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Extension of the Boltzmann H theorem
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I show that the Bobylev-Krook-%'u solution of the Boltzmann equation violates the in-

equality ( —d/dt)" 0&0 for n ) 102. Thus the conjectured "super-H theorem" does not
hold.

The H theorem of Boltzmann states that, for
any solution f(v, t) of the Boltzmann equation, the
function

H(t;f)= ff(v, t)lnf(v, t)dv

will decrease monotonically with time: dH/dt &0.
This suffices to prove that any initial distribution
will evolve towards an equilibrium solution as
t~ 00.

A possible extension of the H theorem, first dis-
cussed by McKean' and Harris, states that all
derivatives of H(t} approach their equilibrium
value of zero monotonically, e.g., that

( d)"H—g0.5

up to n =2S for all d & 1. After a while I began to
suspect that the theorem was not true at all, but
that one was confronted with a diabolic counterex-
ample where it fails only for very large n. I was
thus led to consider asymptotic expansions valid
for large times (and all values of n). From these
one easily deduces that ( d)"H/—dt" must take al-
ternating signs when n is sufficiently large. I find
this first to occur when n is greater than a critical
value n, (d), where n, (d) is about 100 for small
dimensionalities d.

In the remaining of this note I shall first outline
the analytic proof of (2) for n &25, and then derive
the asymptotic expansions which disproves it for
large n.

=m (m + 1)f dx
dt 0 ( 1 +x)2+ltl

y2 —x/Fe

[where m =d/2, F=(e'—1) ', and t &in(m+1)]
and were, with the help of numerical calculations,
able to verify the inequality (2) for n & 30 and
1&d &6.

This "physicist's induction" gives strong support
for the belief that (2) must be true for all n. I
therefore set out to provide a rigorous proof of (2}
for all n, but found to my agony that there was al-

ways a loophole in my induction arguments, al-

though it is fairly straightforward to show that
( —d)"H/dt" is the integral of a positive function

Until now this very strong statement has neither
been proven nor has a counterexample been found.
Very recently Ziff et al. considered in this journal
the verification of (2) for one of the few available
exact solutions to a realistic Boltzmann equation,
namely, the Bobylev-Krook-Wu (BKW) solution '
for a system of Maxwell molecules (and its gen-
erahzation to d-dimensional space ). They found
the expression

I. PROOF FOR n &25

By use of the identity

-"""'"'"'=
n x' (r +t-+~)e .»-

dt dx

and a partial integration one can prove by induc-
tion that

d)g + '[0 5 2+kg
= g QAkt f dxpg(x)F'e

k=0 I =2

where Ak I &0, and where

pk(x) =[Pk(x)e /(1+x—)2+ +k]

k

3+x [xe /(1+x)~+ ] .
dx

Therefore, if Pk(x}&0 for k &X—1 (and x &0),
then the inequality (2) must be true for n &X. By
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direct evaluation

P](x)=4x ~2x ~mx3,

P2(x) =16x ~14x ~(4y 10m)x3

+5Ptlx +Nl x

up to P7, only positive terms occur. But

P8(x) =65 536x —125 890x

+(1 682 258+4 907 776m )x 3y

where the ellipses represents positive terms. How-
ever, by completing squares one can easily show
that Ps(x) &0 for x &0. %ith further analysis one
also finds P~(x) & 0 for k =9, 10, and 11. Alas,
setting m =0, it turns out that Pii(x) becomes
negative over a certain interval. For positive di-
mensions (d =2m) P]2 is still positive, but when
we continue the process to sufficiently high k the
method again fails. For instance, with d =1 we
find that Pk(x) & 0 for k & 17, but that Pis(x) does
take negative values.

In this way one can show that only positive
quantities A,p will occur in Eq. (5a) up to n = 17
(for d & 1).

This proves that the generalized H theorem (2)
holds up to n =18, and this does not quite exhaust
our resources. We set n =17 in Eq. (5a) and con-
tinue to differentiate, now using the identity

g ( yI~ —x/F)

dt
=[+'+'~(1+x) F~ xF' '] -e"'"-

Repeated applications of this leads to an expression

( —a)"+"0
gttt +18

1 "I 19

QAI", i I dx pk(x)Q„(x, F)e ~", (Sa)
k=O1=2

where Ak I & 0, pk(x) & 0, and where

Qi( F) „~y ( —d)"F'e-'"

is a polynomial in x and a rational function in K
Thus, as long as all the Q„' are positive, only posi-
tive terms will occur in (Sa) and (2) must be true.
Now it is obvious from the recursion (7) that

Q„&0 for n (1+1 and that Q„&0 implies

Q„+k & 0. It is therefore sufficient to investigate

Q„(x,F), which must be positive at least up to
n =3. By direct evaluation we find that Q4 and

Q5 contain only terms with positive coefficients.
Proceeding to Q6 this is no longer true, since

Q6(x, F)=x F +(—3x'+6x')F '

y(5x —3x g15x )F + . (9)

~here again the ellipsis represents positive terms,
but a short analysis shows that this expression is
still positive. The same holds true for Q7. How-
ever, Q9(x, F) is found to take negative values, and
then this method breaks down. (Qs I have not
analyzed completely. ) Combined, the two methods
prove (2) for n & 25 for all d & I and with still
some room left for improvement.

II. DISPROOF FOR LARGE n

However, having twice seen the failure of
physicist s induction, one looses some faith in the
general validity of (2). Since it follows from the
recursioll (7) tllat ollly those tefllis lii Q„whicll
contain negative powers of F can be negative, the
conjecture seems most likely to fail for small
values of F, i.e., for large times. This suggests
that one study the asymptotic expansions of
( —d)"H/dt" in the large-t region for all values of
n. I first find the asymptotic series for the integral
(3), and by use of the recursion (7) it is straightfor-
ward to derive the general expansion. I have done
so explicitly up to order F', and find it to be of
form

( —e)"+'ll
=m (m ~1}F4[4"—4"+'F y [(8~3m)6"~10-4"]F'—[(28~14m)7"~ ]F'

+[(201+129m +15m )8"+. . . ]Y'

—[(1424+1072m +180m 2)9"+ ]F~+

+( —)'[~i(3+1)"+bi(2+&)"+ . ]F'+
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where a~, bi, . . . are polynomials in m with posi-
tive coefficients. If one evaluates this series at the
point 7=exp[ —n /(3+k)], i.e., for a time of or-
der n, and then let n ~ 00, one finds that the term
with l =k will dominate the sum, giving the lead-

ing order result

( —d)"+'H
k

d]n+1 =m(m+1)[( —1) ak(31k)"

"1.0

when t=n/(3+k). This shows that when n be-

comes larger and larger, the derivative series (10)
must become an increasingly oscillating function of
time, in violation of the inequality (2).

It is also of interest to find the lowest value of n

for which ( —d)"H/dt" becomes negative. Clearly,
one can trust the series (10) only in the asymptotic
region, but I have reason to believe that this is pre-
cisely where the first zero occurs.

A first estimate can be found by considering the
balance between the terms with l =2, 3, and 4. By
analyzing this quadratic form, one finds that it
takes negative values only when

~s „ i (8+3m)(201+129m +15m )

(14+7m)

which leads to the estimate n„108 for d =3.
This formula also gives a mathematical explana-
tion for why the inequality (2) breaks down only
for such a very large n.

In order to get accurate results I have evaluated
the series (10) numerically, taking into account all
terms up to order l =9. This predicts the critical
value to be n„=97, 98, 100, 102, 105, 107, and
109 when thc dimension d =2m =0, 1, 2, 3, 4, 5,
and 6, respectively. In Fig. 1 I also plot ( —d)"H/
dt" in the relevant region of time for n =102 and
d =3 (i.e., the original BK% solution). The expan-
sion (10) seems to be very accurate in this region,
the last term (for I =9) giving a contribution of re-

lative order 10 . One can therefore have good

FIG. 1. The 102nd derivative of H plotted as a func-
tion of t for d =3.

faith in the results predicted by (10).
In conclusion, I have shown for the (generalized)

BK%' solutions:
(i) that they satisfy the extended H theorem (2}

for all n & 25 and d & 1 (rigorous proofl,
(ii) that they violate it when n exceeds a critical

value n )n„(d). [For complete rigor one must
provide error bounds for the asymptotic series (10),
but that is certainly possible. ];

(iii) that n„(d) & 98 for d & 1, and increases with
d. (This depends upon the unproven assertion that
the first zero will develop inside the validity region
of the asymptotic series. )

Thus, the "super-H theorem" is disprovcn, but
(although mathematically explained) it still remains
a puzzle why it holds to such a very high value of
n. Is this a general property of all solutions to the
Boltzmann equation~ In future work one must set-
tle for less ambitious goals: Can an extended H
theorem (2) be proven, in general, for values of n

greater than 1T Can one find new counterexamples
with lower critical values n„~
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