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We have studied the effects of multiplicative noise in the counterAow velocity on the
Vinen phenomenological description of vortex-line turbulence in superAuid helium using
the Fokker-Planck equation. The principal result is that the noise pushes the critical
velocity for the onset of turbulence toward higher values. %e discuss a noise-induced
phase transition which is not likely to be physically observable in turbulence experiments.

In recent years, the effects of external noise on
the phenomenological description of nonequilibri-
um, macroscopic systems has received a great deal
of attention. Probably the simplest such systems
are the first-order, one-dimensional, nonlinear dif-
ferential equations with multiplicative noise, stud-
ied by Horsthemke and Lefever and their colla-
borators. ' Their most remarkable result is the
discovery of so-called noise-induced phase transi-
tions (NIPT's), wherein new statistically stationary
states become accessible to the system when the
noise intensity exceeds a certain, well-defined criti-
cal value. The applications are to certain biologi-
cal, chemical, and electronic systems, where
some experimental results, at least qualitatively,
seem to indicate the existence of NIPT's. Mi-
khailov has predicted NIPT's in diffusive nonlinear
biological systems. '

More recently, the transition to turbulence of
classical systems with noisy parameters has been
described in terms of one-dimensional, difference
equations, ' a higher-order, continuous nonlinear
equation with harmonic forcing, and the multidi-
mensional continuous I.orenz system, 9 which
represents the Rayleigh-Benard instability. At
least one experiment on classical turbulence with
deliberately noisy parameters has been reported. '

Motivated by these results, and by the likelihood
that a superfluid turbulence experiment with noisy
parameters could easily be done, we have studied
the Vinen equation as modified by Tough, "which
describes the onset and growth of vortex-line tur-
bulence. ' %'e have superimposed Gaussian white
noise on the counterflow velocity and used a
Fokker-Planck analysis following Horsthemke
et a/. ' In a previous study by Northby, ' the

Vinen equation was linearized and noise added to
the counterflow velocity. The results of these two
approaches are not immediately comparable, in
that the present approach yields pseudoprobability
density functions of the line density, while the
linear approach results in the power spectra of the
line density fluctuations.

The Vinen equation reads

dI
=AU 1 — L ~ —Ca'L2,

where A, C, and a are dimensionless constants, d is
the tube diameter, and where L, U, and ~ are the
vortex-line density, counterflow velocity, and circu-
lation quantum, respectively. For a detailed dis-
cussion of these parameters and the remarkably ac-
curate description of superfluid turbulence provid-
ed by the steady-state solutions of Eq. (1), see Refs.
11 and 12. The well-known steady-state solutions
L&&(v), obtained from setting dL idt =0 in Eq. (1),
are pairs of real values for U & u, =4C~a/Ad. We
can convert Eq. (1) to dimensionless form with the
following definitions: v=U/v„X =L/Lo(U, ), and
v =4Cx(a/d) t with the compact result that

2~X(X1/2 ) X2
dv

=vg(X)+h (X) .

The steady-state solutions of Eq. (2a) are

X,' =v(1+v'1 —1/v),

which are real when v& 1.
We now allow the dimensionless velocity to vary

randomly with time: V~ V+v S g snch that
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(v) = V, and the variance is S. We suppose this

noise to be Gaussian and white, so that

(g g)=5(r—r'). Then Eq. (2) becomes a sto-

chastic differential equation, and X(~) can be
described by its probability density p(X, t), which is

the solution of the Fokker-Planck equation'

~tP(»r)= dx[I—(X»V)+( , )Sg—(X)drg(X)]p(X r)+( ,
'

)Sg»—g2(X)&(Xt)

wher~ f(X, V) = Vg (X)+h (X},as defined by Eqs. (2). The well-known solution of g,p(X t) =0 is

p, (X)=[X/g(X)]exp(2/S) J (f/g2)dX,

which with Eq. (2) results in

2 V/5
4V —1/S

Xo

2X{X1/2 ) X Xt/2
2 0

X' —X'0
exp'" ~( --, )(X. --, )

'1/2 & 1/2

where Xo has been included to avoid the singulari-

ty at X =0,—,, and E is a normalizing constant

which we have set equal to 1. The steady-state
solutions of Eq. (1) are real only when the mean

spacing between lines I. ' &d. This leads to the
singularity in Eq. (6) at »Xo ———,. The function

p„given by Eq. (6), thus represents some measure
of the physically observable line density oui~ for
X,Xp Q 4 though it is real also for X,Xo g 4, as

we discuss below. %e call p, a pseudodensity be-

cause the singularities are nonintegrable.

Figure 1 shows p, (X) for S=0.5 and for three
values of V, indicating a critical value V,
=1.41, . . . . For V & V„ the only mode is the
singularity at X~ 4, while for Vg V, a minimum

50
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and a maximum appear at unobservable and ob-
servable X, respectively. The locations of these ex-
trema X, are obtained from dp, /dX =0, which
results in the quadratic in X'

T

2+ X ——+—X +—+ =0.&/2

(7)

The solutions are shown by the solid curves in Fig.
2 for several values of S as a parameter. The bro-
ken curve divides the plane into stable solutions
above and unstable solutions below, and intersects
the solid curves at the values V = V, and X =X~
which mark the onset of turbulence. The curve
marked S =0 is the deterministic result using Eq.
{3)for which V, =1 and X,=1, and is identical
with the result obtained in the S=0 limit of the

2.5—

X
1.5

Q.

I.O

I,O

I

0.5 I.O

0.4

FIG. 1. Stationary probability density functions of
the dimensionless vortex-line density calculated from
Eq. (6) with X0=0.8. Equation (6} ls not normalized, so
the vertical scale is arbitrary.
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FIG. 2. Extrema of the density functions calculated
from Eq. (7), and for S=0 from Eq. (3}.
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solutions of Eq. (7). Figure 2 shows our principal
result that noise superimposed on the coun«rfiow
uelocity enhances the stability of the flow by push-

ing V, toward higher values and X, toward lower

values compared to the deterministic case.
The effect of the noise is not small. The curve

marked S= 1 in Fig. 2 shows a critical velocity
nearly twice the S =0 value, and this should be
easily observable if Eq. (1) is a good dynamical
description of vortex-line turbulence. ' A similar
effect of comparable magn1tudc has» ln fact, Rl-

ready been observed in superfluid turbulence by
Oberly and Tough' who modulated V with a har-
monIC fuQCt1OQ.

Enhancement of the stability of classical Aows

by harmonic modulation of a flow parameter has
been well known since the Couette flow experi-
ments of Donnelly et al. ' The interpretation of
this enhancement effect has been that it is the re-
sult of 8 decreasing viscous penetration depth 5
with IncreasIng modulation frequency» Rnd that
stability is maximized when d/5 1. It is interest-

0)0 & I t f

0.05 0.10 0.(5 0 PO 0.25 6 lO PO 50 50 lOOI s

FIG. 3. (a) Probabihty density functions from Eq. (6)
with Xo——0.16, showing the NIPT at 5,=8. (b) The ex-
trema of the deIlslty fuIlctions.

ing that the comparable enhancements predicted
here emerge solely from the inherent nonlinearities
of the system. '

We have also found a NIPT in Vinen's equation,
but it lies in the unobservable region for X,Xo g —„.
&c report it here simply Rs an additional example
and, to our knowledge, the first in a fluid dynamic
system, of that class of fascinating objects
discovered by the Brussels group. ' 3 Equation (7)
Rgaln shows pa1rs of rcR1 roots for small V RQd

even for V=O, so long as S~S,. The pseudoden-
sity functions, calculated from Eq. (6) with Xo & —,,
are shown in Fig. 3(a), where for V =0 we find
S,=8. The extrema from Eq. (7) are shown by the
sohd curves in Fig. 3(b), where the broken line
again divides the stable (upper) and unstable
(lower) branches. Here, increasing velocity pushes
the critical noise variance toward higher values.
The physical significance, if any, of these solutions
is unknown to us at this time.
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