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Kinetic variational theory for mixtures: Kac-tail limit
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A kinetic-variational theory recently derived for a pure fluid on the basis of maximiza-

tion of entropy is given for mixtures. Explicit results are found for particles interacting

via hard cores and Kac tails (i.e., weak long-range attraction).

In a previous article' we described the derivation
of a mean-field type of kinetic equation for the
one-particle distribution function for a one-

component fluid whose particles interact through a
pair potential consisting of a hard-sphere core plus
a smooth attractive tail. In a separate investiga-
tion we studied the thermodynamic and transport
properties embedded in that equation. In this
letter we extend the theory to a mixture of L
species for the limiting case of the Kac-tail attrac-

tive potential.
In Ref. 1 it is shown how, through maximiza-

tion of entropy subject to certain constraints, a
closed one-particle kinetic-variational equation and,
at the same time, an entropy functional can be ob-
tained which together engender an H theorem.
The generalization of those results for mixtures
turns out to be straightforward so that details are
omitted here. The set of kinetic-variational equa-
tions for L species is, i= 1, . . . , L,
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Notation is explained in Ref. 2. The shape of the attractive tail, {(),J", is continuous but otherwise arbitrary.
The collision term, C", has exactly the form of that which appears in the revised Enskog theory, intro-

duced by van Beijeren and Ernst,
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Here cr;J need not equal —,(cr; + oj). The entropy functional is obtained as

L L
S =k ln@{t)—k g f dr dvf (r, v, t)lnf (r, v, t)~k g f dr n;(r, t)lna;(r, t) .

The a; is a function of f; and depends only upon r, t; the n; = f dv f;(r, v, t). The tail strength is not man-

ifested explicitly in S, which reduces to S at equilibrium. 4(t), a normalization factor that plays a role
analogous to the partition function in equilibrium theory, depends only upon the hard-core part of the po-
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(4)

This mean-field term embodies naturally the "external" potential fields assumed in, Ref. 6. We use
P',1" =y VJ(yr) in the usual Kac limit, y~O. The limiting kinetic equation (1) + (4}, when 1.=1, is of the
Enskog-Vlasov type which has been used to study condensation phenomena.

The conservation laws for n;,
L1~Id

P i=1

tential. It is straightforward to show that (8/Bt)S &0 via (1) + (2), equality holding when

f; =f; R;(r,t)V;(v, t). This is a stronger condition than f; being a local Maxwellian f;,which is the
corresponding result in the Boltzmann theory. Unlike the case in the Boltzmann theory, here (8/Bt)S=O is
not sufficient to make the collision integral C zero. '

The Kac limit can be effected by taking u;j~0 in the mean-field term, which takes the form

L

g y I drink(r2, t)r",2VJ(yri2) f;(ri, vi, t) .
Nli BV1
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are found by taking the zeroth, first, and second velocity moments of (1) + (2) + (4) and they take the
form

—n;+V1 n;u;=0, (5a)

with

lu;= — dv vft, K,
Pk]

p—u+ V .P=O
dt

where the momentum flux has three terms: P=P'+ P'+ P' and

L
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0
l,j=1

(6c)
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and

L——,nkT+V~ , nk—Tu+V~ Jq+I"+':V~u=y g (u; —u) f ds sVJ(ys)n;(r~, t)nj(r, + s, t) .
l,j=1

The temperature component of the heat flux is J&
——J& + J&, where

l.
Jq(r&, t)= g f dv —,m;(v —u)2(v —u)f; L (7a)

L
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The heat flux also has a component from the potential, J~. This term can be gleaned from the equation,
analogous to (5c.1), for the potential energy density:

L
U(r„t)= , g n, (-r, ,t) f dr, y,';"(r»)n, (r„t)

(Ref. 8). Through second order in gradients [tantamount to using Fourier s law in (Sc.l), for example] ob-

tain

L.—U+V~ uU= —2 $ ojnJV ~ n;u;+UV u+u. VU,
at

(5c.2)

where 2o;~ =f dr V~(r) and all field variables are evaluated at r ~It Add (5c..l), expressed to the same or-

der, to (5c.2), use (6c) to express P' through linear order and obtain

JS+c+f+P s+c+f q ~ 0at'

Here e= —,nkr+ U, J&+'+'—J'+ J'+ J',

L J PS

Jq =2 g QJJnj.
ij =1 l

(7c)

J = f dv m;(v u)f, —

is the mass-diffusion Aux of the ith species.
Explicit expressions for the transport coefficients are obtained by expanding (7a) —(7c), (6a) —(6c), and (8)

to linear order in gradients through solving (1) + (2) + (4) in the form f;=f '[1+4;], where 4=0(V),
via the Chapman-Enskog development. This has already been done for (1) + (2) without the mean-field
term, ' inclusion of which in the linear regime merely requires superposition of specific contributions. We
obtain the linearized integral equation for 4;:
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The y; is the contact value of g;, 4;=Qm;/2kT(vi —u), m J m;+ ——mi, p 1 m;m—j—lm i, and

4;@;= 8'; 8'; ——,8'; I, I being the unit dyadic. The presence of the tail is manifested only in d; which

has the form

di di +di s

where

L

d; =—P(Vip; )T—P VP s+V lnT 1+ g o;~y,j.ni

has the property

Pli L Ptfi
d;= —P 2 $ a;,Vn, — VP

p

also has the property g,. , d,'=0. Here P= 1/kT. Also,

L
P = g oijil;BJ.

follow from (6a)—(6c), respectively. An alternate route to equivalent thermodynamics follows through e.
The chemical potential

pi(T~( "j I)=pi +pi ~

HS

L

p, i~ =2 g Qijlt/
J=1

so that the isothermal, isobaric driving force (d;)i T takes the form
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(1;)i T
——p—(&p; )r,J

which is the form expected on the basis of phenomenological irreversible thermodynamics. ' The expansion
of 4i is assunlcd:

L

4;=—A; V lnT 8;:V—'u+H;V. u g—D;i di
I=1

and it is straightforward to show using Eqs. (6)—(9) and Eq. (12) that
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The bracket notation of Ref. 5 has been used here with e '—:—,[Vu + (Vu) ]—, V uI. A—lso,
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The "irreversible" part of the entropy produc-
tion has the form

(1)-0 = ——J 7 lnT
T

—k g J d; ——II:Vu, (14)
PTJ" PlJ ' T

or, equivalently,

To,"' =— Jq+'+' —g J . VlnT

where II =P (P+s+ P')I, an—d from (14) we iden-

tify Auxes conjugate" to the independent forces
—V lnT, —d; (I=1, . . . , I. —1), and —Tu as

g =kT J — J,
Pf ltd ' PfL NIL

re~sectively. Since t A,D; }= I D;,A } and

( Di,D; }= } D;,Di } the kinetic coefficients which
relate these fluxes to those forces satisfy the On-

sager reciprocal relations. ' " In fact, these kinetic
coeHicients do not exhibit a dependence on the tail
strength and so are identical to those of the
RET.' Thus these kinetic coefficients bear
discrepancies in form and in numerical values
analogous to those mell known for the one-
component case. We emphasize that these kinetic
coefficients represent an approximate realization
for the hard-sphere reference quantities which ap-
pear in other treatments of the dynamics of the
"van der Waals" fluid. '

It follows that the transport coefficients which
bear dependence upon derivatives of thermodynam-
ic functions —mass diffusion, thermal diffusion, '

and barodiffusion' coefficients —can be the only
ones to exhibit explicit dependence on the tail
strength. We restrict our attention to the mul-
ticomponent binary-isothermal, isobaric mass-
diffusion coefficients &ij dcfincd fioIIl

L —1

J = —g &;J(V'pi)Ti .
j=1
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In (15) and the following, use is made of

i d; =0 to eliminate dL. Combining (11) and

(12) with

Dt(vi —u)={vi—u) g d„"'$3/i(C;),
r=0

(13a), and (15) we obtain the expression
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where P(T, I nj ])=PHs+ P'. The do' ' is found by substituting the above expression for D;t and (12) into
(9). In terms of the Helmholtz free energy per volume a„, N;J takes the form
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' —' L 2 2 2
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dsm dp d 1 Ptdct,
T = +P

dt dt dt p,. im; dt
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in the regime of linear irreversible thermodynam-
ics. Here s =s/p =entropy per mass, p =e/p,
c; =p;/p. The entropy equation reads

a—s+V (su+ J, )=o. ,at

where o.=cr,'" as in Eq. (14) and

-s+c+f L

J,=—Jq — J
T ', m;

(18)

This result can also be obtained' via Boltzmann
theory for mixtures. However, combining (1), (2),
and (3) for the special case L =1 leads to the re-

sult, ' to first-order expansion of f in gradients
[denoted by superscript {1)],

(19)

The J, does not contain' the collisional heat flux
as does J, and neither the

so that S'2& vanishes on the critical line' and over
the spinodal surface, ' which is the limit surface of
material stability. Similar behavior does not occur
if the standard Enskog theory' (SET) form for the
collision integral is used in (1), as was shown al-

ready for the case of a binary phase separation. '

A companion equation to (Sa)—(Sc), for the en-

tropy density s follows from (Sa)—(5c) and the
Gibb's relation, assumed' to be valid in the form

J =(2~/3)d k n y(d)u

(d =hard-sphere diameter) nor

o 3 md k n y(d) bpe ':Vu ———a
5 k (VT)
2 m T

[which is & 0 since the Sonine coefficients (Ref. 5)
bo» 0, a, &0] contain the ingredients necessary to
ensure consistency of (19) with (18). The J"' and
o arise from nonlocality of the collision, as exhi-
bited by (2), and vanish as o;J ~0 is effected in the
arguments of f~ in the integrand of (2). In this
same limit, the collisional contributions to the
fluxes vanish and so the form (18) is recovered.
Since nonlocality of collision is a general charac-
teristic of collision dynamics (the Boltzmann equa-
tion is a special case' ) the result (19) suggests
that (17) is inappropriate in general in the linear
regime. Based on this result we conclude that (18)
is likewise an inappropriate starting point to study
entropy fluctuations ' ' except in the dilute-gas
limit.
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