
PHYSICAL REVIEW A VOLUME 25, NUMBER 6 JUNE 1982

Effect of pump fiuctuations on line shapes in coherent anti-Stokes
Raman scattering

G. S. Agarwal
School of Physics, University of Hyderabad, P 0. H. yderabad - 500I34, India

Surendra Singh
Department of Physics and Astronomy, University of Rochester, Rochester, Itletv Fork I452T

(Received 8 June 1981)

The theory of coherent anti-Stokes Raman scattering {CARS) is extended to include the

effect of pump fluctuations. The intensities and spectra of lines in resonant CARS are
calculated to all orders in fields assuming a phase-diffusion model for ~aves at the two

pump frequencies. The bandwidth of the two lasers enters in a much more complicated

way than following a simple scaling of Ti or T2. Various resonances in CARS spectra
due to dynamic splitting of the energy levels are discussed for a range of detunings, field

intensities, and bandwidths. In contrast to the usual spectra in strong fields, the Rabi
sidebands appear as dispersion-shaped structures. The laser linewidth is shown to change
dramatically the CARS line shape. The case of no saturation is also treated, thus allow-

ing for the inclusion of more general line shapes and fluctuations of the pump waves and

the nonlinear susceptibility tensor g"'. Gaussian statistics of the pump field are shown to
lead to enhancement factors in CARS intensity, similar to those appearing in the context
of multiphoton absorption processes.

I. INTRODUCTION

Four-wave mixing is being increasingly used to
study the properties of atomic-molecular sys-
tems. ' Important applications in producing phase
conjugated signals have also been found. Bloem-
bergen, Lotem, and Lynch' recently studied the
most general form of the third-order, nonlinear
susceptibility g' ' valid for arbitrary relaxation
parameters of the system. They also discussed the
additional resonances that 7' ' can have, due to the
nonradiative nature of relaxations, and such reso-
nances have recently been seen by Prior, Bogdan,
Dagenais, and Bloembergen. It is quite clear from
the discussion of Bloembergen et aI. ' and the re-
cent observation of Prior et ah. that a proper dis-
cussion of line shapes could be given provided all

sources of relaxations have been accounted for.
Recently the calculations of line shapes in coherent
anti-Stokes Raman scattering (CARS) have been
extended by Henesian and Byer to include

Doppler broadening. However, very little has been
done as far as the effect of laser temporal fluctua-
tions on the CARS line shape is concerned, as most
treatments assume the incident fields to be strictly

monochromatic (see, however, the work of Dutta ).
In this paper we shall show that such fluctuations
of the pump waves could significantly affect the
nature of the CARS line shape, particularly in

resonant situations. The CARS line shape is shown
to be very sensitive to the fluctuations in the pump
laser at cu&. We also examine some intensity
dependent effects as they also form a source of
linewidth in certain circumstances. In particular,
we discuss the structure of CARS spectra when the
fields are strong enough to saturate the Raman
transition. In this case, Rabi sidebands are shown

to appear as dispersion-shaped structures. The
changes in the Raman spectra due to the increase
in pump intensities and laser temporal fluctuations
have already been discussed in detail by several
workers. ' Raymer et a/. has also considered the
situation where propagation effects are important.
In the main body of this paper we deal with a
specific model of the laser and the resonant CARS,
as in this case exact results for CARS signals and
spectra can be obtained. The nonresonant part of
7' ' leads to important interference effects in
CARS. In the Appendix we discuss how some
general results on line shape can be obtained using
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the general form of 7' ', provided we ignore the sa-
turation effects. %e also comment on the generali-
zations to higher-order CARS in fluctuating
fields.

The basic equations describing resonant CARS
have been obtained by several workers and good re-
views exist. Figure 1 gives schematically the ener-

gy levels of the system and various transitions in-

volved in the generation of the CARS signal. The
field amplitude of the CARS signal at frequency

m, =2'~ —m2 can be written as

2(d~-Ll& = 4J&

4')

3F )pp

FIG. 1. Schematic of level configuration and the in-

teraction of the pump fields at frequencies coj and co2 in

the generation of the CARS signal at frequency m, .

and the pump fields are given by similar expres-
sions,

EJ.(t)= 8'~(t)e ' ' +c.c., j =1,2 . (1.2)

8')(n) 8'2(n)e'

1 —i 6 o.[p+iqk[(n)@2(n)n, (1.4)
T2

an

an

where

n —no

T[
+2iq [8'' ( i~)

rf' ((g2)o ~ 2c.c.], (1.5)

The difference in the frequencies of the pump
fields ~[, ~2 is assumed to be close to the Raman
resonance frequency ~z, i.e., co~ —m2=~z. The
growth of 8', in the quasistatic approximation is
described by2'6

e ilkkZ

i aQ&(ri)
rhk

(1.7)

determines the resonant contribution to the suscep-
tibility 7' ', n is the difference between the popula-
tions of levels 1 and 2, no is the equilibrium value

of this difference, and d;1 in the definitions of Q
and q denotes the dipole moment matrix element
between states i and j. Equations (1.4) and (1.5)
are the effective Bloch equations for the present
problem with the effective field 8'[8'z. It may be
noted that Bloch equations in the context of two-

photon processes have been worked out and studied
at length by several authors. ' The coupling be-

tween the levels 1 and 2 is provided through inter-
mediate transitions. It is assumed that all the
~aves have the same group velocity U and that the
amplitude 8', is much smaller than the amplitudes
of the pump fields. From Eq. (1.3) we can im-

mediately write

2m%
Q = (267~ —Q)2),

C

6k=k, +k2 —2k),

5=(N~ —602 —Ng ),

+NR
.~~(n) = &[(n)o )p(n)+ 8'[(n) &2(n)

NQ

Equations (1.4) and (1.5), in the limit of mono-
chromatic and deterministic fields, lead to the fol-
lowing expression for, ~X(n):

p gd2ndni +1 1

fl z N~ 2
—C02 6)„2+CO~

XNR lqn 0..l(r) ) = i5')(t) ) F~'2(t) ) X ( I /T2 ) i5—
Here +N& is the nonresonant part of the suscepti-
bility 7' ', X is the number of atoms/molecules,
and T~ and T2 are the longitudinal and transverse
relaxation times. O.

~z is the off-diagonal element of
the density matrix between levels 1 and 2 which

On combining Eq. (1.9) with Eq. (1.7) we obtain
the standard CARS signal. It is clear from Eq.
(1.7) that CARS intensity and line shape at a given

point z would be given by
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(,( ) ( )) 2Q2 sin(hkz/2)
(b k/2)

12

C,(r)= lim (M'(r))M(ggr))a Q

(1.10)

sin(b kz/2)
(Ak/2)

The averaging in the above expressions is with

respect to the fluctuations of the pump fields. In
the following sections we show how W and C, (~)
could be computed for arbitrary bandwidths and
the intensities of the pump fields.

—iC) )(q)
~( I ) +1 +12( 1)e

+1+2+NR —2i+)(g)+iC'2(g)

N
(2 3a)

and hence the intensity (1.10) can be rewritten as
2

sin(hk /2)
(hk/2)

substitution rules can be used and each physical
situation has to be analyzed separately. The calcu-
lation of the CARS signal turns out to be such a
case.

From Eqs. (1.8) and (2.1), we find that

II. DEPENDENCE OF CARS SIGNAL
ON LASER LINEWIDTHS

AND INTENSITIES

I=(X,X, )+ ~B ~'+B(X, )+B'(X, ) .

(2.3b)

~,(q)=~, e ", ~=1,2 (2.1)

In this section we obtain CARS signals (intensi-
ties) as a function of the pump intensities, line
widths, and the detuning 5. Equations (1.3)—(1.5)
are nonlinear stochastic equations, since both
8'1(g) and 8'2(g) are stochastic in nature. The sto-
chastic nature of these fields can be taken to be
prescribed by Langevin equations. In general, one
does not expect the exact solutions of the set
(1.3)—(1.5) for an arbitrary model of the pump un-

less one ignores saturation effects (see the Appen-
dix). However, if we adopt the phase-diffusion
model for each pump wave, which is characteristic
of a laser operating far above threshold, then it is
possible to obtain exact solutions. For this model
the pump amplitudes can be written as

i(41 —4~)
X1 =012e X2 ——X1, X3 ——n,

B= qp=&12q, b= — . (2.4)
—qo NQq

b
'

+NR

Using Bloch equations (1.4) and (1.5) and the
model (2.1) and (2.2) for the pump waves, we ob-
tain the following equations for the variables X s:

ax,
an

1 —i5 —ip1+i p2 X1+iqpX3, (2.5a)
T2

ax3

an

1

T1
(X3—n p )+2iqp(X1 —X2 ), (2.5b)

Here we have introduced the following definitions:

where +J(g ) represents a diffusion process, i.e.,

d4;
dn

=p;(g),

a
(X1X1)=-

a7l

2 —2i5 —2iP1+ 2iP2 (X1X1)
T1

(p;(g)) =0,

(p; (rl)p, (r)') ) =2y;5;, 5(rI q'), —
(2.2)

and pj (g ) represents a Gaussian random process.
We have assumed that the pump waves at m1, ~2
are uncorrelated. Such a model has been extensive-

ly used earlier in the calculations involving reso-
nance fluorescence spectra, "' and in optical dou-
ble resonance. ' Eberly' has emphasized the type
of "substitution rules" that in some cases might be
used to account for the pump fluctuations. How-
ever, there are many situations where no simple

+2iq (X,X ), (2.5c)

a 2
(X1X2)= — (X1X2)+iqp(X3X2 —X3X1),

a7l T2

(2.5d)

2np
X, ,

T1
(2.5e)

a 2
(X3X3 ) — (X3X3 ) +4iqp(X1X3 X2X3 )

a/ T]
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a
(X|X3)=-

B7l

1 1+ —lp )
—l p2 —l 5 (X)X3 )

Tl T2

2(x,x, &= — &x,x, &

B~ T2

+2iqo(X)X) —X)Xp )

no
+iqo(X3X3 )+ X~,

B

Btl
(x, )=— 1 + yL —l 5 (x] ) +Iqp(X3 )

T2

B 1(X, ) = — ((X, ) —n, )
BY/ T)

together with the equations obtained from complex
conjugation.

The set of Eqs. (2.5) is stochastic in nature as
the p's are stochastic variables. These stochastic
equations can be transformed into mean value

equations by using the theory of multiplicative sto-
chastic processes. The resulting equations are
found to be

+lqp( (X3X3 ) (X3X) ) ), i2.6d)

2(x,x, &= — (x,x, &

B'g T]

+4iqp((x]X3 &
—&X3X3 & )

2no
+ &X3),

T1
(2.6e)

1 1
(X,X, )= — + +yL —i5 (X,X3)

Tt T2

no
(X, )+iqp((X3X3)

Tl

+2(xixi ) —2(X2X, ) ), i2.6f)

plus the equations obtained from complex conjuga-
tion.

In Eqs. (2.6) yL denotes the sum of the
linewidths associated with each pump,

+2iq, ((x, ) —(x, ) ), (2.6b)
yL yl +y2 (2.7)

B 1
(X,X, ) = —2 +2y~ i5 (X—)X) )

B'g T2

+2iqp (X)X3),

It is interesting to note that the linewidths of both
the pump waves enter symmetrically in the above
equations. Equations (2.6) can be solved in the
steady state with the result

qo-+0

(X3):lqpnp +yL —l5
T2

(X, ) =(X,)*=iqp +yL i5-
T2

(2.8a)

4qpT3 (1/T2+ yi. )
(X3)=np 1+ = no+0(qp),

&'+(1~T2+yL )'

qonoTz(1/T2+yL )
(X,X, ) =q, T,tm(X, X, )

6 +(1!Tg+yl.)'
(2.8c)

1
(X,X, ) =—iqp(X, X3 & +2' +i5

T2

—1 qo~o
—eon o +2yl. ++22 1

T2

' —1

1
+yL +i5

T2
(2.8d)

iqon p &X3 &
&o

(x,x, &= [A C+qo(2T&+T3)(C —C')] = iqono +yL i5—
~A ~'+.qp(A+A')(2T, +T, ) T2

{2.8e)
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where

1 1+ +yz
1 2

1
5+2qo +2yz

T2

T]C=1+ + T~(yz —i6)
T2

(2.8f)

IO'

f

IO'

Io"

q,=0.00 I

The final result for the intensity is obtained by
substituting (2.8) in (2.3). This result has been ob-
tained without any restrictions on the pump inten-
sities or their linewidths. It should also be noted
that the laser linewidth does not appear in any
simple fashion in the expressions obtained here,
i.e., the CARS signal in the presence of pump fluc-
tuations cannot be obtained by a simple scaling of
T& and T2. However, the behavior of the expecta-
tion values such as (X& ) and (X3) is obtained by
simple scaling 1/T2~1/T2+yz. The CARS in-

tensity in the limit of no saturation {I~ qo) does
not quite follow the scaling relation 1/T2~1/T2
+yz because of the appearance of the additional
factor T2 in (2.8c). It might be thought that laser
bandwidth effect is similar to a relaxation effect.
However, that is not the case since the usual relax-

ation theory is based on two major assumptions: (ii

the weakness of the interaction with the reservoir,
i.e., the interaction that is responsible for relaxa-

tion; and (ii) the smallness of the correlation time
of the reservoir relative to other time scales in the
problem. This latter assumption enables one to ob-

tain equations that are local in time without

enhancing the dimensionality of our space. How-

ever, in our present problem the phase of the field,
which determines the phase of the dipole moment
of the system, remains correlated over a long time,
since (P(t+r)P(t)) =2yt t

The behavior of the CARS signal I [Eq. (2.3b)]
as a function of 5 for various values of the pump
strength qo and for various values of yz is present-
ed in Figs. 2 and 3. The parameter b in these fig-
ures is defined by Eq. {2.4). For weak fields (Fig.
2) we find that the intensity distribution has the
usual dispersionlike profile. With increasing pump
linewidth yl the peak at 5=0 broadens. The ef-
fect of pump fluctuations is much more pro-
nounced on the minimum in the intensity profile
which starts disappearing rapidly as yi is in-

creased. Similar behavior continues even with
moderate field strengths. However, significant
differences start appearing when qo becomes of the

2-50 0 50 100
8

FIG. 2. The variation of the CARS signal intensity

[Eq. (1.10)] with detuning 8 for q„=0.001 and several
different values of yL

——y~+yq. We have taken T~ ——T~,

no
———1, b =35, and both 5 and yL have been expressed

in units of Tl. The parameter b is defined by Eq. (2.4).
Note that the curve on the extreme right corresponds to

yL ——0.

Io'
g =2.5

I

10'
0

I

-50
8

50
2

I 00

FIG. 3. Same as Fig. 2 for qo
——2. 5.

order of 1/T2 (Fig. 3). The peak at 6=0 starts
splitting. The minimum in the intensity profile
also has a different structure. As yz is increased
the peaks at 5=0 show broadening due to both the

pump intensity and the pump linewidths. This
behavior is illustrated in Fig. 3. When the pump
fields become quite large (qo & 10) the intensity dis-
tribution does not show any interesting features.
The splitting observed when qo-1 is because of
the behavior of (XtXt ) as a function of 5, as the
expression for (X,Xq) given by Eq. l2.8c) involves

a denominator containing higher powers of 5 than
2. The other terms in the expression for the inten-

sity I show only a power-broadening effect. The
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splitting of the peak at 5=0 is rapidly wiped out
due to power broadening as pump strength qp is
increased. The final behavior of the CARS signal
is, of course, determined from (XIX2 ) and the in-

terference effects arising from the nonresonant part
of the susceptibility.

+
~

B
~

'(1( (I) + )P'(ll))

+B($4(t)+r)(t('I(II) )

+B*(g((ri+r)$4(t)) ) ] . (3.2)
III. CONTRIBUTION OF PUMP

LINE%'IDTHS TO CARS LINE%IDTH
AND SPECTRA

—i4](q)

—3i4~(g)+2i+2(q)
pq(q) =e ' ' o2](q), (3.1b)

Having studied in detail the behavior of CARS
intensities as a function of the pump intensities
and linewidths, we now calculate the CARS spec-
tra which are obtained by taking the Fourier
transform of the two-time amplitude correlation
function defined by Eq. (1.11). For this purpose
we find it convenient to define the following new

variables:

1 Ifi+'i—4( PI+I(IoA
T2

(3.3)

1 +i 5+3ip( 21'i42 —$2—iqo(tel,
T2

()Ital . . 1 lion(i4
21 '—(+IP2 6—+

T] T/

(3.5)

Starting from Bloch equations (1.4) and (1.5) we
find the following stochastic equations of motion
for the variables Iti s:

2i+((—V (+i@2(V )

I(ri) =ne ) (3.1c)

2iis((q—)+i%2(g(
4(II)=e

In terms of these new variables the correlation
function defined by (1.11) can be rewritten as

2

C()=I () g ~$'~'
Cf Cf i

The variables 1(( satisfy a closed set of Langevin
equations. Similar equations are satisfied by their
complex conjugates. The correlation functions of
tllc t(( variables can bc obtalllcd ffolll tllclr Marko-
vian property and from the general results on mul-

tiplicative stochastic processes, which, for example,
lead to

1 —i5 —9y] —4'
T2

—
leap

Plp

T

(3.7)

where (p) =($„$2,till, t(i4) is a column matrix and I is a 4&(4 matrix defined by Eq. (3.7). It follows
from Eq. (3.8) that

&t(~(I)+ )&=[ '] &t((II)&+[ ] &@(II)&+[ '] &It (I))&+[ '] (|((ll)&, (3.9}

and on using the Markov property of t(i s we find the following expression for the correlation function of P(,
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&e(&+ )&'(&)&=[ '] &e,(~)e'(~)&+[ '] (e~W'(~)&

+[. ]„&t(,(~)q', (~)&+[. '],.(y.(q)y', (q) &

[e ]11 (X1X2&+ [e ]12(X2X2&+ [e ]13(X2X3& + [e ]14(X2 & (3.10)

In deriving (3.10) we have used the definitions (3.1) and (2.4). Using Eq. (3.10) in Eq. (3.2) we can obtain
the amplitude correlation function for the field at 2~& —~z. The spectrum of the field can then be shown to
be proportional to

S(ro):2—ReI [i(2rol —c02 —co)], (3.11)

where

I (z) = m 1 1 &X1X2 & +m12 (X2X2 & +m13&X3X2 & +m14&X2 &+
~

8
~
'm44+8m44&X2 &+8'm

1 1 (Xl &

+8 m12(X2&+8 m13(X3&+8 m14 .

The matrix elements m;J. are given by

m []——D (z) 2qp+ z+ +i5+9y[+4y2 z+ +4yt+y2
—I 1

T2 T]

m12 ——2q 130 '(z),

1
P?l )3 =lqpD (z) z + +f5+9/)+4/2

T2

(3.12)

(3.13a)

(3.13b)

(3.13c)

~14= D (z) z+ +i5+9'Yl+4'V2 (z+4'V1+'Y2)
lqp1l p 1

T] T2

~44=(z+4xi+x2) '

with D(z) given by

(3.13d)

(3.13e)

1 1 . 1 1
D(z) =4qp z+ +Sy~+2y2 + z+ —i5+y~ z+ +i5+9$'~+4' z+ +4g~+pp

T2 T2 T2 T]
L

(3.14)

Expression (3.12) gives the resonant CARS spectra for arbitrary values of
~

g'1 ~, ~

g'2 ~, (3, and yl, y2.
Again note that the pump linewidths do not enter in any simple manner. In the limit of y;~0 one of
course has

s(m) =const5(u —2a))+co2) . (3.1S)

This is because in the derivation of the spectra and the definition (1.11) we have ignored single
atom/molecule contributions in favor of the coherent contributions from a collection of atoms/molecules.
The single atom contributions were studied earlier in the context of resonance fluorescence. ' We have also
not included the Doppler broadening in our treatment. The weak field limit of the result (3.13) can be
sho~n to be equivalent to the known result of Dutta, obtained by a different method. Dutta, however, has
not presented detailed plots for the line shapes, which as we show below, depend critically on the relative
magnitudes of y], yz.

The behavior of the CARS spectrum defined by Eqs. (3.11)—(3.14) is shown in Figs. 4 and S for several
different values of y], y2, and qp. It should be noted that all the additional resonances in the spectra
represent the Rabi splitting of the energy levels. These could be seen in the resonant CARS situation only
because of the laser temporal fluctuations, in the absence of which (and any other relaxations) they do not
show up. This is because the strength of these resonances depends on the fluctuations. The situation is
somewhat similar to that encountered in the experiments of Prior et a/. where the additional relaxation ef-
fects due to pressure broadening enabled one to see extra resonances. In our case the Rabi splitting of the
spectra could be seen only because of the "relaxation effects" implied by laser fluctuations. It should also be
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10' 10-'
I 0'

q =7.5
8=0
y=p

10 'o

S(tu)

10" IO

S(tu)

10 14, Ip

-100 0.2
100 -100

- Q. z
100 -100 0.2

100

FIG. 4. The variation of the CARS spectral density S(co) [Eq. (3.11)] with ru for 5=0 and several different values of
qo, y), and y2. Other parameters for this figure are the same as for Fig. 2.

emphasized that these resonances are rather broad and could be resolved only if qp were very large com-
pared to y~ and y2. For example, a simple analysis shows that the approximate roots of the polynomial
D(z) [Eq. (3.14)] are

1 4qo(yi+ y2)
z,=— — (4yi+ y2)+

T] 6 +4qp
(3.16a)

and

6 (yg+ y2) 26(4yg+ y2)
+"qo — yi+ ye+ 2 2 + 25 +4q o (5 +4q p )

' ~
(3.16b)

It is evident from the structure of (3.13) and (3.14)
that the fluctuations of the pump wave at co~ are
more important than the fluctuations of the wave
at cu2. This is because at least two photons should
be absorbed from the wave at co& and only one pho-
ton from the wave at co& to generate the CARS sig-

I

nal at 2~& —~2.
The behavior of the spectral density S(co) for

6=0, i.e., when the Raman transition frequency

eR coincides with the two-photon transition fre-

quency co& —co2 is displayed in Fig. 4 for several

different values of qp, y&, and yz. It is found that

IO '
I
P-o

q = p.ppl
Ip

q, = 0.001

I 0- io,

S(cu)

I
0-14

S(cu)

IQ to

S(tu)

IP hl

-100
- O. Z

100

2 Ip'

-100

2

O. Z100

I
0-I~

-100 0.2
100

I 0'
qo= 25
8 =- ip
y=p

I 04
Qo= 25
8 o ip

y, =p

10'
q,=25
8 =10

y,
"- 0

S(ou) S(cu) ' S(tu)

IP-' ---I

-100

i,r
0.2100

=--P
10'---

-100 1000.2

10'

-100

2

I

0.2
100

FIG. 5. The variation of the CARS spectral density S(co) [Eq. (3.11)) with co for 5= —10 and 5=10 for several dif-
ferent values of qo, y), and y2. Other parameters for this figure are the same as for Fig. 2.
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for a monochromatic field at frequency co2 there is

only a single pronounced peak at co —co, =0 for all
values of the field strength qp and the effect of in-

creasing bandwidth y& is to broaden this peak.
However, the behavior of S(co) is remarkably dif-
ferent when the field at frequency co~ is mono-
chromatic. In this case, for small values of the ef-
fective Rabi frequency (qp ——0.001) S(co) has a
dispersionlike structure at co =co, . For sufficiently
large field strengths, S(co) acquires a well-defined

peak rather than a dispersionlike structure. There
remains a central peak at co —co, =0 and two addi-
tional peaks corresponding to Rabi splitting of the
energy levels start to make their pressure felt (see
the figure corresponding to qp ——7.5). With in-

creasing y& these two peaks are rapidly washed out.
It is clear from Fig. 4 and the preceding discussion
that the fluctuations of the beam at frequency ~&

are significantly more important than the fluctua-
tions of the beam at frequency co2 in modifying the
behavior of S(co).

Figure 5 illustrates the behavior of S(co) when
the Raman transition frequency co~ is different
from the two-photon transition frequency
(~& —co2 ——coq+5) for several different values of qp,

y~, y2, and 5. We find that in weak fields

(qp ——0.001) S(co) has two peaks at co, —~:—0 and

co, —co—=5. The peak co, —~-5 corresponds to
anti-Stokes frequency, i.e., ~=co~+~R. This is be-

cause, in the second order in qp, the system has a
finite probability to be found in the state

~

1).
Then the absorption of co~ photon produces the
anti-Stokes frequency co&+coR. The effect of in-

creasing bandwidths is to broaden and wash out
these peaks. The peak at co, —co -=0 disappears
faster than the peak at co, —co=-5. However, in the
case y~

——0 the spectral density S(co) has a disper-
sionlike structure in addition to the type of struc-
ture one sees for yz

——0. The different structure of
S(co) in the two cases is due to different roles

played by the two linewidths. This additional
structure is wiped out as field strength is increased.
In strong fields S(~) has the expected triplet struc-
ture due to Rabi splitting of the energy levels.
However& we find that the spectrum is asymmetric
with respect to the sign of 5. It is interesting to
note that now we have well-defined dispersionlike
structures for Rabi sidebands. The dispersionlike
structures are less pronounced for y2 ——0 and start
disappearing with increase in y&. It is also seen by
a comparison of the y&

——0 and yq
——0 cases, that y&

is much more effective than y2 in modifying the
structure of S(co). It is amply clear now that the

observed differences in the behavior of spectra for

y&
——0 and y2 ——0 cases point to the breakdown of

any simple scaling law and justify a detailed dis-
cussion of the role of laser fluctuations in CARS
spectra calculation. It is easy to infer from Figs. 4
and 5 and the subsequent discussion the effects of
both fields being nonmonochromatic sirnultaneous-

ly. For example, when both pump fields are fluc-
tuating most of the extra structure that S(co) has
for the y~

——0 case will be washed out very rapidly,
and the behavior of S(co) will resemble the
behavior for the y& ——0 case. Another noteworthy
feature of the behavior of S(co) is that it is not a
symmetric function of 5 and co.
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APPENDIX: CARS LINE SHAPES AS
CONVOLUTION OF THE SUSCEPTIBILITY
TENSOR X( ) AND THE CROSS-SPECTRAL

TENSORS OF THE FIELD

In this appendix we comment on the structure of
the line shapes in cases where saturation effects are
not important. It is then possible to consider more
general fluctuations and the line shapes of the
pump fields. We will show that, when saturation
effects can be ignored, the CARS line shape is re-
lated to the fourth- and the second-order cross-
spectral density tensors of the fields at co& and co2,

respectively. Similar results were obtained earlier'
in the context of multiphoton processes. Such
results would be particularly useful if the line shape
of the pump field were described more accurately
by, say, a Gaussian rather than by a Lorentzian.

It can be shown that in general the Fourier com-
ponent of the induced polarization P' ' at frequen-
cy co can be written as
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P„' '(co)= f f fdco)dco2dco35(co —gcoc)X„'~pr(co), co2, co3)E~(co(}Ep(co2)Er(co3) .

Here the Greek subscripts denote the Cartesian components of the fields and the susceptibility tensor and all
the Fourier transforms have been defined by

X(t)= fX(co)e ' 'dco, X(co)=f X(t)e'"'.
2m

The susceptibility tensor 7& '~z(~&, co2, co3) has the intrinsic permutation symmetry with respect to the inter-
change of its indices (ctco(,pco2, yco3). For CARS in monochromatic fields the total pump field E(t) can be
written as

where the superscript i denotes the field at frequency ~;. It can then be shown that the component of the
induced polarization at the CARS frequency 2m] —m& will be given by

I & (6))=36(QP —26?~+&2)7&+p&(N~, N~, —N2)8 ~ 8 p

In deriving this result we have used the permutation symmetry of g' ' and the Fourier transform of Eq.
(A3) in Eq. (Al). Relation (A4) helps in identifying the susceptibility tensor 7' ' when it occurs in relations
like Eq. (A4) involving monochromatic fields, and in relations like (Al). For the case of fluctuating pump
waves, the amplitudes 8""and 8" ' will not be deterministic but would be stochastic processes. However
r" " would only be slowly varying functions of time t. It is therefore convenient to write

E(t)=E'+'(t)+E' '(t), E'+-'(co)= f e' 'E'+-'(t}, (A
2m

where E'+'(co) [E' '(co)] contains only positive (negative) frequency components. For a stationary field we

find on using the Wiener-Khintchine theorem that

(&'+'(Col)zp+" (CO2) ) =5(co(—CO2)& p(co) ) =

(&'+'(Col�)E

p
'( —CO2) ),

) f irdt(g(+)(t)g( —)(()))2~'

In view of (A1), {A4), and (A5) it is now clear that if we allow the fluctuations of the field, then in place
of relation (A4) we will have

P„'"(ci))=3f f f1[co; ]5 ci) —+co; X„"~pr(co(ico2co3)E~ N+'(co))Ep N+'(co2)Er N '(co3),

where P&
' (co) will now be fluctuating. Its spectrum, however, will be peaked at 2m] —~2. From Eq. (A8)

we easily obtain for the fluctuations of I'& '(m)

(P (Co)P„(CO ) }=If d [CO; jd [CO; ]5 Co —+CO; 5 Co —Qco; X p (CO, CO, CO )X„p (CO, CO, Ci) )

X (pl 1 N+)( )E(1)(+)( [g(l)(+)( ~ )E(1)(+)( i )p ) ( (EN 2—)( )[E(2)(—)( i
)p )

where we have assumed that the pump waves at co] and ~2 are uncorrelated with each other. Since the field
E(t) [Eq. (A3}) has been assumed to be stationary, it can be shown following Mandel and Mehta' that the
fourth-order correlation of the field E"' in the frequency domain has the following structure:

(g(l)(+I( )E(l)(+)( )(g(ll(+)(
I
))e(g(()(+)( i ))e ) 5( + «)l (()

(
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d t;
I t'k, tt(to&, tot, toI )= ' (E""+'(t,)E'tt""+'(t2)E"," '(t, )Ett" '(0))exp(ito, t, +itoztz it—oIt3) .

(2m)

On substituting (A10) and (A6) in Eq. (A9) and on simplification we obtain

(Pq '(to)P'„(to')) =5(to to')—I q„'(to), to) 0

where the spectrum I &„' (m) of the polarization fluctuations is given by

I pv(to) 9I d Itoi Id~ldto25(to toi to2+to3)5(tol+to2 toi to2)~iiapy(gaol»to2» to3)

x+~ gr~ (~i z —~3)I ~ (~3)I ep p(~ 2 i ) .(3)~ t t (2) ti)
y y

Equation (A13) is our final expression which gives
the spectrum of CARS polarization fluctuations in
terms of 7"' and the fourth-order cross-spectral
density tensor of the field at co& ~ Further simplifi-
cations in formula (A13) can be made if the field
statistics are known and various special cases fol-
low from Eq. (A13) depending on the bandwidth
of the fields. For example, if the field at frequen-

cy co~ obeys Gaussian statistics, the fourth-order
correlation function can be expressed in terms of
second-order ones, and then, depending on the
line shapes of the pump beams at co& and co2,

I &„'(~) can be computed. ' For the Gaussian
case one discovers kinematical enhancement factors
like n. , which are reminiscent of those occurring in
the context of multiphoton processes. ' The

I

derivation of Eq. (AI3) is quite general and is not
necessarily restricted to resonant CARS, and it fol-
lows that out of the 48 terms contributing to 7' '

as many terms may be retained as may be required
from physical considerations.

Finally, we mention that the approach presented
here could also be used to discuss higher-order
CARS which, for example, has been recently stu-
died by Compaan et al. The anti-Stokes radiation
in this case is generated at frequency 3'~ —2coz,

and it can be shown that the spectrum of polariza-
tion fluctuations will now be related to the sixth-
order correlation function of the field at ui and
the fourth-order correlation function of the field at
m2. The kinematical enhancement factors, when
the fields are Gaussian, should now be 3!2!=12.
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