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Time-dependent aspects of the Antler-Townes effect in a four-level system
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Time-dependent optical Autler-Townes spectra are calculated for a four-level system in
which the ground state is a doublet with frequency separation much larger than any of
the Rabi frequencies. The finite linewidths of the lasers are taken into account in the
phase-diffusion model. Optical-pumping effects cause a transfer of population with a
resulting significant change in the spectra with time. Numerically evaluated spectra are
presented, and it is found that the nature of the asymmetry can change drastically with
time.

I. INTRODUCTION

The theory of the optical Autler-Townes effect
for a three-level system is reasonably tractable, '

and a symmetric, doubly peaked spectrum is
predicted when the saturating transition is exactly
resonant. The simplest situation is ~here the ex-
periments are performed on an atomic beam so
that Doppler and collision efFects are neghgible; the
predictions for this case have been recently con-
firmed in elegant experiments. The case of
Doppler-broadened three-level systems has also
been considered. Again, reasonably good agree-
ment between theory and experiment is found.

In making the calculations, it is usually assumed
that the atoms interact with the laser field sufti-

ciently long for the system to reach a steady state.
However, it is clear that if the experiments are per-
formed with pulsed lasers of sufficiently short
duration or with atomic beains with sufFiciently

small interaction volume, this condition may not
be met. For example, with a typical laser beam di-
ameter of 10 m and atomic lifetime of 10 s,
the atom is in the laser beam for about ten atomic
hfetimes. Moreover, experiments have been per-
formed with laser be m&s of one-tenth of this diame-

ter, giving a transit time of the order of 1 excited-
state lifetime. It is therefore of some interest to
calculate the time-dependent spectra, and to esti-
mate the illumination time necessary for the
steady-state solution to be a good approximation.

One possibility is that asymmetry may be intro-
duced if the steady-state conditions are not met,
and in some of the experiments reported on three-
level systems, there is some suggestion that the
spectra are not completely symmetric. However,

recent calculations relevant to sodium have shown
that although the asymmetry of the Autler-Townes
spectrum for a three-level system does vary with
the interaction time, the efFect is small.

A similar situation occurs in the related phen-
omenon of strong-field resonance fluorescence. Ex-
periments performed on atomic beams of sodium
prepared as a two-level system under resonant exci-
tation (e.g., Ref. 6) indicate that under some cir-
cumstances slight asymmetries are observable. It
has been suggested (e.g., Ref. 7) that these may be
due to finite interaction times. Cohen-Tannoudji
and Reynaud have emphasized that steady-state
conditions need not obtain in actual experiments.
A detailed discussion of the time-dependent reso-
nance Quorescence spectrum has been given by
Eberly et al. , and they find that the asymmetry of
the spectrum varies markedly with time under
some circumstances.

All the preceding discussion refers to three-level
systems (or two level sys-tems, for resonance
fluorescence}. However, experiments have been
performed on multilevel systems. ' "Picque and
Pinard, ' for example, made measurements of the
optical Autler-Townes spectrum of sodium without
it being prepared as a three-level system, and found
a doubly peaked asymmetric spectrum at exact res-
onance. The theory, taking into account the full
hyperfine structure of sodium, but neglecting the
laser linewidths and calculating the steady-state
spectrum, has been given, but it is found that the
predicted asymmetry is opposite to that observed.
Related experiments have been made by Hogan
et a/. ,

"who monitored the Autler-Townes splitting
in sodium by observing the multiphoton ionization.
The theory modeling sodium as a three- or four-
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level system, has been given by Georges Rnd Lam-
bropoulos. ' The duration of the laser pulses used
in the experiments was about 700 nsec with a rise
time of about 75 nsec; thus it was necessary to take
into account the finite interaction time which was
done by numerically solving the differential equa-
tions. It is also essential to take into account the
finite laser linewidths; Georges and Lambropoulos
pointed out that the asymmetry of the spectrum is
reversed as the laser linewidth increases from zero
to a value greater than the natural linewidth. Zoll-
er, Dixit, and Lambropoulos' emphasized the im-

portance of non-Lorentzian line shapes.
The theory of an X-level atomic system coupled

to monochromatic lasers which arc ncRr rcsonallcc
with the N —1 transitions has been discussed
analytically and numerically by Eberly, Shore,
Bialynicka-Birula, and Bialynicki-Birula. ' These
authors also considered an anharmonic ladder of
states which is relevant to molecular interactions.

In this paper we consider the time dependence of
the optical Autler-Townes spectra in a four-level

atomic system illuminated with finite-bandwidth
lasers. The ground state is assumed to a doublet
with energy separation small compared with the
energy of the laser photons but large compared
with the Rabi frequencies of the principal transi-
tions. (This may be taken to be a crude model for
sodium, for example. ) The situation is shown
schematically in Fig. 1. It is clear that we have a
very different situation here from the three-level

system because of optical pumping; if the atom is
prepared initially in one of its ground states, some
population will be transferred to the other ground
state by laser action and spontaneous emission, and
this implies that the Autler-Townes spectrum will

change diastically with time. Thus wc woUld ex-

pect that finite transit times will be much morc
significant in a four-level model than in a three-

II. THEORY

A. The madel

We consider a four-level atomic system as shown
in Fig. 1. The ground state is assumed to consist
of two nearly degenerate states, denoted

~
0) and

~
1), with corresponding energies Eo and E, ; the

other two states
~
2) and

~
3) are excited states

with energies E2 ~E3. (For simplicity we assume
a system of units in which 4=1, so that energy
Rnd frequency have thc same diIQcnsions. ) An in-
tense laser, A, is tuned to near resonance with the
ground state

~
1) and the excited state

~
2): Its

frequency is denoted m~. A weak laser, 8 ("the
probe laser" ) of frequency m~ is near resonant with
the ~2)~~ 3}transition.

The interaction between the atom and the fields
is assumed to bc of thc Usual dipole form

I/2
21TCXroi

A, =a, bi j =0 0 (r"Qg —f"Qg )

where Q is the volume of the system, a the fine-
structure constant, a~ the annihilation operator for
the A,th laser, and r,

&
the dipole matrix element for

the atomic transition
i

i ) i g ). For simphcity,
we assume there is no direct (one-photon) transi-
tion between the ground states and le~el

~
3), or

between the two components of the ground states,
i.c., wc assume

level system. It is clear, from the work of Georges
and Lambropoulos, ' that finite laser linewidths
must also be taken into account. Here we treat the
laser fields in the phase-diffusion model and take
the line shapes to be Lorentzian. It is assumed
that the only other relaxation mechanism is spon-
taneous decay (no collisions, etc.). The transient
response will depend upon the laser pulse shape in
time but for simplicity we consider here only the
case in which the pulse shape is a step function.

In Sec. II we describe the Inodd and method of
solution, in Sec. III we introduce the probe-field
approximation, and in Sec. IV we present the nu-
merical results which show, for some choices of the
parameters at any rate, that the asymmetry of the
Autler-Townes spectra in a four-level system are
marked time dependent.

~03 ~13 ~01

FIG. 1. Four-level model showing the "upward"
transition rates.

There is still the possibility of indirect (two-
photon) transitions between these states.
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If we assume the two laser fields are mono-
chromatic, with initially n photons in the A laser
field and nl, photons in the 8 laser field, then
within the rotating wave approximation only the
composite laser/atom states

10;n„ns ),11;n„ns ),12;n, —l, ng, ),13;n, —l, nb —1)

are connected by the interaction (1). (%e have as-
sumed that laser A causes no transitions between
levels 12) and 13), and that laser 8 causes no
transitions between levels 10), 11), and 12&. The
principal physical efFect neglected by this assump-
tion is the light shifts induced in the atomic levels

by the opposing lasers; these can be made negligi-
bly small by taking the resonant frequencies
~, -E2 —EI and mb-E3 —E2 to be sufficiently
difFerent. ) It is clear that these states are unambi-

guously defined if we specify only the atomic part.
Henceforth, for notational simplicity, we use 10),
11), 12), 13) to denote the composite states

n. , nb& I
1;n.,ns) 1»n. —l, nb&, and

1
3;n, —l, ns —1), respectively. We can take into

account the finite linewidths of the lasers as indi-
cated in Ref. 5. This assumes that the broadening
mechanism is phase difFusion (e.g., Ref. 16), and
that the laser line shape is Lorentzian:

Jghg/m
Jq(~)= ~, A, =a,b (4

(m —mg) +kg
where J~ is the total energy flux of the A,th laser,
co~ its center frequency, and h~ its half-width. {In
fact, the spectrum for a phase-diffusion-broadened
laser falls ofF more rapidly than a Lorentzian in the
wlilgs. ' )

where 8'; is the total rate of transitions out of level

(6)

and in Eqs. (5) and (6) we have suppressed the z
dependence of the I'; and the "generalized transi-
tion rates, " 8',&, for brevity. Equation (5)
represents a balance between the total rate of tran-
sitions out of level 1i ) (second term on the left-
hand side) and the total rate of transitions into lev-

el 1i ) from other levels 1J ) (third term on left-

hand side). The term P;(0) on the right-hand side
of (5) is the initial occupation probability of level

1i ), the initial oA'-diagonal elements of the density
matrix being taken to be zero. The set of equa-
tions (5) constitute a set of X linear equations for
the I'; and the solution may be written down fol-
lowing the methods set oui in Ref. 18. One ob-
tains

P;(z) = P~(0)9';+ Q*PJ(0)SJWpP, "J'

(7)

the general term of the series being obvious by in-

spection. The asterisk on the sums indicates that
all the subscripts in a given term must all be dif-
ferent from each other. Thus, in Eq. (7), g'.

k

stands for gk+, g +, , etc. The 9 s, which

may be considered to be propagators of a kind, are
defined by the relations

g (,kj, .. . ) (~ (kj," ))—I
f

— l

B. General solution for N-level system

As our method of solution has already been
described in Refs. 5 and 17, we do not repeat the
details here. However, we take the opportunity of
presenting the general solution for an arbitrary X-
level system, and then discuss the solution for our
four-level model in this context.

The rate equations for the Laplace transforms
P;(z) of the time-dependent probabilities I';(t) of
being in the system state 1i ) are given, according
to Ref. 17, by

(z+ W;)P; —g WJ, PJ ——P;(0), i =0, 1, . . . , X —1

jul

(lyke, i )$ff g {P1ylyky + ~ )gf
lm m mn n nl

+ 4 4 t

where the terms alternate in sign, and the asterisk
on the sums has the same meaning as before except
that, in addition, the variables summed over are
not a11owed to take on the values of the super-
scripts appearing in the summand. Thus the 8's,
being defined iteratively by Eqs. (8) and (9) have
the form of a sum of products of continued frac-
tions.

If we invert Eq. (7) we obtain
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t2

P(t) = P (0)U (t)+ g' f, dt2 f dt~PJ(0)

X U)(t1)~J., (t2 —t1)U;(t —t2)+ ' ' ', (10)

where U;(t) is the inverse Laplace transform of
8;(z). This equation has a simple physical inter-
pretation. The first term is the product of the pro-
bability, P;(0), of the system being in the state

I
i )

at time t =0 with the probability U;(t) that the
system remains in the state

I
i ) for the duration t.

The second term represents the probability that the
system is in state

I j) at time t =0 [PJ(0)], times
the probability that it remains in that state for an
interval t~ [UJ(t, )], times the probability that in
the interval (t2 —t1) it makes a transition from
state

I j) to state Ii) [WJ;.(t2 t, )], times—the pro-
bability that it propagates in state i for the time in-
terval (t —t2) [U;(t —tz)], integrated over all
values of t1 & t2 and all t2 & t, and summed over all
intermediate states

I j ). Higher-order terms have
a similar interpretation. Expression (7) is simpler
to work with than expression (10) because, instead
of convolutions, straightforward products appear in
the former. We emphasize that the solutions
(7)—(10) are exact.

We now consider the four-level model defined in
Sec. II A. In this case the restrictions on the sums
cause the sums to terminate after only a few terms.
Assuming the initial conditions

P1(0)= 1, Pp(0) =P2(0) =P3(0)=0

one obtains from Eq. (7) the solution (for i =3)

&lbI

FIG. 2. Basic processes connection
I
1) with

I 3), di-
vided into those which do (b) and do not (a) pass
through state

I
0).

I V231 «f'12~102 ~

and assume that laser A is of saturating intensity

I vo2I —
I v»I »

I
V2, 3I 1;,; (allij)

where

1"J=—2(&+&J)+~J

and ~01 0s ~02 ~12 ~a~ ~03 ~13 ~a+~b~
6»—hb, 6;~ =AJ;. . These are realistic assumptions
for most of the experiments which have been car-
ried out. Under these approximations we obtain
reasonably simple expressions for the 8',J.(z) which
are given in the Appendix.

For example, the one-photon contribution to
W, 2(z), W')2'(z) is given by [Eq. (A5)]

P3=P3 +P3(1) (0)

where

P3 =—&1(~13+~12&2 ~23)3'(1) (1) (1,2) (13)

8'12'(z) =2 Re
z+r»+i5, +

I
V„ I'Z(z —tZ, , )

P3 = 918'10%0 (8'03+ 8'0282 * 8'23)S3 ' '(0) (1) (0, 1) (0, 1,2)

+$18'12%2 8'2080 ' 8'03%3 ' '(1) (1,2} (0, 1,2}

The terms in Eq. (13) represent the probability of a
transition from state

I
1) to state

I
3) without the

direct intervention of state
I
0); the terms in Eq.

(14) on the other hand, represent the probability of
a transition from state

I
1) to state

I
3), which

proceeds through state
I
0) as an intermediate

state. These processes are shown schematically in

Fig. 2.

We have introduced the principal detunings

51=52 1, 52=53 2, where

51—=E2, 1
—~a 52—=E3,2

—~b. E~,y —=Ex —&y .

All the other detunings 5,J can be expressed in
terms of 51, 52, and E1 0. For example,

53p —E1 0 +51+52 In obtaining Eq. ( 18) we have
made use of the inequalities

toe »&&,o» I p&2 I
(20)

III. PROBE-FIEI.D APPROXIMATION

Some simplification can be made if we impose
the probe field approximation-

which follow from the specification of our model in
the introduction. By writing the denominator of
Eq. (18) in the form
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I V02 I
'&i,o &

I
V021'z+I i2+& ~i+ 2 2 +z'+Ei, p z'+Ei, p

Si(0)=
I Vox I'~~i, o .

Setting z =0 in Eq. (21), which becomes

we see that it contains the complex light shift
I )ad+i[5)+S)(0)], (24)

Expression (22) is z dependent but in the steady
state (z~0) it is purely real:

(22)
we see that S](0) modifies the effective detuning in
the steady state to 5]+S](0).

Note that if we had calculated W'i2'(z) to higher
order we would have obtained the light shift

This shows that the energy levels appearing in the
denominator of the light shift are themselves light
shifted. This can significantly aAect the value of

g I&
I

lm
&( I E& 0 I

). However, this is contrary to the con-
ditions (20) we have assumed here, and we take
8"]2' to be given by Eq. (18).

IV. NUMERICAL RESULTS

Consider the situation where the saturating laser
is tuned to near resonance with the

~

1)~
~
2)

transition, and where all the population at t =0 is
the

~

1 } level. Population will be transferred from

~

1 } to
~
2) (and back) by resonant stimulated

processes, and thence from
~
2) to

~
0) by spon-

taneous and stimulated oA-resonant processes.
There is only a small probability of repopulating
level ~2) from level ~0), as the laser is far from
resonance with this transition, and we have as-
surned that the Rabi frequency is much smaller
than the energy-level separation E] p. Thus, there
is a largely irreversible transfer of population from

~
1) to

~
0) and a resulting change in the Autler-

Townes spectrum with time. For short times the
dominant contribution is the doublet arising essen-

tially from the
~

1)~
~

2)~
~
3) subsystems, while

for larger times the dominant contribution is the
two-photon peak at 52———Ei p arising from the

~

0)~
~

2)~
~
3) subsystem. These features are

evident in Fig. 3, where we take Ei p
——1.0X 10'P,

5) ——0,
( V(2 (

=
) Vop (

=2~10, V2p ——2x10,
y2i

——y2p
——3X10, yu=7X10', ~, =0,

hb ——2X 10, all quantities being measured in Hz.
The unit of time is y2

' ——1.7X10 s, and the
vertical scale is logarithmic. These parameters
have been chosen to enable the relative time
development of the two-photon and doublet peaks
to be followed conveniently on the same graph. At

I

short times the doublet is the largest contribution,
whereas at y2t =100 (approximately the steady
state) the two-photon peak is dominant. There is
evidently a slight but definite change in the asym-
rnetry of the doublet with time.

Now we choose a set of parameters which
correspond roughly to the transitions (3 2S F=1
and F=2)~(3 Pi/2 F=2) ~(5 S]/2 F=2) of
sodium. With all quantities being measured in

MHz, we take y2] ——y2p=10 f32 —6.6X10, and

Ei p
——1.1X 10' . We also choose modest laser in-

tensities,
~

V2t I
=

I V2Q I
=3 1 F 10'

~
V&2

~

=6.3 X 10 . In Fig. 4 we show the doublet

part of the spectra for exact resonance (5]——0)
with zero laser linewidths, at the three instants,
T =(5, 10, and 100) X3.9X10 s. (The unit of
time is now

~
V~2

~

.) The two-photon peak is
well separated from the doublet for these values of
the parameters and has not been shown in the
remaining figures. The most obvious feature of
these spectra is that their asymmetry is markedly
time dependent. At

~
Vq~

~

T =5, the low-

frequency peak is much larger than the high-
frequency peak, whereas at

~
V2~

~
T = 100, the

spectrum is practically syrnrnetric. (For these
values of the parameters the steady-state light shift
is small, 8.7X 10, and we have effectively resonant
excitation. ) At the smaller times modulations of
the spectra are apparent. Thus at

~
V2~ T

~

=5 the

»gh-frequency p~ is sp»t »d at
I V~1 I

T'=»
10 there is a component at 52 ——0, which vanishes
for larger interaction times. We find that the
steady state is reached for

~
Vz,

~

T & 200, although
for ail

~
V2&

~

T & 100, the spectra are qualitatively
similar, only the overall amplitude changing.

In Fig. 5, the parameters are the same as in Fig.
4 except that now 5, =3.1X 10 Hz, hb ——6.3X10
Hz. The spectra are quite similar to those of Fig.
4, but the overall dependence of the asymmetry on
the time is reduced. In both Figs. 5 and 4 there is
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~30)

(arb
units) gpt=lOO

P3(t)

(arb
units f

II

I
&t-~t=10

)I
I

)
)

I

-1,0 1.0

3 O

~2/2)'lip )

FIG. 3. Optical Antler-Townes spectrum [P3(t)
against 52/2

I V&2 I ] at resonance (5~ ——0) for the case
y2) ——y'20 ——3)&10, y32 ——7y10, 5,=0, hp ——2X108,
Eg o =10',

I V)2 I
=

I Vo2 I
=2x 10,

I V23 I
=2x10'.

(All quantities measured in Hz. )

a shght variation of the position of the high-
frequency peak with time.

In Fig. 6 we have increased the value of the sa-
turating laser linewidth 5, to 5, =10 MHz, all
other parameters being the same as in Fig. 4. This

S,jot»i

FIG. 5. As in Fig. 4 but with d, =3.1X 10~,

hg ——6.3X10 Hz.

single change produces a great change in the spec-
tra. First of all the spectra for all three times are
almost symmetric, and the asummetry does not
change significantly with time. Secondly, the
higher-frequency modulations are much more
clearly seen at smaller times than in the previous
two figures. Such high-frequency modulations
were seen in the three-level problem discussed pre-
viously.

The value of the saturating laser linewidth,
14, = —,y2, corresponds to the value at which the

(arb
units}

P3(t)

(arb
units)

gp/tlt»I

FIG. 4. Optical Autler-Townes spectrum [Ps(r) plot-
ted against 52/21 Vu I ] at resonance (5& =o) for the
case y2&=y2o=l0 y3t=6 3x10

I V2o I
=

I V2& I

=3.1x10s, E) o ——1.1x10',
I V32 I

=6.3x10 „d,
=h, q

——0. (All quantities measured in Hz. )

-10
8 t/2 IV» I

FIG. 6. As in Fig. 4 but vrith 5, = 108 Hz.

1.0
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sign of the asymmetry changes in the steady state
for the three-level systems, as pointed out by
Georges and Lambropoulos. ' Thus it is not
surprising that the spectra are practically sym-
metry in this case.

In Fig. 7, the data is the same as in Fig. 4 ex-
cept that a modest detuning, 5~ ——10 Hz, has been
introduced. This is not suf5cient to significantly
alter the nature of the asymmetry in the steady
state, but it radically alters the nature of the tran-
sient asymmetry. Thus for

I V2, I
T =5, 10, the

high-frequency peak is the larger, but for

I Vz~ I
T =100, the low-frequency peak is (margin-

ally) the larger.
%e have demonstrated that the asymmetry of

the Autler-To~nes spectra can vary markedly with

time, and that it is strongly influenced by the laser
linewidths. The nature of the asymmetry of the
transient spectra can be qualitatively different from
those of the steady state.

P3(t)

(orb
units)

sq/tw~2t

FIG. 7. As in Fig. 4 but with h,,=hb ——0, 5» ——10~

Hz.

APPENDIX

For completeness, me present here explicit formulas for the rates, WJ(z). First of all ere note the relations

Wm = Woe —Woi —Wo3
(1)

(1)
W)2 ——W)2 —Wp) —W»3,

(])
W23 = W23 —Wp3 —Wi3 s

(A1)

(A2)

(A3)

where the Wz" represent essentially one-photon contributions to the Wz. Making use of the approximations
(15), (16), and (20) we find

1Voz'=&
I
Vo21'«[2'+»o2+ti5|+&t, oi+ I

Vi21'~i&+&E~,oil '

1V12 2
I Viz I

«[& +~12+i5i+
I Vox

I
~&& —&E1,01]

1V23 21 V23 I
Rel z +1 23+152+

I
Vi2 I

'~[& +1 i3 —&&5i+5.1]

+
I

Vo I'/[ +1 —l(5)+52+E )]J

1Vol =&
I Vo2 V21 I

' «[ [&+12o+& 151+Ei o 1][i&+~E|o NZ —i5i+1 i21

+
I V|z I']+

I viz I'&&+»|a—i5i&I

(A5)

(A6)

~03 &
I Vo2 V23 I

' «& [~ +~o2 —i & 5i +Ei,o &+
I Viz I

'~i~ —i& i.o 1 l

& [1&+123
—&52&l&+1 o3

—i 15i+52+&~,oil+ I
Vo21'

+ I V121 is+103 ii51+52+@l,oi]~[~+1u—&'i51+521]]1 (AS)
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W„=2~ V„V ~'R ([ +& —5+
~

~o ~'&( + &,o&]

+ [ i~ + ~23 2 52~[~+~» —1 i&1+~2~1+
I ~12 I

'

+ 1~02I'[&+~13 t~~l+~2il~f~+~03 t~~l+~2++1,0ilI~ (A9)
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