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By an extension to the dense-fluid regime of a method based upon maximization of en-

tropy subject to constraints, first exploited by Lewis to obtain the Boltzmann equation,

kinetic equations for one-particle and two-particle classical distribution functions are ob-

tained. For the hard-sphere potential and a one-particle constraint, the kinetic equation

(for the one-particle distribution function) of the revised Enskog theory is obtained; for a

two-particle constraint a more general kinetic equation (for the two-particle distribution

function) than that studied by Livingston and Curtiss is obtained. For a pair potential

with hard-sphere core plus smooth attractive tail, a new mean-field kinetic equation is ob-

tained on the one-particle level. In the Kac-tail limit the equation takes the form of an

Enskog-Vlasov equation. The method yields an explicit entropy functional in each case.
Explicit demonstration of an H theorem is made for the one-particle theories in a novel

way that illustrates the roles of the reversible and irreversible parts of the hard-sphere

piece of the collision integral. The latter part leads to the classical form of entropy-

production density as described by linear irreversible thermodynamics and so possesses

many of the features of the Boltzmann collision integral. The former part introduces new

elements into the entropy-production term. It is noted that the kinetic coefficients of the

revised Enskog theory exhibit Onsager reciprocity in the linear regime. Upon considera-

tion of the standard Enskog theory in the linear regime, we construct an entropy-

production density and identify conjugate fluxes and forces and also kinetic coefficients

which are shown to exhibit Onsager reciprocity. The standard theory is in disagreement,

however, with the results of phenomenological irreversible thermodynamics for the con-

ventional forms of fluxes and forces.

I. INTRODUCTION

The great advances made by Boltzmann' and

Enskog toward constructing a kinetic theory of di-
lute and dense classical fluids, respectively, were
the products of brilliant intuition. Boltzmann s ex-
plicit construction of an entropy functional and
demonstration of its monotonic increase in time (H
theorem) is a landmark in the program of exhibit-

ing relationships between microscopic dynamics
and irreversible processes. Thus, aside from their
value in describing hydrodynamic and transport
processes, kinetic equations have come to be re-
garded as a bridge between the microscopic domain
and the realm of macroscopic irreversible process-
es.

Enskog's equation represents a generalization of
the Boltzmann equation to the dense-fluid regime

for the hard-sphere potential model. Construction
of an explicit entropy functional has not yet been
done for the original Enskog theory (herein re-
ferred to as standard Enskog theory —SET) though
a recent result provides a prescription for con-
structing an entropy functional. An explicit entro-

py functional and irreversibility have been demon-
strated for a revised version (RET).

Investigations over the last three and a half de-
cades have sought to elucidate the principles and
assumptions inherent in these theories in order to
establish systematic techniques for the construction
of more general irreversible kinetic equations that
are appropriate to dense gases and liquids. A logi-
cal starting point for the description of classical
many-body dynamics has proven to be the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy, which connects the evolution of an s-
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particle distribution function, F„to the distribu-
tion function for s+1 particles, F,+~. Both objects
are unknown. To determine F, exactly, therefore,
requires solution of the full many-body problem.
Performance of this exceedingly difficult task
would yield a huge amount of superfluous infor-
mation, inasmuch as thc physical quantities of
greatest interest can be expressed in terms of the
lowest-order distribution functions, typically
s =1,2. The approach is taken, therefore, to
develop a closed set of approximate equations for
the evolution of these lowest-order distribution
functions.

Several schools of thought have arisen regarding
methods that can be used to close the hierarchy.
Closure requires expression of E, in terms of
F„sg t, possibly in a nonlocal or non-Markovian

way. Most efforts have been aimed at the one-

particle kinetic equation wherein approximation is
made directly on F2. Not nearly as much effort
has been devoted to the two-particle equation al-

though it can be expected to provide a better ap-
proximation for Eq, which contains the informa-
tion of paramount interest to a description of the
dense-fluid state.

A systematic approach to describe the evolution

of Fi in terms of thc dynamics of distinct groups
of two particles (the Boltzmann term), three parti-
cles (the Choh-Uhlenbeck term), etc., mas first in-
troduced by Bogoliubov and has been developed
and expanded by many ~orkers. The density of
the fluid is regarded as the determinant of how

many terms one should include. The main as-
sumption in these approaches is in regard to the
corrclatlons RInong thc particles of each group at
some distant time ln thc past. Closulc 18 had by
assuming no correlation among particles in the far
past mhcn the members of R group are far apart
and not interacting. Then E, s =2,3, ... is factor-
ized into a product of Fi'8 at some time in the
past. Thereby indirect dynamical correlations
among members of a group through interaction
with the remaining fluid are neglected. %ith the
exception of the theory of Klimontovich [Ref.
7(c)], theories of this kind have yet to be demon-
strated as having an 8 theorcIn or an entropy
functional. Moreover, they have proven to be in-

tractable at liquid densities; the transport coeffi-
cients exhibit great complexity, including loga-
rithmic density dependence, which has blocked the
way to analysis of all but the first few terms. ' '

Now Enskog's theory extends only as far as the
Boltzmann term in group dynamics but accommo-

dates spatial correlation between the two colliding
particles via the two-particle spatial correlation
function of the dense uniform hard-sphere Quid at
equilibrium. Van Beijeren and Ernst have gen-
eralized this kinetic equation by using instead the
correlation function appropriate to a nonuniform
fluid Rt cqulllbrluIn. Rcslbols has shown that this
RET does indeed have an entropy functional and
an 8 theorem.

A natural basis for incorporation of dynamical
aspects of the fluid structure, in general, is had by
recourse to the two-particle equation. A Markovi-
an kinetic equation is obtained when the Kirk-
mood superposition approximation" (KSA) is ap-
plied to E3 for closure. Alternatives to this have
been considered but neither an entropy functional
nor irreversibility have been exhibited by such ap-
proaches.

Quite apart from the kinetic theory, the problem
of the relationship of higher-order distribution
functions to given ones of lom order has been in-

vestigated from several points of view. Mayer
has characterized the nonequilibrium ensemble
which exhibits maximum entropy subject to a
prescribed set of low-order distribution functions.
An alternate analysis to this end was given subse-

quently by McLachlan and Harris' using
Lagrange undetermined multipliers. A maximum
"entropy" principle was used by Ramanathan,
Damson, and Kruskal' to derive the KSA and
higher-order gcncI'Rllzatlons.

Lcwls cInployed InaxlInlzatlon of cn'tl opy sub"

jcct to constraints to effect closure in a derivation
of the Boltzmann equation; automatically he ob-
tained a global form of Boltzmann's entropy func-
tional. Here me extend Lewis's Inethod into a
form suitable to application to dense fluids. In
particular, me recover the kinetic equation, entro-

py functional and H theorem of the RET assum-

ing a hard-sphere repulsive interparticle potential.
By generalizing to a potential with hard-sphere
core plus smooth attractive tail we obtain a mean-
field kinetic equation, mhich is suited to liquid
dynamics, such that the hard-sphere fluid structure
serves as a reference structure for the attractive tail
which appears linearly in the mean-field term. %'c
show that this theory also has an entropy function-
al and an 0 theorem. When the tail strength is set
to zero, thc RET is recovered, and when the Kac
limit is taken on the tail, an equation of the
Enskog-Vlasov type' is obtained. (A number of
other nice formal properties and applications of
this theory to liquid transport are described else-
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where. '
) A new one-particle kinetic equation for

the square-well potential is also obtained and an H
theorem is proven for it.

The method is also used to obtain a closed equa-
tion for F2 for the hard-sphere potential. This new

equation goes beyond that of Livingston and Cur-
tiss' who applied the KSA to F3 for closure. The
new equation contains within F3 a three-particle
phase-space correlation function which manifests
the possibility of long-range velocity correlations.
The reversible part of this kinetic equation is
shown to yield at equilibrium the correct two-
particle member of the Yvon, Born, and Green
hierarchy. ' An explicit form for the entropy
functional is also obtained.

The maximum-entropy approach has great for-
mal mathematical power, yet is conceptually sim-

ple. It is a compact systematic technique for
deriving kinetic equations associated with entropy
functionals as well as a formally closed BBGKY
hierarchy. Moreover, its basic principle, the max-
imization of entropy, conceptually unifies equilibri-
um and nonequilibrium statistical mechanics. The
existence of a physical mechanism for closure is
not addressed in this approach. Rather, the
method provides a mathematical framework whose
relevance to the physical problem is best judged a
posteriori.

In Sec. II the basic dynamical equation for the
one-particle theories is derived and in Sec. III the
statistical procedure for closure is set up. For
completeness, a derivation of the Boltzmann equa-
tion is given in Sec. IV, following Lewis, ' to illus-

trate the role of time smoothing. In Sec. V one-

particle kinetic equations for dense fluids are de-

rived and H theorems proven, and in Sec. VI a
two-particle kinetic theory for the hard-sphere

fluid is discussed. In Sec. VII properties of the
RET hard-sphere theory in relation to irreversible
thermodynamics are developed. A local entropy-
production density is constructed and forces and
conjugate fluxes are identified. The kinetic coeffi-
cients are shown to exhibit Onsager reciprocity.
(These forrnal results are shown to hold also for
the SET, although the forces and conjugate fluxes
do not both take the form expected on phenomeno-
logical grounds. Our general conclusion is that the
RET is superior to the SET in regard to its rela-
tion to irreversible thermodynamics, although we
differ in some specifics with van Beijeren and
Ernst. ) A summarizing discussion follows in Sec.
VIII. The salient findings for both the RET and
SET are summarized in an Appendix.

II. THE DYNAMICAL EQUATION

The BBGKY hierarchy for the specific distribu-
tion functions F„ in the thermodynamic limit and
for pair interparticle interaction, is'

F, + [H„—F, Iat '

=n dXs+& Is+& Fs+& s

~ Br; Bp;

where

S . SPI
H, =g

i=1 i &j

n =N/V, x =(r, p), and the F, are normalized so
that f d'x F, = V'. For convenience we set m = I

so that p =v. A formal solution of (1) in powers
of n was obtained by Lewis

OO k
( 1)k—j

F,(x', t+r)= g n" f dx, +&
. dx, +k g . T'J+'Fk+, (x +', t),

k=0 =0 j'(k —J)'

where

(j+s) (j+S) j+S ( &) (1)T ~ Fk+s Fk+s(S ~ X )S ~ Xj +s+ i ) ~ ~ ~ ) ~ k+s)t )

and S'~', =expr[H&, j. Equation (2) demonstrates that there are two parameters at our disposal, n and r.
For s=1, we obtain

F~(x~, t+r) T"',F~(x~, t) =n f—dx2[T', F2(x&,xz, t) T"',F2(x~,x2, t)]-
+n f dx2dx3[ ,

' T','F3(x, t) T' ', F—3(x,t)+ , T'",—F3(x',t)]+—

The integrands on the RHS do not vanish only when the particle configurations are such that the multipar-
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ticle streaming operators induce interaction among the particles.
Replace x~ by S',"x~ in (3},which is an identity in x~. The left-hand side (LHS) of (3}becomes equal to

J dr(d/dr)F, (S,"'x„t+t),
the integrand of which is equal to

(])
v~ V~+ —F&(S,' 'x&, t+r) .

Bt

Now the LHS of (3) can be written

(4)

where

F& ———I dr F~ (S„"'x ~,t+ r ) .
0

(5)

The binary collision term on the right-hand side (RHS) can be similarly transformed to

n I dx2[T' ',T',"Fp(x ),xp t) —F2(x),x2 t)] . (6}

Similar forms can be obtained for the ternary and higher-order terms on the RHS of (3), but inasmuch as

any high-order term is 0 (nrnR g) times the preceding term (where Rt, is the range of the interparticle in-

teraction and g is the mean relative speed of colliding particles) we will not be interested in the ternary and

higher-order terms in the sequel because we choose n or r such that these terms will be very small. Combin-

ing (3) and (5) we obtain the result

F](x),t) =F)(x] t)+0
+1'

where the mean free time r is (nnR g~) ' Theref. ore the time-smoothed and unsmoothed one-particle dis-

tribution functions are approximately equal if v « ~ . As we will see subsequently, the role of time

smoothing is to establish a time scale which captures a complete collision. As utilized here time smoothing

does not play a role per se in introducing irreversiblity.
The dynamical equation of interest in the one-particle theories is obtained from (4), (6), and (7). In antici-

pation of later results we assume here that ~ &&w and also define the correlation function

F2(x~,xq, t}
(8)

and introduce the notation

T' ',T,"'F2(x),x2, t) =Fp(x ),x2, t), (9)

where x ], x q are related to x],x2 through the interparticle potential. Combining (4), (6), (7), (8), and (9) we

obtain the leading order result

—+v~ V~ F~(x~, t)=n I dx2[g2(x~, xq, t)F~(xI, t)F~(x2, t) g( ~2, xq, tx)F~( ~,—tx)F~( z, tx)] .
at

(10)

III. THE CLOSURE PRINCIPLE

To simplify the formulas in this and following sections we replace the specific functions F, by generic
functions f, =n'F, The macroscop. ic fluid properties can be expressed in terms of f~ and f2,2' and, in par-
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ticular, knowledge of f, is sufficient to describe the state of a dilute gas. Generally, then, we assume that
some low-order function f, is known at time t. Closure can be had'i' by maximizing the statistical entro-

py functional S,

S=—k f d x WNln(W~/I ),
where fd x W~ ——1 and I is a measure on the phase space whose value is not pertinent to the following

development so will be suppressed, subject to constraints of symmetry and that all known information (f, ) is
reproduced precisely by contraction of 8'~. The latter means

f

f,(x', t)= ' f d 'x W~(x, t) .
(1V—s)~

Formally, we express this problem via the use of Lagrange multipliers' —maximize the functional

(12)

I[Dt's]=S[Dtt]+ky 1 —f d xE~Dtt +k f d'x A(x', t)f (x', t) '—k f d x A(x', t)E~DN .
(X—s)!

(13)

Here for convenience we have split 8'z into a product of factors, Ez ——Ez(r ) which is assumed to have a
known form (which in Sec. V we shall take to be the function e that excludes the overlap of hard cores)
and D~ ——DN(x, t) which is not known in form and is the function to be varied in seeking the maximum of
S. The Lagrange multiplier function A, is syinmetric in all x;, as are all f„so the last term in (13) may be
written in the symmetric form

f d x A (xt y ~ yxt y t)END'tt
~ -. I —1

1

where the prime means no indices equal.
The operations BI/By=0 and 5I/[M(xp, t)]=0 yield the normalization condition 1=f d x W~ and Eq.

(12), respectively. The functional variation with respect to DN yields

5I
kEtt(rp) I—+lnEtt(rp)+lnD~(xp t)+y+ g A(xp, ...,xp, t)N t

Dx(xo, t)

Provided that E~(r p )+0, setting 5I/[5D&( xtp)]=0 yields

N

InEtt(r p)+lnD~(xp, t)= —y —1 — g A(xp, , ...,xp. , t) .
I ''' ig=l1

(14)

IV. DILUTE GAS AND THE
BOLTZMANN EQUATION

Here nuo && 1, where vo is the volume of a parti-
cle. Set s =1 and E& ——1 and from (15) obtain

—A,(x, t)
WN(x", t)=e ' rge " =N "gfi(x;, t)

(16)

so that [through (8) in generic function language],
obtain

g2(x],x2, t) =1 .

Hence, correlations among particles are neglected
in this approximate ensemble. In terms of the gen-

I

eric functions, (10) now takes the form

—+vi Vi fi(x, , t)
a

fdxi[f, (xi, t)—fi(xi, t) fi(xi, t)fi(x, , t—)].'r

(18)

The configurations for which the integrand of
(18) does not vanish permit a collision to occur
upon backward streaming by T' ' after free
streaming of both particles by T'" [cf. (9)]. This
situation is typified in Fig. 1(a), where Rp ——r~ —r, ,
g = v 2

—v i, and R =Rp+ gr. Given r i, v „v2 r
then ri must be so that (i) if Rp. g & 0, then
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(0)

k~
B /' C

/
I )

)
/

=R /

= J dvq f dbbdeg[f~(r, , vI, t)f, (r~, vz, t)

—fi(x»t)fi(r»v2 t)] .

(20)

(b)

FIG. 1. (a) Precollision configurations for the
Boltzmann equation. (b) Geometry of precollision con-
figurations in the hard-sphere limit.

Ro &R~, where R~ is the range of the potential;
and (ii) if Ro g &0, then R~ &(Ro —Ro g

)'~2 and
either R, &R~ or R, g &0 and R &R~.

The volume of this region of contributing r2's is
of order mrgR ~ (neglecting end caps). As already
mentioned the ternary and higher-order collision
terms will be negligible if

To complete the picture, we obtain from (11)
and (16) the dilute-gas global entropy functional

S~" kN)n——N —k f dx f&(x,t)lnf&(x, t) . (21)

It is straightforward to show that (8/Bt)S&" &0 us-

ing (20), equality holding if f~ is the Maxwellian
distribution. As a final note here, as shown al-

ready by Grad, Eq. (20) follows as an exact result
from (3) [given (17)] in the limit n~ao, R~~O
such that nR~ ——0, nR~ ——const. In our context
this limit implies ~, ~0, ~ =const, and permits
taking v~0+ while still capturing a complete col-
lision and conforming to (19).

If instead of relation (19) we impose v.~O, down
through ~„onto (3) and use (8) and (17), then we
obtain the Vlasov equation

a—+vi'~i fi(xi t)
at

1
&«&m =

ngmR~

Now regions A and C correspond to configurations
which produce incomplete collisions in time v.

and their total volume is —,m.R~, which may be

neglected if ~&& —,(R~/g)-v„ the duration of a

collision. The physical domain of applicability of
our ultimate result is then characterized by the re-

lation

a fi(xi t)' dx2~1012f1(x2 t)

which is completely reversible.

V. DENSE GAS AND SIMPLE LIQUIDS

A. Kinetic equations

(22)

&g &(&((&~ ~ (19)

To the same order of approximation, based upon
the first inequality of (19), we may write

f dr2= f dbbde f dz,

where db b de is the differential cross section for
scattering which applies to both terms in the in-

tegrand of (18) due to microscopic reversibility
which is naturally built-in by the presence of T' '.
To complete the analysis we make a smoothness
assumption:

f~( r+i, v, t)=f, (r, v, t)

if
~
Z

~
-O(rg). Thereby, we obtain from (18) the

Boltzmann equation

Here nvo & 1 and for a general potential the
strong inequality (19) cannot hold. To simplify
matters we model the repulsive part of the poten-
tial by a hard-sphere repulsion. The duration of
such a collision is ~, =0 so that an inequality like
(19) can be maintained while taking ~~0+. Also
in this limit the ternary and higher-order terms in
(3) vanish and, from (7), Fi ——F] holds exactly. In
this framework we distinguish several cases.

1. Hard-sphere core, diameter 0;
no attractive tail potential

The configurations which contribute to binary
collisions are shown in Fig. 1(b). In terms of gen-
eric distribution functions, (10) becomes the exact
result
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—+vi Vi fi(xi, t)

=n' I dv, Jd& & ge.{&g)[gi{ri,v'i, ri+«, v2, r)fi(ri vi r)fi(ri+«v2 ~)

—g2(ri, v&, r, —«, vi, t)fi(r, , vi, t)fi(ri —o&, v2, t)],

where 8(x) is the Heaviside function.
The E~——8, which is the overlap function

8=1 if
~
r; —r~ ~

& o for every i+j,
8=0 if

~
r, —r~

~
&n for any pair i,j .

In this case E~lnE~ =0 always, so, interpreting [xo ] in (1S) to yield 8=1, when s =1 (15) yields

t)D~=8 r ge

(23)

whereby

N

Wiv ——e " '8 pe

This function is identical in form to the 5-particle equilibrium distribution function for hard-sphere parti-

cles in an external field, and it represents the starting point for Resibois's analysis. ' In particular, it

rendeis

where n i( r i, r) = f d v ifi(xi, t} and g2 is that functional of the density field which reduces to the equihbri-

um radial distribution function for the hard-sphere potential if the density n] is constant; g2 has the same

graphical structure as its uniform-system counterpart except that each field point is weighted by the ap-
propriate value of the number-density field instead of a constant number density.

Insertion of (25) into (23) yields the kinetic equation of the revised Enskog theory

—+vi 'ft fi(ri, vi, t)=CE(fi,fi)
Bt

=o' I1v~ I d&& g8(& g)[g2.(ri, r,.+«
~
ni(t)}f,(ri, vI, t)f, (ri+«, vi, r)

—gq{ri, r~ —o'&
I
«(r)}fi(ri vi ')fi(ri —0'& v»r)] ~

The only difference between (26} and Enskog's
equation lies in the form of dependence of gq on
density: in the original formulation g2 was treated
as a uniform-equilibrium function evaluated at the
density at the point of contact. As far as the
linear transport properties of the one-component

I

hard-sphere Quid are concerne, the revised and
standard Enskog theories are identical in predic-
tion. However, the revised theory appears to be
superior when applied to hard-sphere mixtures; the
standard-theory thermodynamic driving force for
diffusion does not exhibit the form expected on
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phenomenological grounds whereas the driving
force of the revised theory does (see Sec. VII).

2. Square-well potential

Any smooth potential can be approximated by a
sequence of step functions with the result that
"collisions" occur instantaneously and only at the
discontinuities. The square-well potential

(27)

r&0
P(r)= eo—&r &Ro'

0 Rcr&r

is the simplest such representation of a real poten-
tial. An exact dynamical equation for the potential
(27), analogous to (23), follows from analysis simi-
lar to that above. Closure of this equation is had

by setting EN ——e which makes g2, as in (25),
dependent only upon the hard-core repulsion. The
square-well kinetic equation is obtained:

—+v) V( f)(x),t)=o f dv2 f d&& g8(& g)

X [g2( r 1,r /+o+&
~
n)f ~ ( P~, V'~, t)f & ( r, +cr&, v,', t)

—g2(r~, r, —o+&
~
n)f~(x, , t)f&(r, —o&, v2, t)]

(hard-core collision)

+R'o f dv2 f d&& g8(& g)

X[g2(r&, r&+Ro &
~
n)f&(r&, v&', t)f&(r& +Ro &vz', t)

—gq(r ~, r ~
Ro+&

~

—n)f ~(x~, t)f, (r, Ro&, v2,—t)]

+R'o' f dv, f d& & g8(& g —v 4e)

(entering collision)

X[g2(r~, r~ Ro+&
~
n)f, (—r„v', '', t)f, (r, Ro&, v2'—', t)

—g2(r~, r, +Rtr &
~

n)f~(x„t)f~(r~+Ro&, v2, t)]

+R'o f dv, f d&& g8(& g}8(v4q &g)—
(escape collision)

X [g2 ( r ~, r ~
Ro &

~

n )f&
( —r „v'„t)f~ ( r

~ Ro &, v 2,t)—
—g2(r~, r~+Ro &

~
n)f~(x~, t)f~(r~+Ro&, v2, t)],

(bound-state collision)

(28)

where

v )
—v ) =c70 '

g

vi vi= 2&[&'g [(& g) +4m]

vl" —vi=-, &[&.g —[(o g)' —4 ]'"] .

(29)



3310 JOHN KARKHECK AND G. STELL 25

Though gz obtained from (25) is continuous for
~

rz —ri
~

& o', distinction is inade in (28) between points
just inside and just outside the well edge. This distinction is used in the subsequent discussion of irreversi-
bility. This equation differs formally from that. of Davis, Rice, and Sengers (DRS) in the pair correlation
function g2. These authors assume a form of f2 like that of (25), but give g2 an equilibrium form depen-
dent upon the full square-well potential.

3. Hard-core repulsion plus smooth attractive tail

In the limit v~0+ we obtain from (3) and (8) in this case the exact equation

a—~ v, Vi f, (x, t)
at

aO"' a= f dxp [gt(xi, x2, t)fi(x, , t)]f,(x2, t)
Br& Bv&

+o f dv2 f d&& g8(&.g)[g2(ri, vi, ri+o+&, v2, t)fi(ri, vi, t)fi(ri+o&, v2, t)

—g2(ri, vi, ri o+&, v2,—t)f, (ri, vi, t)f, (ri o&, v2—, t)] . (30)

Recognizing that 8=g, 28;~ may be interpreted as a product of Boltzmann factors for the hard-
sphere potential suggests that a way to generalize the Ansatz 8'~+ eD& for more general potentials is to let

En ——g, 2e,j8 such that lne, j o: P',J'"

Choosing again [xo I to correspond to a nonoverlap configuration, several cases of interest may be dis-
tinguished for (15).

(1) At low density the mean particle separation is much greater than the range of the potential, so that
lnEtt is zero except on a set of relatively small measure [see discussion above Eq. (19)]. Then (16) is
recovered.

(2) When the potential has a weak long-range attractive tail, e.g., the Kac potential, each particle sits in a
mean field produced by all the others which is sensibly the same for each particle, hence lnE~ ——O(N).—A,(x;,t)Since also lnDtv =O(N) by (15), at best we can say EtvDN ——e ' 8g, , e " which implies g2 given

in (25), so that more general a priori factorization does not produce here a more general form of g2.
(3) When the potential has a short-ranged strong attractive tail, e.g., a Lennard-Jones type, the lne, z is ap-

preciable only among near neighbors so that lnE& ——O(N) and is of order lnD&. Again E~DN ——e—A,(x;,t)X8g, ,e
" and gz as given by (25) follows.

At the one-particle level, this closure principle will give the dense fluid a hard-sphere structure at most, if
the potential has a hard-core repulsion. There is no velocity correlation manifested in g2 in any case. So,
using for closure the result (25), we obtain from (30) in generic-function language the kinetic-variational
equation, '

—+vi. Vi fi(xi, t)= fi(xi, t) f rd(V2Q'iq"i)n ( irt2)gz(r , ir~2n (it))+Cz(f if )i.
Bv

(31)

By imposing the Kac limit,

Q'i'2' ——limy V(yr ),
@~0

which can be effected equivalently by setting o.=0
in the mean-field-term integral, the result is ob-
tained,

a +vi'Vi fi(xi, t)
at

fi(xi, t) f drzViV(riq)ni(rq, t)
Bv~

+c,(f, ,f, ) . (32)
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In form this equation has the appearance of an
Enskog-Vlasov equation and differs in detail from
the equations in Ref. 17 only by the specific form
of g2 which appears in CE.

8 )+& f d)v
—)).)x;,)) 8 )—),(x)t),S—e ~=X x e " —e

Bt Bt

(3'7)

B. H theorems

Each of the three theories (26), (28), and (31) is
accompanied by the same entropy functional,
namely, from (11) and (24)

g)'" ——k lne'+" k f d—x f)(x,t)lnf)(x, t)

+k f dr n)(r, t)lna(r, t), (33)

where

a(r, t) =e"""f,(x,t)

is a functional of f). This form was obtained by
Resibois. @' Similarly, each has an H theorem
which will be demonstrated explicitly, From (33)
we have

8—S)'" ke ' "——e'+r —k f dx — (lnf) +I)
Bt Bt Bt

+k f dr —n) lna+k f dr n) —Ina.B B

Bt Bt

In all three theories (26), (28), and (31) the relation
holds

—lna(r, t) =—e "—e +r
Bt Bt

fd )v) 88 g A(;,—t)
Bt.

' —1

x f d~-)xeffe
l =2

ke ' r e'+r+—k dr n)(r, t)—lna(r, t)=0.
Bt Bt

The equations (26), (28), and (31) are abbreviated

BE
+v) V)f) =If)+«f) f)»

where M =0 for (26), (28), and yields the mean-
field term in (31). The C(f„f)) is the collision in-

tegral.
The third term of (35) becomes, using (36) and

rearranging,

k f dr f dv[ vV(f)lna)+—f)v Vina] . (40)

(n)—tr)= —V. f du vf, (r, v, t), {36)
The first term can be transformed to a surface in-

tegral which vanishes by boundary condition as-
sumptions. Now a (r, t) depends on r only
through 6,

milne(r i, t) =

N

(N —1) f dr2r"»5(r)2 —~r) f d" 'r 8ffp;

f d)v )rGg-
I =2

where p;= f dv;e ' and r)2 ——H) —rq)f
~
r) —r2~. This simplifies to

V)»a(r„t)= f dr, r"„6(r)2—~)n)(r„t)g, (r), r, i
n),

(42)

where gq( r), r2 i
n) is the same g2 in (25). Hence the last term of (40) becomes

k f dx, f, (x, , t)v) f drzr, 25(r)q r)cn (r)q,—t) g(r2r)~2n) .

Recently, Grmela and Garcia-Colin gave a prescription for constructing a term like (42) and for relating it
to an entropy functional, within the SET framework.

Substitute (39) into the second term of {35). The



3312 JOHN KARKHECK AND G. STELL 25

k f dx v V'fi(lnf i+1)=k f dx v V(filnfi)

which vanishes via boundary condition assumptions. Also —k f dx Mf i(lnf i +1)=0. Thus it remains to
evaluate

—k f dx C(fi,fi)lnfi,
since f dx C(f i,fi ) =0 because there is no mass transfer at collision. The approach we take, different than

that of Resibois and first described in an earlier report, is particularly enlightening in relation to discus-
sion of irreversible thermodynamics. We break the hard-sphere collision term [RHS of (26)] into two pieces,
denoted

CE = , o —fdv2 f d&&.g[8(& g)+8( —&.g)][g2(r„r, +cr&~ n)fi(ri, v'„t)fi(ri+cr&, vz, t)

—g2(ri, r i
—o& (n)f i(ri, v i,t)fi(r, cr&, v—q, t)] . (43)

Similar forms for the standard Enskog collision term have been termed "reversible" and "irreversible" by
Gross and Wisnivesky.

Then BScIBt=—k f dxiC@lnf, is transformed to

as- =+ —,kcr f dxidv2 f d&& g[8(& g)+8(.—&.g)]

~~ (r v t)
Xg2(ri, ri —o&

~
n)f, (ri, vi, t)fi(ri o&, v2,—t)ln

(44)

by the changes of variable: (v&, v2)~(v&, vz) such that dv&dvz ——dv&dv2 and 0 g= —&.g', &~—& and
drop primes. Switch v &~v2, &~—&, and change r

&
variable to obtain the alternate form

as-'
, ko f—dxidv2 f d&& g[8(&.g)+8(.—& g)]

f, (ri o&, v2, t)—
Xg2(ri, ri —o&

~
n)fi(ri, vi, t)fi(ri —o&, v2, t)ln fi( r i o&, v2,t)—

which is averaged with (44) to yield

as'-

a
== —'ko f dxidvz f d&& g[8(&.g)+8( —& g)]

Xg2(ri, ri —o&
~
n)fi(ri, vi t)fi(ri o&, v2,t)—

fi(xi, t)f i( r i cr&, v2,t)—
Xln

f i(ri, v i,t)fi(ri o&, v2,t)— (45)

We want to point out that only velocity independence of g2 has been used to this point. Thus these manipu-
lations are valid also for the SET, and it is worth noting that by setting g2 ——1 and imposing smoothness on

fi fi ( r o&, v, t) =f—i ( r, v,—t) we find that c3Sc+—Idt =0 and dSc Idt becomes precisely of the form of the
entropy-production function given by Boltzmann theory.

Now apply xln(x/y) &x —y to the integrand, where

x =f i(xi, t)fi(ri cr&, v2 t)—
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to obtain

BS—
, k—tr'I dxldv2 f d&& g[8(& g)+8( —& g)]

Xg2(r l r l
—«

l
n)[f l(xl t)fl(r l

—«V2 t)

—fl(r»vi t)fl(rl —«v2 t)]

Transforming away primes as before yields

BS;+
& —,ktr2 f dxldv2 I d&& g[8(& g).+8( —& g)]

(46)

x[g2(rl, rl —tr&
~
n)fl(xl, t)fl(rl —«,V2, t)

—g2(r, , r l+tr&
~

n)fl(xl, t)f, (r, +o&,v2, t)],

which after rearrangement becomes

BS+-
& —,ka' J dx, dv, Jd&&.g8(& g)[g2(r„r, —o& ln)f, (x„t)f,(r, —«,V2, t)[I+I]

—g2(rl, r, +o&
~
n)fl(xl, t)f, (rl+«, v2, t)[1+I]] . (47)

So (BS~ /Bt) &0, which demonstrates that the "irreversible" part of C@, CE, has irreversible character simi-
lar to that of the Boltzmann collision integral. Rewriting BSc /Bt as

asc+
, krr J d—xldx2 I d&& g8(o" g)

xg2(rl, r2
~
n)fl(xl, t)fl(x2, t)[()(r2 rj+«) ~(r2 rl o&)]

or

BS+
& —,'ko' J dx, dx2 J d&& g5(r, r, +«)g2—(rl, r2~n)fl(xl, t)fl(x2, t)

Bf

k I dxldx2rl2'gg2(rl r2
I
n)fl(xl t)fl(x2 t)()(rl2 o

k J dxldx2(f12 v2+r21 vl)g2(rl r1 2fnl)(xl t)fl(x2 t)(2(r12 cr)

=k f d. ldx2"21 vlg2(rl. r21n)fl(xl t)fl(x2 tm(~l2 —&) (48)

No use was made of the functional dependence of g2 on n to arrive at (48) so that a result of similar form
holds for the SET as well. Though the sign of (48) is indeterminate, this quantity is the negative of (42).
Thus we have shown for (26) and (31) that (8/Bt)S]'" &0, with equality holding when

fl(xl, t)fl(rl «, v, ,t)=f, (r„v—l, t)fl (r, «, v,',t)—
for all r], v], v2, and & g &0. Resibois has shown@ ' that (49) holds also for o'g &0. This condition (49) is
not sufficient to make CE ——0 but it does make CE ——0, as can be seen from (43) by changing & to —& in the
terms governed by 8( —& g). Taking Resibois's approach '"' we find that the Fourier transform of
Infl(r, v, t) has the form
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4(k, v, t) =a [lnf, (r, v, t)] =a(k, t)+P(k, v, t)5 k 0,

whereby we find fi has the form

f, (r, v, t)=R(r, t)V(v, t) . (51)

Using (51) we can determine the summational invariants of CE .
Consider

where f(v]) is any function, vector or scalar, of v, . Using (43) and performing the usual transformations
we obtain

I=—o' I dv]d» I doo g@& g)[4(vi) —]5('(v])] I dr2fi(xi t)fi(x2 t)gz(rl ~2~ n)

x [5(r2—ri+cr&)+5(r2 —r i
—o &)] .

Switching v~~v2 and &—+ —& yields

I= —,o I dv]dv2 J1&& ge(& g)[1'(V2) —y(V2)] Jdr2f](ri, v2, t)f](r2, v],t)g2(ri, r2~n)

x [5(r2 r i+—cr&)+5(r2 r i
—cr&)—] .

Use (51) and add (53a) and (53b) to obtain

I = —,o I dv]dv2 I d&& gB(& g)[g(vI .)+p(v2) —g(V])—g(v2)]

y f draff, (x„t)f,(x2, t)g2(r], r21 n)[5(r2 —r, +o&)+5(r2—ri —o&)] .

Clearly I vanishes for g=l, v, u . Thus lnf] is a linear combination of these only, of the general form

Inf i a(r, t)+b—(—t) v+e(t)U

That is, fi has a Gaussian form. The usual definitions of density, n= I dv fi, of average velocity,
u = I d v v f „and of temperature, z

nkT= I d v —, ( v —u) fi, fix a, b, c, and render the specific forms
R =n =const,

y (2 kT) —3/2 —u /2kT

at equilibrium. Note that CE alone cannot determine R. For this, CE+ comes into play ' ' Also there is
no inconsistency here between the vanishing of (8/Bt)S&'" and the nonvanishing of CE+. Equation (49) mere-

ly characterizes the most general condition under which (5/Bt)S, '"=0. This does not mean that f ] is
achieved and then relaxation proceeds around that form. A similar conclusion was reached by Grad ' in re-
gard to the Boltzmann theory where the analog of our f, is the local Maxwellian. Put another way,
(8/i3t)S&'" ——0 is a necessary but not sufficient condition for equilibrium. As a last note, (51) precludes the
precise local Maxwellian form which is used as a zeroth approximation to f, in the asymptotic expansion
employed in the Chapman-Enskog development.

To complete the picture for (28), we analyze the remainder term by term, denoted C2, C3,C4, respectively.
By manipulation similar to that for —k f dx]Cslnf] above, we obtain

—k f dx]C41nfi + , kR'o' j——dx]—Jdv,Jd&& g8(& g).
Xe(~46 & g)g2(ri—, r].+Ro &

~
n)f, (x„t)f,(ri+Rcrcr, v2 t)

f, (x, ,t)f, (r, +Ro&, v2, t)
Xln fi (r],v],t)fi(r]+Ro&, v~, t)
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Also,

—k I dx, C2lnf]

kR—o Jdx, Jdvq I d&& g8(& g)lnf](x, , t)

X[g2(r], r]+Ra' &
~
n)f](r], vI', t)f](r]+Ro&,v2', t)

—g2(r], r] —«+& l]])f](x],t)f](r]—R«, V, , t)]

transforms to

—k I dx]C2lnf]

kR rJ I dx]d—v2 I d&& gf](x],t)

x[8(& g vV~)g,—(r„r]+R~ &) n)f]-(r]+R~&, v, ,t)inf](r„vI", t)

8(& g)g—2(r], r] Ro+&
~

—n)f ](r ]
—Ro&, v2, t)lnf](x], t)]

under the change of variables in the first term (v], v2)~(v]', v2') such that O.g''dv&' dv2 ——&-gdv&dvz
and by use of (29). Similarly, —k I dx] C3lnf] transforms to

—k I dx] C3lnf] —— kR tr' I—dx] 1v2 I 1&&.g

x [8(& g)g2(r], r] Ro+&
~

n)f—](x],t)

Xf, (r, —Ro&, v2, t)lnf](r], v']', t)

—8(&.g —~4~)g, (r] r]+R~-& In)f](x],t)

yf, (r, +Ro&, v2, t)lnf, (x, , t)] .

Add (56) and (57), exchange v ]~vz, change o ~—&, and rearrange to get

—k I dx](C2+C3)lnf]

, kR o f—dx]dv2 J1&&.g

x 8(&.g )g, (r „r, Ro+&
I
n)f](x„—t)f](r]—Ro&, vz, t)

f](r] Ro&, v2, t)f](x]—, t)
y ln f] ( r ] Ro&, v 2

', t )f—] ( r ],v ]
', t )

+ 8(& g —~«)g2(r], r]+R]T &
~

]])f](x],t)f](r]+Rtr&, v, ,t)

f](x],t)f, (r, +Ro&, v2, t)
g ln

f, (r „v',",t)f, (r, +Ro &, v,'",t)

Apply x ln(x/y) &x —y to the integrands of the sum of (55) and (58) to get
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—k I dx)(C2+C3+C4)lnf,

, kR—of dx, dv2 I d&& g

X {8{&g)8{~4e & g)g2(rl r1+«&
I
n)

X[f) (x „t)f) ( r )+Ro&, v2, t) fi
—{r i, v i,t)f i ( r i +Ro&,'v2, t)]

+8(& g)g2(r), r) —Ro+&
~

n)

X [f,(x ~, t)f~ ( r ~
Ro—&, v 2, t) f& (—r &, v i

', t )fi ( r i Ro—&, v 2
'', t )]

+8(& g —v 4e)gz(r~, r, +Ro &
~

n)

X[f&
(x „t)f&

( r
&
+Rcr&, v2, t)—f& ( rt, v'i

' ', t)f i ( r 1 +R~&, v 2, t)] j . (59)

Transform primed velocities as before to obtain

—k f d»(C, +C, +C4)lnf~

, kR o2 f—dxidv,f d&& g

X {8(& g )8(~4m —&.g )[g,( r, , r, +Ro -o
~
n)f, (x, ,t)

Xf)(r)+Ra&, v2, t) g2(r, , r, —Ro+&
~

n—)

Xf)(x),t)f, (r, Ro&, v—2, t)]

+[8(& g) —8(& g —v4m)]g~(ri, ri —Ro &
~

n) fi(xi, t)fi(ri Ro&, v2, t—}

+ [8(& g —~46)—8(&'g ) ]g2 ( r &, r & +R 0' &
~

n ) f, (x, , t )f, ( r, +R o'&, v „t}j

=—,kR2a2 f dx )dv2 I d& & g8{& g )8(~4@ &.g )f((x ),—t)f ( (r) —Ro&,02, t)

X[g2(r~, r~ —Ro+&
~

n) —gt(r~, r, —Ro &
~
n)] .

Because gq from (25) is continuous at r2 —r ~

——Ro&, the RHS of (60} vanishes identically. Note that only at
this point have we used the form of gq from (25) (except for lack of velocity dependence). In particular, had

we used the DRS Ansatz for g2, (60) would be indeterminate since the bracket becomes g2 ( r z, r
&

—R 0.+&;n )

X ( 1 —e ). With the vanishing of the RHS of (60) we have established that (BS&'"/Bt) & 0 for (28).

UI. TWO-PART ICLE HARD-SPHERE KINETIC THEORY

The attractiveness of the one-particle dense-fluid kinetic theories is their mathematical tractability, partic-
ularly for eliciting transport coefficient formulas. However, the approximate F2 used for closure of the
one-partide equation might not exhibit important features which are characteristic of the dense-Auid state.
Herein we discuss a new two-particle hard-sphere kinetic theory which is expected to yield a better approxi-
m ate F2 ~

Two-particle hard-sphere dynamics can also be developed from (2) for s =2, wherein

F2 (x, Jx2, t +r) —T ', F2 (x»x2 Jt) =n f dx3[ T' ', F3(x,t) T' ', F3(x,t)]-
+n I dx3dx4[ 2 T F4(x, t) T','F4(x, t)+ , T'—,'F4(x, t)]+—
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Change x, ,x2 as above [Eq. (4)] to obtain for the LHS of (61)

T",~~,(x, ,x„t+r) T—"', T',"F,(x „x,,t)
and similarly for the first term on the RHS of (61)

n f dx&[T' ',T,'"Fq(x&,xq, xq, t) T' —',T,'"Fq(x~,x2,xq, t)] .

{62a}

Nonvanishing contributions to the integrand occur for those configurations of particle 3 which lead to colli-

sion with 1 or 2 within time r. Similarly the four-body-term integrand does not vanish only if particles 3
and 4 can collide with 1 and 2 within time ~. Hence this term and higher ones vanish in the limit v~0+.
Because colhsions between 1 and 2 do not contribute to {62b) it may be rewritten

n f d x3[T /Tg Fp(x/yx2yx3)t) F3(x)y x2y xpyt)] (62b')

Again, since interaction between 1 and 3 or 2 and 3 only is admissible in the limit ~~0+, (62b') reduces to
a form similar to the RHS of (23). Hence we obtain the exact two-particle equation:

«'f dV, f d&& g»e(&. g»)[F,(r»v&, r2, v2, r&+&o, v3 t) Fg(r, v, ~ r2 v2r, gg vp—t)]

+no f dv~ f d&& g&28(& gqz)[.Fq(r»v»r2, v 2, r2+tr&, v~, t) Fq(r»—v, , rt, v2, r2 o&, vq—,t}]

=—F2(rt, V&, r, , v2, t)+ g v; V';F2 —g ~ F2 . (63)
2 2

~ Br; Bv;

In (63}we note that if
~
r, —rt

~
& 2cr then particle 3 cannot occupy all positions denoted by & on the

precollisional hemisphere, but only those outside the cone whose angle 8, is given by
{)c——cos {

I
r& —r2 I

/2tr). This excluded volume is implicit in F~.
For closure we return to (14), set E~ ——8, and obtain

t (r;xt—t'j, ,

I+J

This 8'~ has the form identical to a canonical equilibrium X-particle distribution function for a potential
that is the sum of one-body and two-body terms, with a hard-sphere two-body core but otherwise arbitrary
form. Thus we have

f2(x ),x2, t)ft(x ),xg, t)f2(x2, xp, t}
fq( ', t) = Fq(xi, x2,x&,t),

t

where Fq is the same functional of f2 and f~ as its equihbrium counterpart: F~ has a formally exact cluster
expansion of the form

F3(x', t)= 1+ f dxqf ~{x4,t)h2(x&, x4, t)h2(x2, x4, t}h2(xq,x4, t)+ ~ ~ (66)

where

f2(x i,x2, t)

%e note that, though the equilibrium h2 (r &, r2) must go to zero in order to insure thermodynamic stability
as

~
r, —r2

~

~ oo, the nonequilibrium function does not a pnori have a similar spatial cluster property and
the expansion (66) may not converge. Clearly it holds the possibility of long-range velocity correlations. %e
also note that (65) by itself may be regarded as a means of defining Yq, as Livingston and Curtiss' point
out. The closure principle provides an explicit form for this function, whereas the latter authors set Fq ——1,
which is the Kirkwood superposition approximation (KSA). It is worth noting that the form (65) is not
peculiar to the hard-sphere potential, but is consistent with any form of two-body potential.

Combining (8) and (63) (in generic function language) with (65) we obtain the two-particle kinetic equation
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8 ' - '
BP 8—+g v; V; —g f2(x1,x2, t)

~ 3r; Qv;

—cJ J dv3 f d&& g318(&.g31)[f1(r1,v 1,t)f1(x2, t)f1(r 1+it&, v 3, t)g2(r1, v1 X2

)&g2{r&,v &, r~+o&, v 3,t)g2{x2, r&+0&, v 3,t)F3{r] v i x2 r]+0& v3 E)

—f1(x i, t)f1(x2, t)f1 ( r1 —o &, v 3,t)g2(x1,x2, t)

Xg2(x1, r1 o&—, v 3, t)g2(x2, r, o&—, v 3 t) F3(X1,X2, r1 o&, v—3,t)]

+0 f d V 3 f d& &.g328(&.g32)

X [f1(xi,t)f1(r2, v 2, t)f1(r2+o&, v 3,t)g2(x1, r2, v 2, t)

Xg2(xl r2+P&, V 3,t)g2( r2, v 2, r2+o&, v 3, t)F3(X1,r2, v 2, r2+o&, v3, t)

f1( 1,t)f1—(x2, t)f1(12 0&, v„t—)g, (x, ,x,,t)

Xg2(xl r2 o& v3 t)g2(X2 r2 0&,v—3, t')F3(xi, x2, r2 —tr&, v3 t)]

From (11) and (64) we obtain the two-particle entropy

S2'"=k lne'+ ——,k f dx1dx2f2(xi, x2, t)lnf2(x1, x2, t)+ —,k f dx, dx2f2(x „X2,t)lna (x1,x2, t),

2A,(x &,x&„t)
where o(x„x2,t) =e ' '

f2(x1,x2, t). We write the kinetic equation (67) in the abbreviated form
P

+~ vi Vi g f2(X1 X2 t)=C13+C13+C23+C23 J

8 ~ ~ BitJ + — +
a&,~); )ar, av,.

where, for example,

C1'3= —,o' f dv3 Jd&& g»[8(& g»)+8( —& g»)]

)& [f3(r1 vi XJ2, rJ, +a&, v3, t) f3(xi,x2, r—, it&, v3, t)] —.

For convenience we choose to use f3 instead of carrying all the factors shown in (67). Take the LHS of (69)
to be at equilibrium, at which

f2(X„X2,t)=f1q(U, )f1q(U2)g2(
~
r2 —r,

~
) .

Impose fd v1 fd v2v2 on this LHS to get

equil LHS=n2(kTV2g2+g2V2$) .

For the RHS we find

f d v, (C,+, +C,, )=0

and by the usual transformations

Jdvi f dv2v2C23

{72a)

, o' Jdv,-f dv, f dv3 f d&&.g32(v' —v )[8(& g3)+8( & g 2)]f3(x, ,x, r o&, v, t). —

Interchange v2~v3, impose the equilibrium form



MAXIMIZATION OF ENTROPY, KINETIC EQUATIONS, AND. . . 3319

fI(x»x~ xI}=fi (Ul}fl (U»fl (nI)gI(rl rl r»

to obtain

f dv, f dv, v,c;,=0,

dvl f dvlvICq+p train——f d&&gI(rl, rl, rl cr&—) .

Combine (71) and (72} to get

kTVIgq( i
rq —rl i

)+gIVI(t)=no' f d&&gl(rl, rz, rl —o&),

which is the two-particle member of the YBG hierarchy' for the hard-sphere potential, but in (73) we know

already the form of g3 from (65) and (66):

gI(rl, rl, rl —o&)=gl( ) rI —rl
~

)gz(o)gz( ( rI —IT&—rI
~
)I;(r„rI,rI —o&) .

This result shows the importance of the reversible part of the collision operator in two-particle kinetic
theory for defining the form of equilibrium integro-differential equations. VAsnivesky had investigated a
similar role in one-particle kinetic theory.

VII. CONNECTIONS %KITH IRREVERSIBLE
THERMODYNAMICS

From the Boltzmann equation (20) and the en-

tropy functional (21) it is straightforward to obtain
the equation for the entropy density s, such that
SI"——fdr s(r, t),

8
s(r t)+V [su(r t)+J (r t)]=V(r t)

where u is the local average velocity,

J,= —k f d v(v —u)f, lnf,

is the entropy Aux and the entropy-production den-

sity o(r, t) is given by

a(r, t)= —k f dv\nfICS(fl, fl}&0, (75)

where Cg is the Boltzmann collision integral.
Clearly

—SI"——f dr Ir(r, t)

since the Aux term of (74) vanishes when integrat-
ed, by boundary condition assumptions. Generali-
zation of these formulas to mixtures is straightfor-
ward. By applying the Chapman-Enskog
development to the mixture version of (20) an ex-

pansion of f; to linear order in gradients of n;, u, T

is obtained whereby an explicit expression for To.,
Tn=g /JXJ, is ob. tained from the mixture ver-

sion of (75). From To. can be identified forces, XJ.,
(gradients) and conjugate fluxes, +t, and demon-

stration made of the Onsager reciprocal relations
for the kinetic coefficients I.,J in the linear rela-
tions g; =g~L;~XJ. Tllls clllbodlcs thc sole

kinetic-theoretic support for the phenomenological

theory of linear irreversible processes.
%e note that the Boltzmann theory is readily

amenable to a purely local formulation since the
Boltzmann colhsion term is purely locaL [Dif-
fcl'cIltlatloll of s leads dlrcctly to (74).] Ill tllc
dense Quid, collisions are not spatially localized
and so the transport, which is dominated by colli-
sional transfer, embodies nonlocal effects. So too
the production of entropy is not localized and
indeed the 0 theorems demonstrated earlier are
global results. It is an open question to what de-

gree the program outlined above can be caned
through for the dense Quid. A fundamental diffi-
culty, in general, is defining a consistent local-

entropy density. In our discussion here, attention
is limited to the pure hard-sphere theory for which
some partial results have been described else-
where. ' ' A number of new features arise when

the attractive tail is included and so discussion of
this more general case will be made in a separate
article. "

Utilizing results in the development between

Eqs. (35) and (48) we obtain
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—g& ——— dr s{r,t)den

Bt Bt

= f dr(o, ~pro)~k f dr n(r, t) l—n[a(r, t)e"+rr~']

fi(r, v, t)——lne'+r J dr V nuyk Jdr V f dv vf, (r, v, t)ln
N a(r, t)

s (r, t}=—n(r, t)lne '+" kJ d—v fi(r, v, t)ln(f i/a}

reduces to the dilute-gas form when low density is imposed,

o,(r, t)= —k f dv Inf~(r, v, t)CE(fi,fi)

oo(r„t)=k f dvfiv. f driri25(ri2 —o)ni(r2, t)gi(ri, ri
~
n) .

—Jdr V.(su+ J,),

Jg(r, t)= —k f dv(v —u)fi(r, v, t)ln(fi/a) .

Using the definition of u, (77e) reduces to the dilute-gas form below (74).
From (77a) and (77e) we can extract the local equation

—s ~ V (su+ J,}=rr, +o,++oo+kn(r, t) dx'f~(x', t)
8 - - p, , BA,(x', t) E—1

Bt
—gi(r, r '

i
n)

with the definitions

o,+-= , kor' J dv—idv2f d&&.g[8(& g)+8( —&.g)]g2(ri, ri —«
~
n)

fi(xl, t}fi(rl —0&, v2,t}'
xf, (x„t)f,(r, —o&, v, ,t)ln

fi(ri, vI, t)fi(ri «v 2 t}—
—5—= dr o'-+ +
Bt

and the 0 theorem proved earlier showed that

f dr(o++oo) &0 .

Using (79) it is straightforward to show that

o, (r, t}&0

holds at each point, however, we also obtain

tr~+~oo& —,k f dr2ri2. [u(r2, t)~u(r„t)]ni(ri, t)ni(ri, t)gi(ri, ri en)5(rii —o) .
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Though the RHS is indeterminate in sign, we note that I d r,RHS=0. The quantity cr, +oo therefore ap-

pears to manifest a combination of entropy production and entropy flux.
Explicit demonstration of this feature is readily achieved for linear perturbations from equilibrium for

which [superscript (I) denotes linear regime]

fI =f7'(I++) (82)

where fI
' is a local Maxwellian and 4 is linear in gradients of u, T as described by the Chapman-Enskog

development. We find (by functional differentiation)

g2(rl r2
l
n) —g2(r12 n(rl t))+ 2 r21 Vln

d
g2("12 n(rl t))

dn

when the full g2 given by (25) is expanded in n about r1 and so

ao"(r, ,t)= —, nor'—ku V, [n'g, (a)],

equality holding through second order in gradients. Similarly, starting from the representation for 0., given

by (79) we find

~,"'+(r,, t)= — g~(tr)tr3kn~V) u+ 3 rro kn g2(o) boe
' e'

1~ 3 2
2 m T (84)

where e '= —,[Vu + (Vu) ] , V uI a—nd—Iis the unit dyadic. To achieve (84), the expansion of 4 in

Sonine polynomials

0= —(v —u) g a„S3/2 (v —u)
V'T "

( ) m

T r=1 2kT
(v —u) (v —u):Vu g b,S~5)2

r=0

has been used. We note that bp )0 and a1 &0. By combining (83) and (84) we find

)+ ( V. ~ ( )( )+

where

j =+ z kn g2(0.)u,
3

and 0') 0 follows from (84). Now o' is not a complete entropy-production density in the sense of irreversi-
ble thermodynamics since it does not manifest the leading orders of collisional transport of energy and
momentum and in particular omits bulk viscosity altogether; on the other hand, we show below that cr,"'
can be regarded as such. This means that the local entropy equation in the linear regime does not take the
same form in the RET as that found in Boltzmann theory, (74). For the RET we find in the linear regime

—s'"(r, t)+ V.(s u+ J, + j ) =0, +~(1) (1) (1) (1) (1)—

at (85)

The terms j "' and cr' have no analog in the Boltzmann theory, but do vanish in the low-density limit.
Furthermore, in the linear form of (74), the J, =(1/T) J z-, where J z is the dilute-gas heat flux. A simi-
lar result cannot be identified within (85), though therein J,' ' is so related to the streaming part of the heat
flux. The collisional part of the heat flux cannot be so accounted for by either j '" or u'.

To fully demonstrate the features of the o,'" necessitates working with a mixture of L species for which
the formal results for kinetic equations, entropy functional, and H theorem go through in an obvious way.
In this case, o., takes the form
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L
o =—k g o"I dv~dv2 I d&&.g[8(&.g) 8—( —&.g)]

xgg(ri ri —o'g&
l ( n ])f(r, , v), t)fj(r) o—;,&, v„t)

f ( r ),v ),t )fj( r ) 0—tj&', v 2, t )
)&ln f (r), v ),t)fj(r( tr;, &—, v 2, t)

To achieve (86) requires symmetry, gj(r, , r2) =gj, (rz, r &), which is exhibited by the RET and also the stand-
ard Enskog theory g~'s. For linear perturbations from equilibrium, wherein f~'" f; '(1+——4;) and 4; is
linear in gradients of n;, u, T, Eq. (86) takes the form

L
cr'," =k g o; 1;jf dv&dv2 J d&& g8(& g)f,' '(r~, v„t)fj '(r~, v2, t)4;(r~, v~, t)

X [4;(r), v „t)+4j(r,, v2, t) 4;(r (, v I—,t) 4~(r „v q—, t)]

L

+—g gjp,"f dv, dv2 I d&& g8{& g)f; '{r~,v„t)fj '(r~, v2, t)& V lnfj '(r, , v2, t)& VlJ lJ
E,J =1

f,'"(r„v,,t)
gin '

f(0)( t)

where Fz is the contact value of the equilibrium g,J and expansion is made of all functions about r1 to
linear order in gradients. The conventional expansion

L
4;= —A; V lnT 8;:Vu+H;V' —u —g D;t dt

I=1

is made. The second term of o " can be evaluated explicitly since

f '{r, v, t) =n;(r, t)
2mkT( r, t)

3/2 —mi
exp

'
[v —u(r, t)]

2kT(r, t)

and the first abbreviated by using the bracket notation of Chapman and Cowlings:

L

ij =I

(2~p;jk'T)'" 2
8 ~ 4+ 15

Z~ e,JFVn;nJ
(2~p,,kT)'"

e':Vu
T

L
4+ 9 g ofj FtjBgttj

i,J = I

(2&pe~ kT)
(V.u)
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Here mij ——m;+mj and p;j is the reduced mass.
The last three terms are related, respectively, to the
collisional contributions to heat flux, off-diagonal
momentum flux (shear viscosity), and diagonal
momentum flux (bulk viscosity). Using the linear-
ized integral equation which is satisfied by 4 it is
straightforward to show that the mass flux can be
expressed as

J =n2V lnT [ A, D; jn. m.l
L

+n g di'[ Di»' j (S
/=1

the heat flux including collisional contribution is

L

Jr kTn——~—[A&Aj. VInT —kTn g di [Di,Aj
/=1

gr ——Jr ———n kT[A, Aj VlnT
L

g oij Yijiiinj
ij =1

(2~p,"k'T)'"
lJ

mlJ

L —1—ii kT g di [ Di DI—~A j ~

/=1

g =kT J — J
ngmg ' nLmL

n'kT—VlnT [A,D,.

Let the independent forces be —V lnT, —Vu,
—d;, i =1,. . .,1.—1, then the conjugate fluxes are
obtained:

L

oij Yii ri( ni
g~J =1

(2m@/J. k T)'~
VT, (90)

mlj
+ g di [DL —D, , DL. —D, j

/=1

and the momentum flux, including collisional con-
tributions, is

L
P= —

9 g o,iY&n;n&(2rrp, ,jkT) ~ V uI
l,J=1

L
——Z, o Y nn (2"nIJ", kT) e"8 ~ 4 1/2~O

g J gJ

ij =1

—kTn Vu:[8,8 j —kTn~[H, H jIV.u .

Collecting (88)—(91) we find

L
o,'" = JT V lnT ——kg J—.1;——:Vu.

This is precisely the form to be obtained by using
the Boltzmann equation. Though g,. 1;=0 and

g,. J m; =0, it is clear that not both conjugate

mass fluxes and forces, represented in the combina-
tion

kTQ (nin;m;) J ..d;,

are linearly dependent. Choosing the forces to be
—d;, we eliminate dL ———g,. ,

' 1; and obtain

To,"' = —J .V lnT —P:Vu

J — J.,
l 1 ngmg l nL mL

(95)
and g i Pas gi——ven by (91). We note the follow-
ing with regard to (94) and (95).

(1) The coefficients of di in (94) and of V lnT
in (95}for i =j are equal because

[ A, D j = [ D,A j, therefore these kinetic coeffi-
cients exhibit Onsager reciprocity. 33

(2) The coefficients of dJ in (95) for i =k and
of dk for i =j are equal and also exhibit Onsager
reciprocity.

(3) The analyses and results from Eq. (85)
through (95) hold for the linearized revised Enskog
theory, which is characterized by the mixture ana-
log of (25) and (26). Because of theorem III.4 in
Ref. 3, analogous results hold, at least formally,
for the standard Enskog theory wherein g/J(rl, r2)
has the form proper to uniform equilibrium but
with densities evaluated at (r1+ r2)/2. Thus an
entropy-production density of the form (93) arises
which permits identification of forces and conju-
gate fluxes in the SET framework and the relevant
kinetic coefficients exhibit Onsager reciprocity as
described in items 1 and 2. In the context of (93),
(94), and (95), the only difference between RET
and SET lies in the form of d;. For the former we
have shown

nl 1
d; =— (Vp;)~ — VP

n kT ' pkT

VT+ 1+ g g~oYJ,Jnj
j=1 lJ
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where pg is the chemical potential per particle. To
obtain d;, replace (1/kT)(Vp, ;)r by

Vlnn;+ g o,j Y)V'nj. + g rr~jnJV Y~
j=l j=l

which differs from it (unless all diameters are
equal) in second and higher order in density. We
note with van Beijeren and Ernst that d; con-R T

forms to the form expected on the basis of
phenomenological treatments whereas d; doesSET

not. This distinction is manifested in the behavior
of the diffusion coefficient in the critical region of
a phase separation point. '

SET [1] RET
(4) Because o,"' +o,' ', it is not possible

to construct an invariant linear transformation
from the RET to SET description. Thus it is not
possible to use reciprocity of the RET kinetic coef-
ficients as a basis within transformation theory to
investigate the presence of reciprocity in the SET,
as attempted in Ref. 9. %e leave open the ques-
tion of whether an invariant linear transformation
can be applied to the SET to effect internal rear-
rangement of forces to agree with those of the
RET. If such is possible, it is almost certain that
the conjugate fluxes will no longer each be identifi-
able with a single conventional transport Aux, as
depicted in (94) and (95). Furthermore, the
maintenance of reciprocity must be checked, since
not every transformation will preserve reciproci-

SET
ty. In any case, the o, ' would not exhibit
the explicit form given by phenomenological ir-

( 1 ) RET
reversible thermodynamics, whereas the o,
does.

(5) The RET entropy equation (85) does not con-
form to the result (74), so that clearly even the
RET, which must be regarded as the superior
theory, is at odds with the phenomenological result

8 - 1-—s+V- su+ —J~ ——o .
Bt T

This phenomenological result is of a form not sa-
tisfied by the RET. However, it may itself bear an
oversimplified structure —adequate for rare gases
but not for dense fluids —rather than bear clear
evidence of RET deficiencies. In particular, the
two additional terms appearing in (85) [beyond
(74)] vanish in the low-density limit. The disparity
between the SET and phenomenology, on the other
hand, appears to be of a more fundamental sort.

(6) That both the RET and SET should exhibit
reciprocity is not surprising since the main in-

gredient of the phenomenon, microscopic reversibil-

ity, is built into both theories at the outset in the
scattering cross section in the collision integrals.

(7) Because of the reciprocity condition, To,"'
achieves a minimum for steady-state conditions. '

VIII. DISCUSSION

The closure principle we have employed yields
more information than is used to obtain a closed
kinetic equation. For example, in (23) only g2 for
two particles in "precollision" contact is needed.
The result (25) is obtained, however, for completely
arbitrary ri and r2. Though the method over-
characterizes the ensemble as far as closure is con-
cerned, the entropy functionals reflect the full
character of the ensembles. (%e note that we have
obtained corresponding results in the framework of
the grand ensemble. ) %e emphasize that the H
theorems we have demonstrated are global and not
local properties of the theories. In this light, the
Boltzmann theory is seen as a degenerate case
which readily permits a local interpretation as well.

Closely related to the problem of closure is the
problem of chaos propagation. Expression of clo-
sure does not have a unique form [cf. (17), (25),
(65)] but in all cases neglect of some higher-order
correlations (chaos) is a common characteristic.
The viability of a closed kinetic equation hinges
upon the propagation of this form, i.e., of contin-
ued irreleuance of correlations at this higher order
to the description at hand. It is not at all clear
that this literally requires destruction of these
higher-order correlations, a possibility advocated
by Mayer, ' for example. Thus, in a physical
sense, closure of a description may be a practical
matter and chaos propagation can best be regarded
as a manifestation of the irrelevance of the disre-
garded correlations rather than their absence. In
this view it is meaningful to seek an approximate
ensemble which manifests and propagates closure
in a way compatible with the dynamics of an ap-
proximate kinetic equation.

Mathematically there remains the problem of
what constitutes a proper framework to model
these phenomena. The dilute-gas case has received
the greatest attention. ' These analyses show the
possibility of persistence in time of g2 ——1 [cf. (17)],
almost everywhere. More generally, that (25) can-
not be maintained indefinitely (and that the theory
is thus not an exact one for hard spheres) is clear.
Discrepancies in form and in numerical values of
the transport coefficients derived from the theory
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compared to results of more exact approaches are
evidence of this.

Clearly, one could generate a hierachy of kinetic
theories with our approach by successively setting
s =2,3,4, . . .. One would expect a stage to be
reached beyond which thc added dynamics and
statistics becomes irrclcvant to thc questions onc
normally asks of a kinetic theory. The two-
particle kinetic theory we have introduced offers
the ingredients which appear to be minimal for a
closed theory, at least as evidenced by the
Boltzmann theory. These are an entropy function-
al, a kinetic equation which yields correct equilibri-
um forms, and containment of fluxes within the
level of description. The kinetic equation (67) ap-
pears to be Markovian due to the appearance of
one time instant. However, the three-particle
correlation function appearing in the theory
depends in a nonlocal way on the two-particle spa-
tial and velocity distribution and through velocity
correlations "memory effects" may be built in.
This two-particle theory appears to be unique in
terms of the structure of the three-particle correla-
tion function, 1'3, Eq. (66), which does not obvi-

ously show the cluster property assumed by
Green. Such an assumption is not obviously
necessary in order for our formalism and the ap-
proximation that we propose to be meaningful. Fi-
nally, we wish to note that although the maximiza-
tion of entropy is a fundamental aspect of the in-

formation theoretic approach to statistical mechan-
ics pioneered by Jaynes and others, our use of
this procedure to generate approximations of the
sort discussed here bears no close technical relation
to the work of Ref. 22 or Ref. 44 that we can see.
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APPENDIX

By taking the m, m v, —,m(v —u) moments of f,
the kinetic equation (26) yields conscrvations laws
for number density, momentum, and temperature

and from these are obtained explicit expressions for
the corresponding Auxes. The transport coefficient
formulas may be obtained from the flux expres-
sions which are expanded to linear order in gra-
dients. An alternate approach is to identify forces
and conjugate Auxes from the entropy-production
density and identify transport coefficients from
those fluxes. At the Boltzmann equation level

both approaches are clear cut and unambiguously
lead to the same transport coefficient expressions.
For both the RET and SET, however, caution
must be exercised in employing the latter ap-
proach. In the linear regime for the RET we find

If, following custom, we were to interpret the sum
0.,'" +o' as the entropy-production density and
use it as the basis of the latter approach, the ex-
pressions for thermal conductivity and shear
viscosity so obtained would disagree with the well-

known expressions obtained via the former ap-
proach. Consequently, in order to achieve agree-
ment between the two approaches it is necessary to
interpret u, as the classical entropy-production
density from which conjugate fluxes and forces
may be identified. The a' arises as an extra term
whose function is not fully understood at present.
These arguments hold also for the SET. Thus
both RET and SET present an entropy-
conservation law that differs from the phenomeno-
logical result (97). (A second difference lies in

disagreement with the form of the phenomenologi-
cal flux term. )

To compare the RET and SET results requires
first the recognition that the Onsager reciprocal re-
lations are rooted in microscopic arguments and
are not on a conceptual par with phenomenological
results of irreversible thermodynamics. In the
latter domain, the "correct" forms for driving
forces are ascertained; in the former domain the re-

ciprocity concept stands quite apart from any

prescription for driving forces.
For both RET and SET we obtain an entropy-

production density (in the case of mixtures and in
the linear regime)

T&,"' = —J T.V lnT —I"7u

kTQ 1,—— J
n pal; PlLN1L
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Choosing as independent forces —V lnT, —Vu,
—d;, i =1,. . .,1.—1, then conjugate fluxes

g z.(94), g (95), g p(91) are obtained. In both

cases, the kinetic coefficients, i.e., those coefficients
L,J in the expression g;=g L;JXS., where /;
stands for a Aux and XJ an independent force, ex-
hibit the property L;J =LJ; (recipr. ocity) and also
I.;; pO (dissipation). Furthermore, the d; {96)ex-

hibits a form in agreement with phenomenological
thermodynamics but the d; [cf. below (96)] does

not agree with phenomenology. Consequently, the
RET forces, conjugate fluxes, and entropy-
production density (93) all take forms in agreement

with phenomenology. In this sense (and because of
the realistic consequences of the form d; as aRET

diffusive driving force rather than d; ) the RETSET

is a superior theory to the SET. It is also superior
in the sense that for a system in an external field,
the RET relaxes into an equilibrium state charac-
terized by the correct f~(x &,t) and f2(x &,x~ t)
whereas the SET does not. [Although we have not

explicitly included external fields in the discussion
of this paper, it is clear that the correct equilibri-

um g2(r r, r2 I
n (r) ) mcorporated in« th«ET b«

not the SET insures this result. ]
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