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The hydrodynamics of biaxial nematics has been obtained in the presence of an exter-

nal field H. By working with the triad order parameter, we obtain results valid for arbi-

trary nonsingular textures. We also present the bending energy for biaxial nematics. Our

derivation of the hydrodynamics explicitly includes angular momentum conservation.

The resulting hydrodynamic equations clearly possess a rotating-equilibrium solution. In

an Appendix we discuss extending the theory to include the internal angular momentum

of the molecules which constitute the biaxial nematic.

I. INTRODUCTION

We have derived the hydrodynamics of biaxial
nematic liquid crystals in the presence of a mag-
netic field H. ' Particular attention has been paid
to two points. First, by working with the triad
order parameter, we obtain results valid for arbi-
trary nonsingular textures. Second, by explicitly
considering angular momentum conservation, we
unify the procedures of phenomenological hydro-
dynamics. It then becomes apparent that the an-
gular momentum flux g~ has associated with it
the thermodynamic "force" Bjco; (where co; is the
local rotation rate); this result is not restricted only
to biaxial nematics, but appears quite generally for
systems possessing internal angular momentum.

To provide a context for our derivation, we note
that one can derive hydrodynamic theories in a
number of different ways. It is arbitrary but (for
our purposes) convenient to place such theories
into three classes: first, purely phenomenological
theories (to which the present theory belongs);
second, theories which are a mixture of
phenomenology and microscopics; and third,
theories which seriously attempt to make the con-
nection to microscopics. For example, in the case
of the superfluid He, Landau's work would fall
in the first category, whereas that of Hohenberg
and Martin would be in the third. For nematic
liquid crystals, I would place the work of Forster
et al. in the first category, and that of Forster '

in the third. For 'He-A, the works of Graham,
Ho, and Hu and Saslow would fall in the first
category, and the works of Brand, Dorfle and Gra-
harn' '" would fall in the third. For magnetic
fluids (suspensions of 10 cm ferromagnetic parti-

cles in ordinary fluids), only works in the first
category have appeared (see Schliomis for a re-
view' ). Most hydrodynamic theories, in fact, are
of the first type, since it is much simpler to
develop such a theory.

In principle, to develop a theory of the third

type, one can employ the general procedure of For-
ster. ' This has been done by Zeyher' for su-

perionic conductors, and it is the only case known

to this author where a theory of the third type pre-
ceded any theory of the first type. However, this
approach' involves a cumbersome and somewhat

opaque formalism; it is probably for this reason
that it has not found a wider applicability.

Works in the second class, which have only be-

gun to appear recently, obtain the reactive response
in a more microscopic fashion than do works of
the first class. We may cite the following. Le-
bedev and Khalatnikov have employed a Lagrangi-
an and a Hamiltonian formalism. ' Dzyaloshinskii
and Volovik have employed a Hamiltonian formal-
ism, ' with an emphasis upon what can be earned
about Poisson brackets when symmetry groups can
be exploited. ' Also, Saslow, Gabay, and Hurde-
quint" have recently extended the Larmor preces-
sion theorem of Halperin and Saslow, ' in the end
obtaining a Hamiltonian formalism.

In the present paper we make no use of an Ham-
iltonian formalism or of the more complete for-
malism of Ref. 13. Our only a priori knowledge of
the reactive response is taken to be the well-known
force and torque of an external magnetic field H
on a magnetized system.

In spirit, our derivation is close to that given by
Martin, Parodi, and Pershan, for ordinary nematics
and other systems. ' However, we include angular
momentum as an integral part of the derivation,
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rather than eliminate it by employing a purely
symmetric stress tensor ' or treat it somewhat as
an afterthought. ' We find that it is necessary to
carefully consider the equilibrium conditions
which determine the "thermodynamic driving
forces. " It is convenient to rephrase the transla-
tional and rotational equilibrium conditions into
the mathematical statements that both

A,j———, (B;UJ+BJU;) and Bjco; be zero in equilibrium.

(Here v is the fluid velocity and ~ = —, V &( v.)

This is equivalent to saying that there be no sheaf
(A,j——0) and that the rotation rate be spatially uni-

form (Bjco;=0).
On eliminating the antisymmetric part of the

stress tensor 0.,& in favor of the divergence of the
angular momentum flux +J, we find (as stated
above), that the rate of entropy production includes
the product of g J and (lice;, in addition to the

1

(normally found) product of
2

(0'j'+0'j') and A;j.
Following the usual procedures of phenomenologi-
cal hydrodynamics, we determine the unknown
fluxes. The resulting hydrodynamic equations
clearly possess a rotating-equilibrium solution. We
note that, in the case of He-A, rotating equilibri-
um has been the subject of recent discussion,
and this discussion has influenced our work.

In Sec. II we describe the thermodynamics of a
biaxial nematic liquid crystal in the presence of a
magnetic field H. In Sec. III we consider the
rotating-equilibrium conditions and thereby obtain
the thermodynamic driving forces. Section IV
considers the general form of the hydrodynamic
equations, the behavior of the system under Galile-
an boosts and under uniform rotations, and the im-

plications of angular momentum conservation for
the antisyrnmetric part of the stress tensor. In Sec.
V, we obtain the unknown fluxes which appear in
the hydrodynamic equations. Section VI provides
a short conclusion.

In an Appendix we sketch how one may include
the internal angular momentum of the liquid crys-
tal molecules, in addition to their spin angular
momentum. There we also provide references to
recent work on simple fluids with internal angular
rnomenta, including numerical computations of
their transport coefficients.

R; ( r ) =b'"'( r )e'"'

where [e'"
) is a fixed right-handed triad of unit

vectors with e' '=e"'Xe' ' and Ib "'(r)] is a spa-
tially varying right-handed triad of unit vectors
with b =b X b . Summation on repeated in-(3) (/) (2)

dices is implied. The system if assumed to be un-

changed under a local 180' rotation about any of
the b "', so that the system is invariant under, e.g.,
(b'" bI ' b(") ~( g" g ' g ')

The energy density e is assumed to be a function
of the following thermodynamic variables: the en-
tropy density S, the mass density p, the momentum
density g, the magnetization density m, the rota-
tion matrix R,j, and the spatial gradients Bk R 'j.
We will assume a static external field H, and we
include the —m H interaction in e (so a= @;„,—m H, where e;„t is the internal energy density).
Then, at a given position r, we take the thermo-
dynamics to be given by

(2.1)

de= TdS ~pdp+ v.d g +( h —H) dm

+p;, dR;, -tp;,kd(BkR;, ) .

With (2.1), we have

(2.2)

+rt),
' "'db, '"'+P', ". 'd(r.) b,'"')., . (2.5)

Here T =—Be/BS is the temperature, p is the chemi-
cal potential, v =Be/Bg is the fluid velocity,
h =Be;„,/Brn is the "internal" magnetic field, and

P,
'"' and (()';J"' are the internal fields associated with

b "' and Bjb;"'. We define the pressure P via

e+P= TS+pp+ v.g+(h —H).m

yy(n)t (n)iy(n)g b(n) (2.6)

so that (2.5) and (2.6) yield the Gibbs-Duhem rela-
tion:

dP =SdT+pdp+ g.d v+rn d(h —H)

ib(n)dy(n)i/ b( )dy(n)n

Because, under an infinitesimal "boost" by d v,

(2.7)

(2.3)

(();J„d(()~R; )=p; e'"'d(()„R; )=(t);'"'d(B b ". '), (2.4)

so that (2.2) can be written as

de= TdS+pdpg v.d g + (h —H).drn

II. THERMODYNAMICS OF BIAXIAL
NEMATICS

The order parameter is assumed to be given by
the rotation matrix

de=g'dv, dg=pdv

use of (2.5) gives

g =pv

(2.8)

(2.9)



thus establishing that v is indeed the fluid velocity.
Under a rotation of the system by d 0, we have

de =d(e;„,—H.m) = —H.dm = —m X H.d 8, or
Be/88 = —m XH. %ith (2.5) this yields

Note that the biaxial nematic is expected to have
an anisotropic magnetic susceptibility X. Assum-

ing that 7 is diagonalized in the local reference
frame I

b'"'I, we have

(2.17)

3

7= Q X„b'"'b'"' . (2.18)

+ y(n) ~ fb(n) (2.11)

Here (P,'"'
), —:(I)';~"'. Use of (2.9) and an integration

by parts permits us to rewrite (2.10) as

n=l

Thus, in 12.11), h Xm+0 in general.
For completeness, we give the bending energy

density ez, which yields the terms PI&"' in (2.5). It
is convenient to write it in terms of the V; 's

q (n) p(n) (2.12)

%e will find (2.11) helpful later when we employ
it in conjunction with angular momentum conser-
vation.

As another preliminary, we wish to rewrite

BJb "', which appears in (2.5)—(2.7). First we note
that there are nine gradients associated with the
three gradients of the three b'"'. They may be
conveniently expressed in terms of the "velocity":

which represents the "rate of rotation" (in the ith
direction) of the triad about its nth axis. This
quantity is precisely the same as the quantity K;n

employed by Nye, and called by him the curva-
ture tensor. Bilby and Smith, and Kleman have
shown (in Nye's notation) the equivalent of

B y(n) B y(n) bfn). B b(n)~g b(n) (2.14)

a relationship also found for He-3 by Mermin and
Ho.

From (2.13),

~~~no'q'=~us'~qq' ~~'~e '

and B,-(b(&'b(q)) =0, we have that

B b(n) b(P)(b(P).B b(&))

(q') (r') (q)
IEpq~p~b g b +pygq +j

b(n) X ( b(q) y(q) )

This explicitly shows that gradients of the unit
vector b'"' are perpendicular to b'"'. %e will em-

ploy (2.16) later, when we consider the dynamics of
b(n)

A~ n )0, all rn, n

2
AmmAnn, & ~m, , n

2
„An ~ & C~ „, mQn . (2.20)

One may reduce (2.19) from 15 terms to 12, by
introducing three surface terms {M. Kleman,
private communication). The identities which
make this possible depend upon (2.14). [Note that
Trebin has given a form equivalent to (2.19), em-

ploying a set of variables which make evident the
biaxial nematic uniaxial nematic transition. "
However, (2.19) is more appropriate to fully

developed biaxial symmetry. ] Explicitly, the iden-
tities have the form

~(3).fX b(3) f.(b(3) X (3) + ' b(3)q, b(3)
2

+ ) b(3)X fXb(3)]

To be applied to (2.19), we rewrite v' 'Vgb' ' as

~(3).P ~ b(3) b( ]).~( l )b(3).~(3) bf & ).~(3)b(3).~(] )

+ b(2). (2)b(3).~(3) b(2). (3)b(3).~(2)

{2.22)

Thus the six 8~ „and C „ terms can be reduced
to three surface terms and three bulk terms. One
can eliminate the three 8~ „ terms or the three
C „ terms, for example.

ib(m). V(m)11 b(n) y(n).
)

pl Qn

( b ( m ) .y( n )
11 b

( n ).y( m )
)

Nf Qn

The stability of the uniform state requires that
ea g0 for all nonuniform textures. This yields the
stability conditions:
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III. THERMODYNAMIC EQUILIBRIUM
AND THERMODYNAMIC DRIVING FORCES

To obtain the conditions for thermodynamic
equilibrium, we permit the system to interchange
entropy, mass, momentum, angular momentum,
and magnetization with a reservoir. In addition,
we must vary the order parameter. %'hen the ener-

gy of the system plus reservoir has been minim-
ized, equilibrium has been reached. Alternately,
we may minimize the "free energy"

F= J d r [e—TOS pop —vo g—

—coo (r Xg+y 'rn)] .

Thus, with (2.5) and (3.1), we obtain the follow-
ing equilibrium conditions:

momentum, one must also consider a new quantity,
similar to h;", as a thermodynamic driving force.
This and related points are discussed in the Appen-
dix.

It should be observed that rotating equilibrium is
not simply a rotated version of static equilibrium.
First, for all systems the chemical potential

p =p«„—2
co r, where r is the distance to the axis

of rotation, a point discussed microscopically by
Ref. 22. It is p that remains constant; the extra
term —

2
~ r (the "centrifugal potential" ) tends to

drive rnatter away from the axis. Second, h now
develops a new y '~ term, causing rn to develop a
new g.y '~ term. Furthermore, because X
depends on the orientation of the triad axes, the
triad axes rotate in order to minimize the interac-
tion —rn H with the field H.

&=&o or 8;T=0

p=JM, D, or 8;@=0,

v =vo+mog r, or A,J- ——0, 3ja;=0,
A&j 2 (B&vj+BjU& )P Q)I":—

2 ( V P v )I'

h"'=0, h'"=—h —H —y 'cu .

(3.2)

(3.3)

(3.4)

(3.5)

IV. EQUATIONS OF MOTION

We now must present equations of motion or
conservation laws for e, 5, p, g, m, and b'"'. In
addition, we must ensure that the angular momen-
tum density is conserved. %'e have

[In (3.5), we have used co = coo in equilibrium. ]
Note that, in (3.1), we include both the orbital

(r &( g) and spin (y 'm) angular momentum densi-
tites. In practice, however, when a macroscopic
object rotates, its total orbital angular momentum
vastly exceeds its total spin angular momentum.
Also, note that (usually) y '~ (&H, so that h =H
in rotating equilibrium. In fact, neglect of the spin
angular momentum in (3.1) yields h =H in rotat-
ing equilibrium.

To vary the order parameter, we subject it alone
to a rotation 580, finding that:

5F„,or% =0,
$80

—+8j =0,B6'
(4.1)

where the mass flux j~ is known (from microscopic
physics) to be equal to g;,

where j is the (unknown) energy flux,

BS
Bt

+Bj =R&0,

where j,' is the (unknown) entropy flux and R is
the (unknown) rate of entropy production per unit
volume,

Bp +8;j~=0,

b(n) ~ q (n) (3.6) (4.4)

From (3.1)—(3.6) we have the thermodynamic

driving forces for biaxial nematic liquid crystals.
In particular, note that Bjv; is not a thermodynam-
ic driving force, but that A;j and Bjcu; are. Other
"forces" are 8; T, 8;p, and h;"'. %e will also find
it necessary to consider Bjh ', which has the same
behavior under time reversal and space inversion as
does Bjco;. Finally, 4 is the force which drives the
"texture" of the system, and is specifically associ-
ated with the biaxial nematic degrees of freedom.

Note that, for fluids possessing internal angular

where cr,J is the unknown momentum flux density
and rnJB;Hz is the magnetic force acting on the

system. Because of

V-B=O, V xH=0,
the last of these holding only for no current-flow
or time-varying electric field E, we may rewrite

(4.4) as

~II
+BJOIJ =0 (4
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0Ij —0jj (4r ) (BI'Hj p
6I'J'H ) (4.7) tion in detail. With the total angular momentum

density given by

OPS I.

at
+B;Jz——J;+y[rnx(H —h)];,

g =rxggy —'m,

we have

(4.10)

where JJ is the (unknown) magnetization Aux den-

sity, ym X(H —h) is the known torque, y is the
gyromagnetic ratio, and j; represents any unknown

torque. For the order parameter, we write

gb(n)
g ~b(n)

0t
(4.9)

where Q is an (unknown) rotation rate.
Note that, by assuming H fixed, we are able to

permit the electromagnetic field to exchange
momentum and angular momentum, but not ener-

gy. We may think of the source of H as being rig-
idly attached to an infinitely massive rigid body.
Thus energy is not exchanged when it absorbs
momentum or angular momentum.

We now consider angular momentum conserva-

Bg;
Bt

+B,gf=(mxH), , (4.11)

where g~ is the (unknown) angular momentum

flux and (m&H); is the external torque. For a
fixed position r, use of (4.6), (4.8), (4.10), and

(4.11) yield that the quantity

I
~l ~lJk Jk

is given by

(4.12)

o.
,
' =y 'J; —(mxh);+BI[); —y 'J;I &;,v, &,&—»1] .

(4.13)
This relation enables us to eliminate the antisym-
metric part of the momentum flux density in terms
of other quantities, most notably the angular
momentum Aux density.

V. HYDRODYNAMIC EQUATIONS

The standard approach of phenomenological hydrodynamics is to obtain the rate of heat production, per
unit volume, in terms of a product of thermodynamic forces and Auxes. We thus start with (4.2) multiplied
by T

0& TR (T +T~j;BS
at

(5.1)

We then utilize (2.5) to obtain BS/Bt in terms of the other time derivatives given in Sec. IV. We then obtain
(with j~=g;)

0 & TR = Bj +pB; g; +—TBj + u; B~rr'~ —0 b '" ' X p
"'

—())I»)B»(Q x, b'"'); —J;(h; H) +( ih—Hi)B; Jj, . —

Integrating by parts on the second, third, fourth, sixth, and eighth terms, we obtain

0&TJI =—B;[j; pg; Tj; u~o—j;+—0—b Xp; J~; (h; Hj—)]. —
—g,.d,.p —j,.'B,.T—o,'"ih. v,. —0, -+ —J,.(h,. —H,. ) —J,d,.(hj —H ) .

(5.2)

(5.3)

Now we take the step which brings in the Galilean transformation properties of the system. We rewrite the
second term of (5.3), using (2.7)

—g;8;p = —u;(pB;p)

= —u;[B;P—SB;T gB; u —m B;(h —H) —b. '"'B;(I)'"'——B h'"'B;P'."']

(p b(n). y(n) B b( )y( ))+ny(nn)( .rJ)b(n)]

+ [g;;+B;,(~—b("'C~")—B»b,'")a(»))+B;b(")~;]Bp;

+Su;8; T+m. u;8;(h —H ) —4'"'u;i3;5'"' .

Putting (5.4) into (5.3), we obtain

(5.4)
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0& TR = d—c[jc' jc—gc Tj—; —ujcrj, +Q.b &(i)); Jj—, (hj H—j)
+u (P b(&).y(n) g b(n)y(~n))+y(n)( .P )bIII)]

(j —Su;—)8; T (J—;—m u;)c) (h H—)—J (h H—)

-[~'j—g uj 5j-(P—b".0 "—~.hj" 4jk) —~;bk" A, ]~j;—(Q —b '& ) +.(n). tn) (n) (n) (n) (q) . (q) .

(5.6)

Note that (2.16) was employed to rewrite the last term of (5.4):

@( ) g bI ) q ( ) (b( )Xb(q)yIq)) (b( )X @( )) b(q)( y(q)) (qi b(q))( y(q )J l l J l

Equation (5.5) is quite close to the desired form, but we must still replace h —H by h [«(3 5)], aud jui
(e) B-U.

by A,, aud cu; [«. (3.4)1. «t us de&»e

and decompose it as follows:

i (g) + —,&i~kXk

X,J,(X,~+Xj, ),
I

Xk =+ijkXjk .

%'ith

(5.8)

(5.9)

(5.10)

~j Ui ~ij +~ijk~k q

which follows from (3.4), we have

(5.11)

U" of '5 l2' »d (3 ) u (5 5) theo yields [w th the uotatio ' to tudjcate that the correspoudiug ter
from (5.5) are to be carried over]

0& TR = —d;[j; + ' ' +y (J"—m u;)cu ]—(j; Su;)c) T—(J—.. m. u. ).h! i

) q'+[&,' —y '[Ji —c), (J;,—m;u, )]]co; .
(5.13)

Equation (5.13) is almost in the desired form. Except for the first and last terms, it involves products of
(unknown) fluxes times (presumably known) forces. %e now re~rite the last term, employing (4.12), (4.13),
(5.7), and (2.11). This step incorporates angular momentum conservation and the invariance of the internal

energy under rotations. It yields

X,' —y '[Ji dj(J;, m;u,—)]—=cr,'. ejkd, bi"'ct—iik' y'[J; —c—), (J~j m;u;)]-
(m x h )i eijk~j bl Ilk +~I(g i eijk "j+kl y miul )

1 c —1 (n) (n)+i+~i(/i ~ijk~jokl y miul &ijkfjl bk

0 & TR = d;[j j cu, (g—'; /';—)] —(j —. Su; )i);—T—(—J,;.—m, u; )c);h,'"—J;h ' —X,","A;,

—(Q; bq'v V'q' cu;—)qi; —(g. j——g j)c) cu;,

jc=jcgc+Tjc+uj[oj 5j(P b p ''dibk ski ) dj bk ctiki ]+Jjrhj' 'Q b XQ '+u yco m'
(5.15)

(5.16)

Placing (5.14) into (5 ~ 13), rearranging the (Ij';co; term, and integrating by parts on the remaining ~; terms, we

finally obtain

I r (n) (n) —1
i =~ijk("jcrki+ctiji bk (5.17)
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Since the divergence term in (5.15) could be of
either sign, to avoid violating 0& TR, we set

~(D)
j» = — KijBjT,

T
(5.32)

j» =j» —~Ui s (5.20)

(5.21)

The object, then, is to find the unknown set of
quantities g, Jj;, J~, X,'j'", g j, 0;) in terms of the
et of thermodynamic forces
JQ)i P %i)+

We now construct the reactive terms, employing
only eiJk and terms of the form

3~ 8{n)b(n)b(n)
» J

This omits terms proportional to m and ~, which
we expect to be small. Consistent with no contri-
bution to T»» in (5.19), we find (using the super-
script R to denote the reactive part)

(1) (e) (2)
ji =8ijk ~k~J +8»Jk ~k~J' s

(1) {1) {2) (3)
8ijk ~ijl8lk +~ilk8lj +~jlk8li

(5.24)

(5.25)

j'=i'+~, (X'—P') . (5.18)

Of course, j, g j, and g j contain other fluxes

whose forms have not been determined. Neverthe-

less, the other Auxes can be found independently of
j, g j, and g j, so the logic is not impaired by

employing (5.10) first. We are thus left with

0& TR =—j~h;T —J;.8;h'" —J;h "
—X'.'A" —(g J —g )B.e.—0 %'

»J »J (s) » 8 » J » » »

(5.19)

where K,J has the saIne form as 8,J ..

QD) (1) (e) (2)
Jj i Djikl ~l ~k Djikl ~l~k

where DJ»kl is a complicated magnetization dif-
fusion tensor, possessing 15 independent coIn-
ponents, and DJ;kl has 21 independent components
(the Onsager principle gives the symmetry
DJ(;k~l

——DklJ';, thus reducing the number of com-
ponents in D»Jkl). Also,

(5.33)

%'here 'gijkl ls a Vlscos1ty tensoI' possessing 9 1Il-

dp d t po t (g; =q„;j,q;j, =g; ):

where DJ;.kl has the same form as DJ»kl.
(3) (1) .

Q. = —D- %.(0) (2)
»J J'

whclc B»J. has thc same form as 8»J.
From (5.32) to (5.37), (5.19) becomes

(5.37)

(2) (1) (e) (e)+ Iijkl~ij~kl+Dij +i +j +Dijkldj Ai Blhk

+2Dijkl~j ~i ~lk +D»jkl~j ~i ~1~k '

(5.38)

(5.34

where D,J" is a relaxation tensor (giving T1 and T2
processes) having the same form as Bj, and Dkj,

)

has the same form as 8Jk'.

{s)(D) (1) (e)
~ij Dijk lk tijkl~kl ~ (5.35

(5.28)

(5.29)

(5.31)

where the 8iJ"'s have the same form as 8,J in

(5.23), and 8;Jk' has the same form as 8iJk'.

J- =—8k-Bk T{R) (1) (5.2

(5.2
~ (s)(R) (3)

pj(R) gj(&) g(2)g

(R) (4) (e) (3)= —8j» ~J' —8kJ»~kJ. (5.3

(3) (5) (&)
8ijk ~ikl8J'l +~jkl8il

where 8Jl
' has the same form as 8,J in (5.23).

The dissipative terms have the form (using the
superscript 0 to dcnotc thc d1ss1patlvc part)

~ L.(n)
b(n) (,q )b(n)

Bt
(5.39)

a result which reduces to that for nematics if we

restrict b'"' to the nematic axis n.

This enforces a number of restrictions on the dissi-

pative coefficients, which we will not attempt to

enumerate.
%'e close this section by noting that, in rotating

equilibrium, where the driving forces go to zero, it

is straightfor~ard to show that the entropy and

mass densities only convect at the local velocity v.
Further„ the momentum density, magnetization,

and the rotation rate 0, all change both with the

local veloctiy v and the local angular velocity u.
In particular, one may show, in rotating equilibri-

um, that the triad vectors satisfy
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VI. CONCLUSION

%'e have derived the hydrodynamics of biaxial
nematics with arbitrary nonsingular textures. The
choice of independent thermodynamic variables
(5, p, g, rn, I

O'"' I) led to the corresponding set of
thermodynamic forces (BI- T, BIp, c4,~, BJ~I.,
1'i;"', 4;}. Had we neglected m and solved fo«he
normal modes of the uniform system, we would
have found a pair of propagating modes {ordinary
sound, associated with p and k.g, where k is the
wave vector) a thermal diffusion mode (associated
with 5), and five other diffusion modes (associated
with k X g and ( b'"']). Of course, it is possible
that some of the modes associated with j 1'"'] are
propagating, as is also possible in uniaxial nemat-
ics; but, since such modes are diffusive in uniaxial
nematics, one anticipates that they will be diffusive
in biaxials. The presence of an additional mode
distinguishes biaxials from uniaxial nematics and

may serve as a definitive signature of this phase.
Note that, by increasing the symmetry of various
tensors, one can make the hydrodynamics of biax-
ial nematics go into that for uniaxial nematics. In
that way, for exaxnple, one can extend the reversi-
ble nonlinear uniaxial nematic hydrodynamics, to
include the dissipative terms.

In closing, we repeat that explicit treatment of
angular momentum conservation, Rs well as de-
tailed consideration of the equilibrium conditions,
leads to hydrodynamic equations which clearly
possess a rotating-equilibrium solution. %'e should
mention, however, that there exist other treatments
in the literature where angular momentum is expli-

citly conserved. (Certain of these arc mentioned in
Ref. 12.) Probably, the work of Snider and
Lewchuk, ' on fluids whose molecules possess
internal angular momentum, is most like ours in

spirit. In the Appendix we indicate how to incor-
porate internal angular momentum into the present
problem.¹teadded in proof. Since submitting this pa-

per, I have become aware of three other related
works. They are by H. Brand and H. Pleiner, by
E. A. Jacobsen and J. Swift, and by M. Liu.

I would like to thank R. Trebin for R stimulat-

ing preprint, and M. Kleman for his encourage-
ment and valuable observations.

momentum of the molecules constituting the biaxi-
al nematic. In this Appendix, we will indicate how
the theory can be so extended, and we will present
some references to work on ordinary fluids with
internal angular momentum.

I.et us assume, therefore, that the system also
possesses a thermodynamic variable 1, thc internal
angular momentum density. This requires that wc
add I .d 1 to de [the right-hand sides of Eqs. (2.2)
and (2.5)], that we add I' 1 to e+P [the right-
hand side of Eq. (2.6)], and that we add 1 d I' to
dP [Eq. (2.7)]. Here I' =—Be/8 7, with the ap-
propriate variables held constant. As a conse-
quence we must add I g 1 to the right-hand side
of (2.10) and (2.11},to express de;„,=0 under uni-
form rotations.

%C must also add a term

to F in (3.1), and we then find an additional condi-

tion, on varying 1: I —a7=0 in equilibrium.

The equation of motion for I is taken to be

and in (4.10) for jwe must add 1 to the right-
hand side. This redefinition ofj requires a rede-
finition of o': to the right-hand side of (4.13) we

must add —1 X I (which will be zero if 1 is
along I'}.

A bit of reflection yields that l and I= are
analogous to y 'm and y(h —H), with W; and
W,J analogous to y 'J; and y 'J,J. Thus, we may
obtain the final results by making appropriate
chRnges. %e must redefine J; by Rdding

(I co )+U ro"1—
&J J J

to the right-hand side of (5.16};and redefine g,' by
adding I;UI to the right-hand side of (5.17). Then
(5.18) ls liilchaiiged. With the definlt1on

we then find that the entropy production equation,
(S.19) develops the terms

APPENDIX

In the bulk of the present paper, we have com-

pletely neglected the effects of the internal angular

added to its right-hand side. %ith these changes,
one may proceed to obtain the new terms WJ, and
W;, and the additional pieces that must be added
to the old terms.
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%e only sketch the resulting analysis. For the
reactiue parts:

(1) j; gets a Bk(I J
—cd. ) term and WJ; gets a

corresponding Bk T term.
(2) 0; gets a (I J

—coJ.) term and W; gets a
corresponding %'k term. For the dissipative parts:

(1) W;. gets BIhk', BIcok, and BI(l ~ —cok)

terms; and JJ; and g~ ' get corresponding
BI(1 I,

—col, ) terms.
(2) W,' ' gets hk", AkJ-, and (I k

—mk) terms; and
I ' and X,'J-'*" ' get corresponding (I k

—mk) terms.
To remain true to the spirit of hydrodynamics,

which only can properly include motions with no
restoring forces (reactive or dissipative) in the
long-wavelength limit, we must always keep
h ' =h —H —y ~ and I —co set to zero. The
former means that T& and T2 relaxation processes
have brought the magnetization into equilibrium,
and the latter means that analogous processes
("vortex viscosity" ) have brought the molecular
rotation rate into equilibrium. However, because
H is at our experimental disposal, and it can be
made to oscillate very quickly, in practice situa-
tions can readily be produced where h"'+0. In
that case, the h"'+0 equations, although not
literally correct because the relaxation rate may in

practice not be frequency independent, will be
needed. Qn the other hand for most situations of
hydrodynamic interest, I —to =0. [Of course, one
can consider probes in the optical frequency regime
(-10' Hz), faster than the inverse of the relaxa-
tion time x for I —m. This is near 10 " sec,
from computations for nitrogen near its boiling
point. However, such high-frequency probes are
not hydrodynamic. ] Thus, in de the terms
v-dg+ I .81 become

v.dg+ —,( V X v).d 1 =—V.(v Xd 1 )

+v d(g+ —, V X 1) .

If the surface term can be dropped (e.g., if v =-0

on the surface; or if 1 is normal to the surface),
then by letting g~g'= g+ —, V X 1, we can at-

tempt to do the hydrodynamics with a redefined
momentum density. However, the form
v X g+ I X 1 needed for angular momentum con-
servation [see l2. 101], which reduces to I &( 1, and
is —,( V' X v) X 1 for I =~, takes the form
v X g'= v X ( —, V X 1). In general, these two ex-

pressions will not be equal, so a straightforward el-
imination of 1 through the use of g' will not
work. However, if we set I =~, all of the new
contributions to the "old" fluxes (which neglect 1

entirely) disappear. Thus, although 1 cannot be
neglected in the thermodynamics, its associated
variable I does not explicitly enter into the fluxes
which drive the equations of motion (except for the
total angular momentum density g, which cer-
tainly does sense the presence of 1). For most
purposes, it means that 1 can be neglected. How-
ever, it should be noted that for very small samples
this may not be a good approximation; then the
center-of-mass angular momentum may not com-
pletely overwhelm the internal angular momentum.
See, for example, the work of Eagan and Maksi-
mov. These authors consider, among other
things, the equilibration of a cylinder containing
diatomic molecules, with v = 0 and I +0 initially:
they find that the equilibrium value of I (=co) is
down by a factor of a /I. from its initial value,
where a is the molecular radius and I. is the
cylinder radius. (To eliminate wall friction, one
may assume all wall collisions to be specular. )

This is simply the ratio of the individual molecular
internal moment of inertia to the typical molecular
center-of-mass moment of inertia.

Further references on the hydrodynamics of
molecules with internal angular momenta may be
found in Refs. 31 and 33. Note that Ref. 33 indi-
cates that the D,JkI of (5.36) are zero for point par-
ticles. By the positivity of (5.38), this also means
the D,'JkI are zero in that case.
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