater domains of instability than for plane-wave in-

puts. Also the nature of the evolution from stable
solutions to chaotic ones can be radically different.
The periodic solutions of the Ikeda instability have
periods that are close to 2 t& where N ~ I is an in-

teger and t~ is the round-trip time of the cavity. The
periodicities of the solutions are always given in units
of the round-trip time t~, which is the natural period
of the cavity. The periodic sequence indicated above
is that of the Feigenbaum3 sequence whose periods
are designated as "period 2~."

We usually find that the first unstable output has a
period 2', just as in the plane-wave limit. For
higher input intensity the sequence of outputs (called
bifurcations) is usually very different from the
Feigenbaum sequence. We see what are called
"quasiperiodic" solutions, i.e., solutions made up of
two different Fourier components of noncommensu-
rate frequencies. We also see frequency-locked out-
puts. One unexpected aspect of our calculation is
that one of our sequences is an almost perfect match
to experimentally observed bifurcations in hydro-
dynamics. This suggests that there may be a consid-
erable amount of information to be learned about
nonequilibrium phase transitions in general from

studying instabilities in optical bistability.
Our calculations are for a unidirectional ring cavity'

of total length 2L and nonlinear medium length
LNL=0. 3L. The medium response is assumed so
much faster than the cavity round-trip time
Ts = 2n pL /c that the medium adiabatically follows
the intracavity field ('. Then the Bloch equations can
be solved for this quasiequilibrium, reducing the
equations to

—ap(2L)
f)(z/2L) 2

1+id, i(ln2)V, '
1+5'+ g'/g, ' 4rrapLF

The first term on the right-hand side describes the
effect of the nonlinear medium upon the field and
the second describes diffraction. The peak on-
resonance absorption coefficient of the two-level ab-
sorption line is eo, and 5 is the detuning of the laser
from the resonance in units of the resonance half-
width. g, is the on-resonance saturation field, and
the intensities in the figures are similarly normalized,
i.e. , I/I, = g'/g, '. F —= nprz'/XL is the Fresnel number
of a cylinder of half-width-at-half-maximum radius a,
length L, and refractive index no. The transverse
gradient '7,z is rePlaced here by wp (82/Bxz), where

Z /Wp
the input profile is f;„(x)= g;„(0)e P and
az= wp ln2/2. The one-Cartesian-coordinate as-
sumption is directly applicable to planar waveguide
structures and permits the use of fast Fourier
transforms to reduce substantially the computer time
required. We see no reason to believe that adding
the additional transverse dimension will fundamental-
ly alter the major result of our study, namely, that
the Ikeda instability is not eliminated by transverse
behavior.

Details of the method of solution can be found in
Refs. 4—6. Here it suffices to point out that the field
propagation problem consists of nonlinear medium
propagation defined by Eq. (1) and free-space pro-
pagation [Eq. (1) with ap ——0]. The internal cavity
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RESULTS AND DISCUSSION

The nature and location of the plane-wave bifurca-
tion sequences' are a sensitive function of the effec-
tive absorption per pass er., the laser-cavity detuning

Po, the laser-atomic medium detuning 5, and the
cavity finesse (i.e., mirror reflectivities). For ease of
comparison of the plane-wave and transverse compu-
tations we choose the above parameters so as to yield
a very simple plane-wave bifurcation sequence [Fig.
1(a)] on the lower branch of the bistable loop which
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field calculated from g;„ is propagated around the cav-
ity with appropriate modification at each mirror. On
returning to the input mirror it is combined with the
field JT g;„and propagated again until a steady state
is reached. The transmitted field is saved and the in-

put g;„ is incremented (decremented) to move to a

new point on the bistable loop.

gives only a simple periodic output of period two.
The actual parameter values chosen are indicated in
the figure caption. Our plane-wave results are ob-
tained by dropping the Laplacian from Eq. (1) and
following the same iteration sequence as described
earlier and in Ref. 6. Figure 1(b) shows the corre-
sponding on-axis7 Gaussian beam output with the
same parameters as in Fig. 1(a} and a Fresnel
number of 0.54 which corresponds to significant dif-
fractive coupling in the beam. Two additional un-
stable domains appear on what was originally a stable
upper branch. Also the bifurcation sequence on the
lower branch [region A in Fig. 1(b)] has changed sig-
nificantly relative to the plane-wave sequence, as dis-
cussed below.

In Figs. 2—4 we show the time-dependent output
from the device. In particular, the vertical scales give
the on-axis intensity, and the unit of time is the
round-trip time. Only one point is calculated per
round trip. Lines connect the calculated points to
help one visualize the sequence of points. In each
case there is an initial time transient which is shown
in detail for only one value of the incident power,
since we are interested only in the asymptotic state.

The bifurcation sequences for the lower (A ) and
upper (8) portions of the bistable loop are given in

Figs. 2 and 3, respectively. These are shown in the
order they would appear as one cycles through the bi-
stable loop, with the input intensity increasing on the
lower branch and decreasing on the upper branch. In
both cases the basic sequence goes from period 2 (la-
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FIG. 1. Bistable loops associated with a detuned ring cavi-

ty. Parameters used in the calculation are laser cavity detun-
ina po 0.4, Et=20, a=sap/(1+ Et}=1.66, RI=RI=0.9
=1—T, atomic medium fractional length is 0.15, free-space
fractional length is 0.85. The input intensity I;„is in units of
the saturation intensity l, . (a) Plane-wave steady-state bi-

stable loop for the above parameters. The unstable domain
consists solely of period (2) (P2) outputs. (b) Bistable loop
for a Gaussian beam showing the on-axis transmitted inten-
sity. The Fresnel number I is 0.54 corresponding to signifi-
cant diffractive coupling in the beam. The details of the un-

stable domains A, 8, C are shown in the following figures.
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FIG. 2. Dynamic outputs representing a sampling of the
unstable domain A in Fig. 1(b). The time axis is in units of
t&, the cavity round-trip time. Number of cavity round-trip

times N& =200.
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FIG. 3. Dynamic outputs for selected points on the un-

stable domain 8 of Fig. 1(b). (a) N~ 100. (b)—(d)

Wg - 200. (e) Ng -160.
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FIG. 4. Dynamic outputs for boo points in the unstable
domain C of Fig. 1(b). Note that in this figure the input in-

tensity I;„increases from top to bottom. N& -400.

beled P2) to quasiperiodic, in which two fundamen-
tal but noncommensurate frequencies fi,f2 are
present (labeled QP2). The spectral components
were found by Fourier analysis. In the quasiperiodic
case, all other frequencies are in the form nf i+ n'f2
where n and n' are integers. Next the output is fre-
quency locked such that fi and f2 become integrally
related. These outputs have a period that is an in-

tegral multiple of the cavity round-trip time which is
used to identify the locked output (e.g. , L 6 has
period six) but we label it with "L"rather than "P"
to maintain connection with the terminology used in
hydrodynamics. In the lower branch there is a clear
period doubling of the locked sequence. Beyond this
point we have used a coarse input intensity grid; the
limited number of points that we have computed in-
dicates a sequence involving a nonperiodic output, a
I 6 output, and finally a return to the I'2 waveform
shown in the figure. On the upper branch (Fig. 3)
the bifurcation back to the stable condition goes to a
weakly oscillating quasiperiodic solution whose fre-
quency structure is not clearly resolvable {i.e., we
cannot tell whether this is QP3 or QP2) since it is

only slightly nonperiodic. This bifurcates, ultimately,
to a P2 that is not shown.

The sequence of bifurcations P2 QP2 L9 in
region 8 (Fig. 3) is an almost exact duplicate of the
experimental bifurcation sequence sho~n in Fig. 7 of
Ref. 8. There are, however, some interesting differ-
ences between the way the frequencies fi and f2
change with I;„,both between Fig. 3 and the hydro-
dynamic data and also between Figs. 2 and 3. Let us
labei fi ——I/2tn as the fundamental frequency of P2.
Then in Fig. 2 the new frequency fq lies just below
I/St+ in the case of QP2. Locking involves decreas-
ing f2 to its locked position at f2 ——I/6ttt In Fig. 3.

the new frequency is slightly smaller than I/9ttt, and
the locking occurs by fi decreasing to the value

fi =4/9' while f2 increases to I/9ttt. In the hydro-
dynamic data the ratio of f2 to fi is somewhat larger
than in our case, and fi increases with Reynolds
number until locking is achieved. It should be noted
that both in the transverse calculation and in the hy-
droynamic experiments the frequencies can take on
many different values and the quantitative similarities
may be fortuitous. One of the interesting aspects of
our calculation is that none of the frequencies fi and

f2 found here correspond to the frequencies of the
natural cavity modes. The mirrors in our calculation
have such large radii of curvature that they can be
taken to be plane, and transverse-mode frequencies
occur at integral multiples of I/ttt In contrast . f, and

f2 are fractional multiples of I/ta
The outputs in Fig. 4 come from domain C. Be-

cause of slow convergence which is apparent in the
figure, we did not follow the asymptotics beyond the
point shown. The reason for showing these outputs
is that they represent a different kind of quasiperiodic
sequence which is associated with intermittency, i.e.,
a case in which the trace is partially periodic and par-
tially chaotic. %e have not yet observed this be-
havior, but based on Fig. 4 we expect it to occur for
higher input intensities.

In conclusion, we note that our preliminary calcula-
tion of instabilities in a model ring bistable device
shows bifurcation sequences that are in marked con-
trast to the predictions for a plane-wave model. The
results are interesting in that they do not conform to
the period-doubling predictions of Feigenbaum. '
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