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Operation of a two-mode laser in a three-level atomic system
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The quantum theory of the three-energy-level two-mode laser in which all the levels are
being pumped is investigated and the master equation of the laser operation is obtained.
It contains two variables, n l, the photon number of the first mode, and n z, the photon
number of the second mode. There appear four terms in the master equation which

represent two-photon processes between the two modes, the absorption of a photon from
one mode, and emission of a photon to the other. They are absent in the single-mode

case and in the two-mode case with pumping only to the upper level. The master equa-

tion can be represented by a diagram of probability in two dimensions which can be ex-

tended to infinity, and each arrow of it represents a term on the right-hand side of the
master equation. By summing each variable {n l or n2) of the master equation, two equa-

tions can be obtained. Each equation contains only one variable, and can be expressed by
a diagram of probability flow in one dimension. By considering the correspondence be-

tween macroscopic equilibrium and microscopic detailed balance the equations of motion

in the steady state are obtained. By introducing a parameter H, the equation of motion is

simplified and a formal solution can be deduced which is dependent on H. It appears
that the parameter H cannot be fully determined, but some properties of it can be de-

duced which prove that the introduction of H is reasonable. The operation characteristics
of the laser under different conditions are discussed on the basis of the formal solution:

among them are the threshold condition, the condition for one-mode operation, and the
change of the photon-statistical distribution. We especially discuss the laser output power
curves under two-mode operation above threshold. The curve of one mode, which oscil-
lates first, shows a bending-down phenomenon as the excitation increases when the other
mode goes beyond its threshold as demonstrated experimentally by Otsuka. This
phenomenon is explained qualitatively and is attributed to the two-photon processes be-

tween the two modes.

I. INTRODUCTION

In recent years, Scully and Lamb's laser theory
of the two-level atomic system was extended to
that of the multimode laser of the multilevel atom-
ic system which reflects the active medium more
faithfully. ' Since there appeared more compli-
cated phenomena in multimode operation than in

the single-mode case, there is even greater atten-
tion being focused on this extension. In this paper
the master equation of the two-mode laser in a
three-level atomic system with a common upper
level, in which all levels are being pumped, is ob-
tained. Using the principle of detailed balance the
steady-state-motion equations are deduced. By in-

troducing a parameter H the equations are simpli-
fied and a formal solution is obtained. The opera-
tion characteristics in different cases are discussed.
It is shown that the unusual bending-down phe-

nomena of the power-output curve under multi-
mode operation is due to the two-photon processes
between the two modes,

II. EQUATIONS OF MOTION

We consider a three-level atomic system as
shown in Fig. 1. R„Rb, and R, are the pumping
rates for

~

a),
~

b), and
~

c), respectively. The
Wigner-Weisskopf theorem is assumed to prevail
and y is the decay constant. [Here the same y is
used for different levels. If differences exist on the
value of the y's their effect can be included by ad-
justing the value of A s and (B;/A; )'s. Therefore,
there is no influence on our results. ] An excited
atom in state

~

a ) can make a transition to state

~

b ) lor
~

c ) i by emitting a photon into mode I
(or 2) with frequency Qi (or Q2). The transition
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[a& made and the transitions between
~

a ) and
~

b )
are connected with photons of 0& only, and those
between

~

a ) and
~

c ) are connected with photons
of 02 only. g; is the atom-field coupling constant.
H.c. stands for Hermitian conjugate.

Let pf represent the density matrix of field,

p„„.~ ~ its element. As the three levels are all

being pumped, and there exists cavity losses, we

can write

FIG. 1. Three-level atomic system.

between
~

b) and ~c) is forbidden.
The Hamiltonian of the atom-plus-field system

is

H =Hq+Hp+ V,

H„=g co;A; A;,

HF ——Q)(a )a ) + —, )+02(a 2a2+ —,),1 1

pf =pf +pf +pf +pf ~

where pf stands for the change caused by the
pumping for the level a and pf caused by the cavi-

ty losses. Following the procedure of Sargent
et al. , they can be determined.

Let p „„,.~, , be the element of the total

system including both the atoms and field. The
change in p„„. ~ due to one atom in the state

~

a) interacting for a very short time r, is given by

&'pn~, n2, m, , m2(t) = g pIt n&, n&, tt m&, m2(t +r)
P

1
V = ——e r(t).E( r, t),

fi
pn &, n2, m &, m2( (4)

(2)

where the rotating-wave approximation has been

where hen; is the energy eigenvalue associated with
the atomic level, 0& and 02 are the frequencies of
modes 1 and 2, respectively, a

& (a2), a
~ (a 2) are

the corresponding annihilation and creation opera-
tors of the field, and A; (A; ), that of the atomic
levels.

Supposing the field is linearly polarized and pro-
pagates along the Z axis, we have

V =g)a )A,Ab+g2a2A, A, +H.c. ,

Considering the atom decay which is described by
a probability distribution P(~) =ye ~', the average
change of field per atom in 4t &p 1/y is given by

5p„„' .
,

(t) = J P(r)5'p„', '„. . .(t)dv. .

(5)

As the change of field is very slow, by virtue of
the adiabatic approximation, the upper limit of the
integral may be extended to infinity. If the injec-
tion rate of atoms in state

~
a) is R, we have

~ (a)
p„,,„,;, ,(t)=

=Rz I dry g pIt n n tt, m, m (t +&) pn&, n&, m&, m2(t) (6)

The calculation of Eq. (6) is rather tedious. We examine the contributions of different atoms by parts.

.(a)
A. Calculation of pf

The atom is initially in state
~

a ). Let
~ Pzf ) be the atom-field-state vector and

~ Pf ) the field-state vec-
tor



OFEIIATION OF A TWILMOOE LASER IN A THREE LEVEL. . .

N)RNg

After time interval v; the state vector develops into

IAf(t+r)&= p laR. ,R,(&+r) la& Ini n2&+b. ...,«+r) lb& Ini+1 n2&+c. ...,+i(&+r) lc& lni, nz+1&]

From Eq. (7), we have

a„,,„,(t)=F„,„,(t),

From Eqs. (A5) —(A7) of Appendix A we obt»n

a, , „,(r+r)=F„, „,(r)cosl [Igi I (ni+1)+ Igi I
(n2+1)]'f r I,

iF„,„—,(r)g~gn&+1i., +i.,(&+r)=,
» „sinI [lgi I'(ni+1)+ lgz I'(n~+1)]'"r I[ I gi I

'«i+1)+
I g2 I

'«z+1)1'"

—iF„,,„,(&)g t V'n p+ 1

c,, „,+)(t+r)=. . .~2 sinl [Ig, I (n, +1)+ Igt I
(n~+1)]' 'r j,

[ I gi I
'«i+1)+

I g2 I
'«&+1)]'"

PRR, R;O IN .IN (t +&)=QFgaR, R (t +&)aIN, , IR (t +~)(I)

=gF+„,,„,(r)F.'. ..(r) j [Ig I'( +1)+ Ig I'(,+1)]'" j

Xcosl [lg~ I'(m~+1)+ lgt I'(m&+1)]'~r I

=) .. .,;, ,«) cosI [ lgi I'«i+»+ lg~ I'«2+»]'"r j

Xcosl [ lg& I ( &m+1)+ Ig2 I2( m~21)]'f j2r.

Here the field is considered to be in a mixed state with P~ representing the corresponding probability. Like-
wise, we have

lg) I'Qn)m)
'"1~ 2' ' i' 2 I ~ 2 I ' 2

I [ Ig I2n + Ig I2(n +1)][Ig I2m + I
I2(m +1)]j1j2

nS', R;;S,~ . «+&)=PE -i,R;m -i.m (t)

x»nI [ Igi I
'ni+

I go I'«2+1)l'"& j»nI [ lgi I'mi+ Igz I'(m2+1)1'"r j ~

![I I'«+1)+I I'n ]ll I'(m +1)+ I
I'm ] j'"

x»nI I: I gi I'(n &+1)+ I gz I
'n2]'"r j»nI [ I gi I

'(mi+1)+
I g2 I

'm2]'"r j .

Substituting Eqs. (13)—(15) into Eq. (6) and carrying out the integration we obtain
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~ (a)
Pn1 sn2', m1, m2(t) ~aP~ ),@2,'m), m2(~)

—
l lgi I'(ni+~i+»+ lg2 I'(nz+~~+~)l+ —,I: lgi I'(ni —~i)+ lg2 I'(n2 —~2)1'

y'

1+—l I gi I
'«i+~i+2)+

I g2 I
'(nz+~2+»1+ —,I. Igi I

'(ni —~ i)+ I g2 I
'(n2 —~2)1'

y'

+~aPn, 1,n, ;m, -1m, (t)

—
lg~ I Qn~m~

2 2

X
1+—l I gi I

'(n x+~ i)+ I g2 I '«2+~2+»1+ —
I: I g i I

'«i —~ i )+ I g2 I
'«2 —~2)1'

y'

+~a~~, ,~2 —1,.m, ,m2 —1(t)

—
lg2 I

Qn2m2
2 2

X
1+—

I: I gi I
'«i+~2+&)+

I gz I
'«2+~2)1+ —l I gi I

'«i —~ i)+ I g2 I
'«2 —~2)1'

Put
2

%e noir consider the diagonal elements and abbreviate p„, „.. . .(I) as p(n1, n2). p(n1, n2) has the

meaning of the probability of finding n1 photons in mode 1 and nq protons in mode 2. Thus the following
equation can be deduced:

A1(n1+1)
P(n1, n2)—

1+ (n i+ 1)+ (n2+ 1)
1 2

A2(n2+1)
P (Pl 1,7l 2 )

1+ (n1+1)+ (n2+1)

81 82
1+ (n1+1)+ ng

1 2

P(n1, n2 —1) .

- (&)B. Calculation of pf

The atom is initially in state
I
b &:

Iy„f(t)&= g r„„(t)ln„n, & lb&.

F«m Eq. (19), me know
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a„, 1 „,(t) =C„, 1 „,+1(t)=0, b„, „,(t)=F„„,(t) .

By virtue of Eqs. (AS) —(A10) of Appendix A, the fo11owing equations can be obtained:

) „,(r +r) =F„,,„,(t). . .~, sini [ I g, I

'n, +.
I g2 I

'(n, +1)]'~'r I,
[ I gi I

'ni+
I g2 I

'(n2+1)]'"

b„, „(t+~)= I'„„,(t) 1

I gi I
'ni+

I g2 I
'«~+»

« lgi I'ni c»I [lgi I'ni+ lgz I'«&+1)]'"r I+ lgz I'«v+1)),

(22)

ggg2+n, (n2+1)c„,„(t+~)=F„„(t) (cosi [ I gi I

'n &+ I g~ I

'(n~+1)]'"r
I
—» .

I gi I'ni+ IS21 (n2+1)

From Eqs. (22) —(24), the diagonal elements 3.re found to be

(24)

I gi I
'(ni+1) 1/2=p. , +i.,;., +i.,(t)», »n'I [ lg& I'(n~+1)+lg, l'(n, +1)]

I gi I
'(ni+1)+

I g2 I
'(n2+1)

(25}

'"i "2 "& "2(t+~) = p (t)
n]+ g2 (n2+ 1)]2

&&( lg~ I
n~ c»I [ lgi I "i+ lg2 I'(n2+1)l'"r I+ lg, I'(.,+1))', (26)

lgi I

'
I g2 I

'n2«~+1)
p'"~ "~""~"~"+'=p"~+'"2 "~+'"~(" 2 z z(«sI[lgil'«i+1)+Ig2 I'nzl'"r

I
—1)'« i+»+ I g2 I

'n ~]'

Substituting Eqs. (25)—(27) into Fq (6)

(b)(n, ,n, )= A1{n1+1)
p(n, +1,n, )

1+ (n1+1)+ (n2+1)
1

81
A1A)n)

81 82 81 82
A

n1+ (n2+1) 1+ n, + (n, +1)
A1

82
(n2+1)

811+—„n]+ (n2+1}
1 2

B2
+A1(n1+1) n2

A2 81 82 811+ (n]+1)+ n2 4+ (n +1)+
1 A2 A1

— p {n]+1,n2 —1),

A1 ——2Rb-
y

.(c)C. Calculation of pf

Using the same method, and Eqs. (A11)—(A13) of Appendix A we obtain



SHI-YAO CHU AND DA-CHUN SU

p'"(n ~tnt)=
A2' (n2+1)

p(n&, n2+1)
1 21+ (n~+1)+ (n2+1)
1 2

A2' n2

82 8) 82
+

(n ~+1)+ n2 1+ (n i+1)+ n2
A2

8)
(n)+1)

t

821+—, (n~+1)+ nq
1 A2

p(n~, n2)

where

8)+32' (n2+1} n)
A) 8) 82 82

1+ n, + (n, +1) 4+ n, + (n~+1)
] 2 1 2

p{n) —1,n2+1), (3{))

Az' ——2R, —
y

The change of the density-matrix elements caused by cavity losses is

p (n»n2)=C)(n)+1)p(n)+1, n2)+C2(n2+1)p(n2, n2+1) —C)n)p(n»n2) —C2n2p(n»n2) .

{31)

of two-mode lasers in a three-level atomic sys-Combining Eqs. (18), (28), (30), and (32), the master equation
tern with a common upper level is as follows:

A )(n)+1)p(n»n2)
p(n»n2) =—

8) 821+ (n, +1)+ (n2+1)
A) 2

A2n2P (n»n2 —I )

8 821+ (n, +1)+ n2'
A, 2

2 i (nt+1)p(n i+1,n2)—C2n2p (n»n 2 )+
1 21+ (n, +1—)+ (n, +1}
t 2

A (2' +1) p(n~, n )2 A )n)p(n) —1,n2)
+

Bi 82 8) 82I+ (n~+1)+ (n2+1) 1+ n~+ (n2+1)
1 A2 A2

A )n)p(n»n2)
B& 8

I+ n + (n2+1)
A) A2

3 82
—,A' ( ~in+1) n2p(ni+1, n2 —1)

+C~(n~+1)p(n~+1, nq)+Cq(n2+1)p{n~, nq+1) C, ~np( —
~n, n)2

8) 82 182
1+ (n&+1)+ n2 1+— (n~+1)+— n2

1 2 1 2

—4A ~
n ~ (n2+ 1)p (n»n2)

8) 82
1+ n &+ (n2+1) 1+— n &+— (n2+1)

1 2 1 2

A (n, +1)p(n„n, +1)
8) 82'(n, +1)+ '(n, +1)

1 2

A z' n2p (n, ,n&)

8) 82
1+ (n )+1)+ n2

1 2

I I 8)
—,A2' (n2+1) n)p(n( —1,n2+1)

1
r

1+ n )+ (n2+1) 1+— n)+ — (n2+1)
A2 1 2

432' n2 (n &+1)p(n &,n2)
1

8, 8, 1821+ ( ~+n1)+ n2 1+— (n&+1}+— n2
1 2 1 2

(33)
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On the right-hand side of the master equation
there are 16 terms, and they can be interpreted as
probability flows which can be expressed by arrows
in a two-dimensional probability flow diagram
that, in its turn, can be extended to infinity as
shown in Fig. 2.

Each arrow in Fig. 2(a) represents a term on the
right-hand side of Eq. (33). The numbers attached
to each arrow indicate to which term in Eq. (33) it
corresponds. Though the fifth term has the same
physical meaning as the ninth term, they are of
different origin and are represented, therefore, by
two different arrows in Fig. 2(a). These two terms
are combined into one in Fig. 2(b). The same is
true with the following pairs: the sixth and thir-
teenth, the seventh and the tenth, and the eighth
and the fourteenth. Figure 2(b) is the total proba-
bility flow diagram extended to infinity. Figure
2(a) is the probability flow diagram of state
(n &,n2).

The 11th, 12th, 15th, and 16th terms in (33)
represent two-photon processes between the two
modes, which have not been considered in Ref. 3.
The atom pumped into one lower state can make a
transition to an upper state by absorbing a photon
of one mode, then make another transition to the
other lower state by emitting a photon of the other
mode. Each process plays a role of a loss to one

(extend to infinity)

e~~ 1 g a a i i w~o
u xi e ~~ 6og t~a a~1 g ~

0 44 0 'A 0 ~)) 1t
o ~ g g I 0 ~ o 3

rl xx o Ns ll
I I ~

gl g~ 0
(b) ( ~ o

1l
0 0

+1 c
Q-I Qtf

mode, while a gain to the other mode. These pro-
cesses are in fact saturation effects of absorption.

From Eq. (33) the following equations can be
obtained:

(a)

FIG. 2. Diagram of probability flow in two dimen-
sions. The numbers under each bar (state) indicate the
photon number (n&, n~). (a) The probability flow of
state (n &, n2). (b) The total probability flow scheme.

p(n~)=gp(n, , n )2

= —A)(n)+1) g 8, 8,1+ (n, +1)+ (n, +1)
1 2

p(n] —1,n2)

+ n)+ (n2+1)
1 2

+C&(n &+1)p(n ~+1)

p(n]+1,n2)
C)n)p—(n))+A )(n)+1)g Bi 821+ (n]+1)+ (n2+1)

1 A2

p(ni, n2)—A)n(
8) 821+ n i+ (n2+1)

1 2

82
(n2+1)p(n)+1, n2)

2+ —,
A I (n)+1)g

n, 82 1 8) 1 821+ {n 1 + 1)+ (n2+ 1) 1+— (n ] + 1)+— {n2+1)Ai A2 4 Ai 4 A2

3 f——A(ni

82
(n2+1)p(ni, n2)

2

Bi 82 1 8& 1 821+ n&+ (n2+1) 1+— n&+ — (n2+1)
Ai A2 4A) 4A2

n2p(n &

—1,n2)+ 4A2' ni
81 82 1 Bl 1 821+ n]+ n2 1+— n]+ n2Ai A2 4 A) 4 A2
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n~(n), n2)——„A2' (n)+1)
1+ (n&+1)+ n2 1+— (n ~+1)+— n2

A)

p(n2) =g p(n ~, n2)

p(n), ng)
A—z(n2+1) g B) B2

1+ (n, +1)+ (n2+1}
Ai A2

p(ni, ng —1)
+A,n, g

(n )+1)+ n2
A) A2

p(n)„n2+ 1)
+C2(nq+ 1)p (nz+1) —C2nzp(nz)+A z' (n &+1)g Bi B21+ {n)+1}+ (n2+ 1)

1 A2

B21+ {n~+1)+ n2
1 2

B)
(n i+1)p(n ~,n2+1)

1

B)
(n i + 1 )p ( in, n)2

——,'A,"n, g
n, B2

1+ (n )+1)+ n2
1 A2

1
1B21+— (n (+1)+— n2

1 432

+ —,A,"(n, +1)g
n, B2 1B~ 1B21+ (n )+1)+ (n2+1) 1+— (n )+1)+— (n2+1)

A2 4 A( 422

+4 l~ n2+
2 n1

n &p (n t,n2 —1)

1B21+ n)+ n2 1+ n)+ n2
1 2 4 A) 4 A2

, B2 n &p(n &, n2)
(np+1)

A 8) Bp 1B21+ n&+ (n2+1) 1+— ni+ —- (n2+1)
A2 4A) 432

Equation (35) can be represented by a probability flow diagram in one dimension, as shown in Fig. 3. Each
arrow in Fig. 3 represents a term in Eq. {35). The numbers attached to it indicate to which term in (35) the
arrow corresponds. Equation (34) is represented and interpreted in the same way.

III. STEADY-STATE EQUATION OF MOTION

%hen the equilibrium state is reached, macroscopically the intensities of each mode will not change; mi-

croscopically, it means that p(n& )=0 and p(n2) =0. From the physical meaning of every term in (34) and
(35) and the principle of detailed balance, which is the microscopical reAection of the macroscopical equili-

brium, two equations of detailed balance, which are equivalent to Eqs. {34)and (35), can be obtained. They
are
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p(n1, n2)

81 821+ (n1+1)+ (n2+1)
A1 A2

p(n1+1, n2)
=C)p(n)~1)+AI g 81 82

1+ (n1+1)+ (n2+ 1)
A1 A2

n2p(n1, n2)

'
(n, +1)+ '

n,
1 2

1 81 1 82
1+ (n1+ 1)+ n2

4 A1 4 A2

82
(n 2+ 1)p (n1+ l, n2)

A2

82 1 81 1 82
1+ (n, +1)+ (n +1) 1+— (n, +1)+— (n2+1)

A1 A2 4 A1 4 A2

p(n1, n2)

81 82
1+ (n1+1)+ (n2+1)

A1 A2

, &2 n 1p (n1n2)+ —,A1
A2 1 81 1 821+ n, + (nz+1) 1+— n~+ — (nq+1)

1 2 1 2

p(n1, n2+1)= C,p(n, +1)+A,"g 81 82"1 1+ (n, +1)+ (n, +1)
A1 2

81
(n1+ 1)p(n1,n2+ 1)

A1

n1 82
1+ (n, +1)+ (n, +1) 1+— (n, +1)+— (n, +1)

1 A2 1 2

The solutions of these two equations are quite difficult, but some general properties of laser operation can be
drawn from them.

A. The case of no pumping
to the lower levels

p(n1, n2)
A)

81 82
(n, +1)+ (n, +1)

A1 A2

=C1p (n1+ 1),

P N, tt)

The condition of no pumping to the lower levels

means that A1 ——A2' ——0. Thus Eqs. (36) and (37)
are now reduced to

p(n1, n2)
Ap

81 821+ (n1+1)+ (n2+1)
A1 A2

%'hen both modes are above the threshold, Eqs.
(38) and (39) can be simplified by assuming the ex-
istence of the equalities

A 1p (n1)
=C)p(n)+1),

1+ (n)+1)+ Hp(n))(n2)
1 2

C

81 821+ H((np)(n( )+ (n2+1)
1 A2

(41)

FIG. 3. Diagram of probability Aow in one dimen-
Sion.

where the symbol ( ) represents the peak position
in the curve of the photon-statistical distribution
and H(n)'s are newly introduced parameters. The
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validity of equalities (40} and (41) lies in the fact
that we can always choose parameters H to ensure
that the equalities are correct. The value of H1 is
dependent on n2 as well as on the photon-
statistical distribution of mode 1, so it designated

by a symbol H, (nz). Hz(n l ) has the same mean-

ing as H1(n 2) except the roles of n1 and n2 are in-

terchanged. The assumption of the existence of
equalities (40) and (41) is equivalent to the ex-
istence of the equalities

p(n], n2)

81 82
1+ (n]+1)+ (n2+1)

A1 A2

p(n]]
(42a)

1 21+ (nl+1)+ Hl(n))(nl &

P(n], n2)

81 82
1+ (n 1+1)+ (n2+ 1)

A1 A2

be positive. If (n & is positive, H must be positive
also, if (n & is negative H lnust be negative too,
i.e., H has the same sign as (n &. When the pump-
ing increases from a value below the threshold up
to threshold and then above it, H changes from
negative to —00 (+ (x& ), and then rapidly decreases
from + ~ to a value slightly larger than 1.

From Eqs. (38}and (39), a formal solution can
be found:

Ai 1
p(n, )=X, ' g

j+ H, (j)&nl &

1 2

A 1
P(nl)=%2 ' g

1 C2 81 82.1+ H, {J)(n,&+
A] A2

81 82
1+ Hl(nl)(nl &+ (nl+1)

1 2

From the condition p (n) =p (n —1), the peak posi-
tion of the photon-statistical distribution can be
found in

A1

Bi 82
1+ &n, &+ H, (n, &

Ai 2

A2

81 82
1+ H, (n, &+ (n, &

Ai 2

where Hl ——Hl((n2&) and H2 ——H2((nl &) are con-
stants. In Appendix 8 we proved that H ) 1.

Equations (40), (41), (43), and (44) can be suited
to the cases above the threshold. Below threshold
there exists no peak. At threshold the peak posi-
tion is just at the original point (n & =0. However,

by inspection of Eqs. (42a) and (42b) one can see
that H(n & must be positive and finite. So for the
case of threshold operation we have H = Oo.

Below threshold, from (40) and (41), it may be as-
sumed that the peak position is in the region where
n is negative. Extending (n & into negative value

range means that we have included the cases for
which the operation is below threshold. Thus Eqs.
(40)—(44) can be applied to all cases. But it has
already been pointed out that H(n & should always

The threshold condition

Every factor of tile Illultlpller ill Eq. (40) [of
in Eq. (41)], ( A, / C, ) i [1+(8 l /A l )j
+{Bz/A2)Hz(j)(n2&] decreases as j increases.
The threshold conditions are

Ai 1

Ci 82
H, (0)(n, &

A2

A1
&nl &max=

81

A2
&nl& ..=

B2

A1 —1
1

t'

A2 —1
C2

A2 1

C2 81
1+ Hl(0)(nl &

1

for mode 2. The threshold condition of one mode
is related not only to corresponding A and C, but
also to the intensity of the other mode. The
stronger the other mode is, the higher the thresh-
old will be. Let H(n & =0 in Eq. (43) [or (44)],
that is to say, no influence of the other mode ex-
ists, the maximum peak value of photon-statistical
distribution can be obtained as follows:
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2. The condition of one mo-de oiteration

The term of one-mode operation means that only
one curve of the photon-statistical distribution of
the two modes has a peak. From Eq. (43) we have

8» A» 82
(n, ) = -1- H, (n, &

C» A2

A» 8g) —1 — (n, &,„
C» Ag

A» A2

Cz

According to Eq. (48) one can see that mode 2
could not oscillate if

A2 1

C2 1+ H)(0)(n) )
A»

1.e.,

A2 8»
H, (0)(n, )=1+ (n, ) . (51)

A»

Kith (51) and {50),we obtain

&2 —l.

82
(n, )=

A2

——1 (H» —1)
A

C

H»H2 —1
(56)

Both H» and H2 could not be negative, otherwise
H» (or H2) would have the opposite sign with
(ni ) (or (n2)). Therefore, both modes exist
simultaneously,

8» 82 H»+Hp —2

A
'" "A '"'= HH 1

C-'
» 2 » 2

A

C
(57)

~en A» ——C» and A2 ——C2 the above equation can
be deduced strictly.

It can be seen from Eqs. (53) and (54) that H~
must be positive, or (n I ) and H~ would have the
opposite sign. However, H2 is not prevented from
being negative. Therefore, mode 1 definitely exists.
If the two modes are asked to appear simultane-
ously, the following inequalities are required:

4. The ches A» /C» +A 2/C2 p 1» A» /C» =+A 2/Cp»
and 2&X g 1

8»

A»

A2 A»
H2 — +1—H2

C2 C»

H, H, -}
A» A2

H) — +1 H)—
&z

ng
Aq H)H2 —1

Some characteristics for the two-mode operation
can be drawn from these two formal solutions.

3. The ease A»/C» ——A~/Cg=A/C& 1

In this case Eqs. (53) and (54) now read

Thus, when (52) is valid, we have a one-mode
operation. If (A ~ /C, )/(A2/Cz) )2, no matter
how strong the pumping is, only mode 1 can oscil-
late. Equations (43) and (44) can be solved formally
to obtain

H» y }/g .
Doubtlessly the inequality H» & }/7 is valid.
However, the inequality H2 y7, according to Eq.
(42), indicates that the "center of gravity" of the
curve of the photon-statistical distribution [or first
moment g„np(n) J is shifted from the peak posi-
tion by a larger value, in this case, than in that of
a single mode. This, in turn, according to Eq.
(812) demands that (n ~ ) should be considerably
larger. Thus Eqs. (53) and (54) can be written as

A2
(H2 —X)—(H2 —1)

1

( )
2

H»H2 —1

A2
(H»g —1)—(H» —1)

82 C2

A2 H»H2 —1

8»
(n& &=

A»

——1 (H2 —1)
A

C

H»Hp —1

5. The change of the photon statistical-
distribstion

%hen both modes exist the photon-statistical
distribution of mode 1 is determined by Eq. (40).
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Though the strict results have not been found,
some characteristics of it can be understood by
comparing it with the photon statistics of a single-
mode operation with its peak at the same position.

In single-mode operation, the photon statistics
are determined by

Letting B~ /3 ~
——8, /A„ from the condition

(n~ &=(n2& one obtains

As Aj B2
H, (n, ) .

C, C) A2
(62)

p, (n)
p, (n+1)=

1+ (n +1)
S

Consider the ratio k, which is proportional to the
ratio of the slopes of the two curves (It is the ratio
of the two increments of the two curves. It will

not influence the correctness of our results):

—1

1+ n
Sk=

1

1+ in+ H2(ni)(n2)
A) A2

Bl B2
n, + H, (n, )(n, )

A2

B)
1+ n)

B) B2
1+ n~+ H2(n2)

A] A2

8]1+ n]

B, B,
n, —H(n, &

C) A) A2

Ai 8] B2—1 — n i
— H2(n t )(nq )

C) A] A2

(63)

in which the approximation, H2(n] ) =H2 has been used. This approximation introduces little error, since
the change of H2(n& ) with n] is very small, especially in the vicinity of the peak value.

Equation (63) tells us that the absolute value of the slope of the photon-statistical distribution under the
existence of the other mode is smoother than that of single-mode operation having the same peak value.
This means that the photon-statistics-distribution curve is stiff for single-mode operation, but smooth for
the two-mode coexistence operation, as shown in Fig. 4. It can also be seen from Eq. (812) that the shift of
the center of gravity of the curve from its peak position is also larger for the two-mode operation. The
stronger the other mode is, the more pronounced these two phenomena will be.

B. The case of same pumping to the two loser levels Rb ——8,=R '

Under this condition, the second term on the left-hand side of Eq. (37) [or Eq. (36)] is approximately
equal to the third term on the right-hand side of it. The two two-photon processes between the two Inodes
originating from pumping to the two lower levels canceled each other out. Therefore, Eqs. (37) and (36) be-

Z,p(n, )

8) 8)
1+ (n, +1)+ H2(n, )(n2)

2

8) B21+ H&(n2)(n ~ ) + (n2+1)
A] A2

A )p(n)+1)
=C)p(n )+1)+

B) B21+ (n
& + 1)+ H2(n, ) (n2 )

1 2

A 2'p (n2+1)
=C~(n2+1)+

1+ H, (n2)(n, )+ (n2+1)
A2
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By letting p (n) =p (n —I) the peak position can be found to be

A) —A) =C),
Bi 821+ (ni )+ Hp(np)

A2

A2 —A2'

8) 82
H, (n, )+„(n,)

A) 2

{67)

(68)=C)p(n)+1) .

This is equivalent to changing the pumping rates to the upper level from R, to R, —R, and to the lower
levels from R to 0. Therefore, their peak positions and basic characteristics are similar. However, the pho-
ton statistics of the pumping rates differ from each other somewhat.

We put p (n
&
+ 1)=K'p (n

~ ), where X' is a parameter very near to 1. In fact, it is larger than 1 before the
peak value, and smaller than 1 behind the peak value. Equation (64) now reads as

p(n~)
(Ai —K'A i )

1 21+ (n~+ I}+ Ht(n~)(n2)
1 2

If K'—:1, we would have the case of no pumping to lower level and a pumping rate, R, —R', to upper level.
Now it has been stated that K' & 1 before the peak value, this shows that the rise of the curve becomes com-
paratively slow for two mode operation, while E' g 1 behind the peak value, thus the decrease of the curve
also slows down, as shown in Fig. 5. Therefore the curve becomes a little flattened. This is consistent with
single-mode situation.

C. Different pumping rates to the two lower levels Rb & R,

Equations (36) aud (37) now become

8) 82
A)p(n))= Ctp( n)+. I) 1+ (n)+1)+ H2(n, }(n2) +A)p(n)+1)

A2

Bi„H;(n, )(n, )
—432'p {n~ )

1+— (n &+ I)+— H2(n& )(n2 )
1 2

+—,A )p(n)+1)

Bp
H;(n, ){n,)

A2

1 Bi 1 Bz1+— (n, +1)+— H2(n, )(n2)
1 2

8) 82
A2p(n2)= C2p(nz+ I) 1+ H, (n2)(n, )+ (nz+1) +A&'p(n2+1)

A) A2

8)
Hi (n2)(ni )

+ —,A2'p(n, +1)
18~1+— H, (nq)(n~ )+— (n2+1)

1 432
82

H', (n2)(n, )
A2—4A jp(n2)

1821+— H~(n2)(n~ )+— (nq+1)
1 432

(70)
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Here Eq. (42) has been used. H&(n2) and H2(ni) are parameters, too.
The peak position can be found to be

B2 Bp H2 (n2)(1 R—, /Rb)
A) ——C) 1+ (n))+ H2(n2) +A(+ —,A)

1 2 ~2 1 Bi 1 B21+— (n) &+— H, (n 2)
2

Bi Bp, Bg H't (n( )( I R, /—Rs }
A2 C2 I+ Hl (nl ~+ (n2) +A2 gA1

A2 Ap 1 8) 1BzI+— H, (n, ) +— (n, &4Ai 2

The last term on the right-hand side of Eq. (71)
[and of Eq. (72)] originates from the two-photon
processes between the two modes. One of them is
negative, the other positive. (If Rb ——R„ they are
all equal to zero. ) The imbalance between the two
two-photon processes gives rise to an additional
gain to one mode while an additional loss to the
other. If Rb p R„ the curve of the output power
of mode 1 versus pumping will bend down, owing
to the decrease of the net gain, and the second will

rise up. But the bending down of the first mode
weakens the effect of the last term in (72). There-
fore, the bending of the second curve is small.
How far the bending will be, is related to the last
terms in (71) and (72), i.e., related to A '& /C. If this
number is small, the contribution of the two-
photon process can be neglected. %'hen it reaches
some value, their contribution can be remarkable.
These conclusions are consistent with the experi-
mental results of Ref. 4.

In Ref. 4 the lower level populations originating
from thermal distribution can be regarded as a re-
sult of two processes: a pumping to it, plus a de-

cay from it. %hen there is no lasing operation the
number pumped to it is equal to the number de-

cayed from it. If the decay constants are the same

for all lower levels, and the populations of the
lower levels obey Boltzmann's distribution, the on-
gin of the populations of the lower levels can be at-
tributed to different pumping rates with the lower
level having a larger one. In Ref. 4, R i g R2 ~ R3.
According to the earlier discussions, curve 1, hav-

ing a larger pumping rate to its lower level, may
appear as bending down.

Figure 6 shows the experimental results of Ref.
4 (Fig. 10 of Ref. 4). The order has been rear-
ranged. The lengths of the crystals are same for
each rank, which means they possess the same A i,
and the transmittances are same for each column,
i.e., each set has the same C. The experiments are
performed under the experimental conditions such
that

A) )A2 &A3 (gi pg2), A'i pA2 yA3 .

(They originate from thermal distributions. The
larger the crystal is, the larger A' will be. Howev-

er, the ratio A /AJ-' has no relation to the length of
the crystal. ) Also, C] ——C2 ——C. (They are deter-
mined by the transmittance. ) The ratio A

&
/C in-

creases from the top to the bottom and from right
to left. Along the diagonal [Figs. 6(b), 6(c},and
6(d)] the ratio A '~ /C is the same for these three

FJG. 4. The comparison of photon statistical distri-
bution. Solid line: in the single-mode operation, dotted
line: in the two-mode operation.

FIG. 5. The comparison of photon-statistical distri-
bution. Solid line: with no pumping to the lower level,
dotted line: with pumping to the lower level.
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FIG. 6. LNP 1aser output powers as a function of pump power.

cases. They are of the same type and demonstrate
similar pfopcrtics: mode 1 oscillates flrs't, then as
the pumping increases, the curve of mode 1 shows
a remarkable bending down. In Fig. 6(a), A ] /C is
comparatively small and the bending down does
not appear. In Figs. 6(e), 6(fl, and 6(g), A'i /C is so
large that modes 2 and 3 oscillate first and mode 1

ls sllppfcsscd. [Colllpafc Fig. 6(a) wltll Fig. 6(c).]
It would be beneficial to estimate the possibility

that mode 1 oscillates first and then is suppressed
as the pumping increases. In order to investigate
the effect of the two-photon processes, we express
the last term of Eq. (71) [or Eq. (72)] by an abbre-
viation T, (nz) [or Tz(n, )]. Evidently T is depen-
dent on (n); T(0)=0 and T( )=TooO, where To is
a definite number. Equations (71) and (72) may

Al Al —Al' +TiA i Bi Bl=1+ Hi ni + nzC C Ai Al

They can be treated equivalently as the cases of no
pumping to the lower levels and modified pumping
rates A

&
and A2 to the upper levels. Equations {52)

can be used to estimate the operation properties of
the laser. Mode 1 will not oscillate when the con-
dition of Eq. (52) is satisfied, i.e., when
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A2 —A2 2(A] —A ]
—T]A ] ) —1

C — C
(7S)

where the assumption T2 ——0 has been used. It is

legal to set T2 ——0, since we are now considering
the case where mode 1 is suppressed. Considering
the experimental situation in Ref. 4, it is adequate
to put

A] ——3C, A2 = sC, A] ——2A2. (76)

IV. CONCLUSION

Having obtained the master equation, an essen-
tial step is to construct a correct probability flow

As the pumping increases from zero, mode 1 oscil-
lates first, then when the pumping rates reach
A ] =9C and A 2 =4.5C, Eq. (75) is satisfied once

17
T] ) 66

= 1.28. In fact, T] can reach 2 with the
numerical values of the parameters given by Eq.
(76). Thus we see that there indeed exists the case
in which mode 1 oscillate first and then is
suppressed.

diagram to assist the analysis of the roles of dif-
ferent terms in the master equation. This is done
in this paper. Each photon state (n &, n2) is related
to its six neighboring states. The links between it
and its neighboring states are the probability flows,
of which each is connected with one kind of a real
physical process. It is worthwhile to mention that
there are two current flows that correspond to the
two-photon process between two neighboring state
having the same total number of photons. These
two-photon processes cause one mode to decrease
by one photon while the other increases by one. It
is mentioned that these two-photon processes are
responsible for the phenomena where in some cases
a mode originally excited is eventually suppressed
as pumping increases by the other mode that is ex-
cited sometime later.

All the above statements are discussed in a qual-
itative manner, since it seems momentarily difficult
to solve the equation directly. However, it is be-
lieved that, having made some improvements to
the present paper, a more detailed account should
be possible.

APPENDIX A: MOTION EQUATION OF A THREE-LEVEL ATOM WITHOUT
DECAY UNDER THE ACTION OF TWO RESONANT FIELDS

According to Eq. (2) in the text, the perturbation energy in the interaction picture becomes
—l {0]—cr)~ )E —I' {02—co2)t

V =g]e a]A,Ab+g2e a2A, A, +H.c. , (A1)

where co] ——co, —cub and co2 ——~, —co, . On resonance, co] ——0] and co2 ——02. The state vector obeys the equa-
tion of motion

dt
(A2)

Now we discuss its solution under different initial conditions.
(I) The atom initially in state la). For an atom initially in the state la), we have the initial condition

Let

I
g(o)) = Ia) lni n2) .

I g(t)) =a„„(t&
I
a)

I
n„n2)+b„+& „(t)

I
b) In&+l, n2)+c„, „,+&(t) I

c) Inl, n2+1) .

(A3)

(A4)

Substituting Eqs. (A1) and (A4) into Eq. (A2) and by virtue of (A3), we obtain

a.. .(') =cosl [ I gi I
'(ni+1)+

I g2 I

'(n2+I)]'"t I

—ig;Qn, +1
2 2 1/2bn +],n (t)

2 „,»n[[ lgi I
(ni+I)+ Ig21 (n2+1)]

[ I g 1 I
'(n 1+I)+

I g2 I

'(n2+1&I'"

(A5)

(A6)

igzV n2+1—
2 2 1/2

Cn~ n2+, (t) = )g2»n[[ lgi I «i+I)+ Ig2 I
(n, +1)] t] .

[ I g| I
'(n i+1&+

I g21 (n2+1)l'" (A7)
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(2) The atom initially in state
I
b ). Similarly we get

»2»njl jgl I'nl+ Ig21'(n2+1)]'"t],
( I g l I'n l+ I

g21'(n2+1) l'"

( Igl I

'nl «sjljgi I'nl+
I
g21'«2+1)]'"t j+ Ig21'«2+1)),

I gl I

'n l+ I g21'«2+1)

(A8)

l, n, (t)= 2 2 («»j[ lgl I nl+ Ig21 (n2+1)] t] —I) .
glg2/nl(n2+1) 2 2 1/2

I g l I'n l+
I
g21'«2+»

(3) The atom initially in
I
c). Likewise, we find

i 2
—n2

2
I I

2( 1) 2 l/2 f~ I gl I l + + I g2 I 2]gl I
(nl + 1)+

I g2 n2

(A10)

(A11)

g ig2V'n2(n l + 1)
{«sjI: I gl I

(nl+1)+
I g21 n2]2 2 1/2

I gl I
'(nl+1)+

I g21 n2
(A12)

(
I
g21'n2 «sj & I g l I'(n l+1)+

I
g21'n2 ]'"t

) +
I g i I'(n i+1))

I g l I'(n l+1)+
I g21 n2

(A13)

APPENDIX B: PROOF OF THE
INEQUALITY H ) 1

From Eqs. (B3) and (B4), we obtain

For the single-mode laser in the two-level atomic
system, we have2'7

1

1+—H(n )
8
A

1 —p(0)

1+—(n )
8
A

(B5)

Let

p(n) C
8 A

=—p(n+1) .
1+—(n +1)

A

(B1) Since p(0) )0, it can be concluded the H ) 1 in the
case of the single mode. In addition, the average
photon number is

p(n) 1

"=' l~ (n ~1—) 1+ H(n)—8 8
A A

(B2) n = g np(n)=(n)+ —p(0),A

8 (B6)

Applying Eqs. (B1) in (B2), we find

1 C=—Ii —p(o)l .
1+ H(n )—8 A

A

(B3)

The peak position of the photon-statistical distribu-
tion is determined by the condition p(n) =p(n —1)
so that

—=1+ (n) . —A 8
(B4)

C A

(n (n ) )=—p(0)—.
8
A

(B7)

Thus it can be seen that the center of gravity of
the curve of the photon-statistical distribution (the
first moment) shifts from the peak position to-
wards the positive direction of the coordinate axis.

For two-mode lasers in the three-level atomic
system, we have

in which a bar is used to denote average quantities,

A) 8] 82p(nl)= 1+ (n, +1)~ H2(n, )(n2) p(n, +1),
C] A] A2

(BS)
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00 A ] 00 00 Bp
p(n])= g (n]+1)p(n]+1)+ g 1+ H2(n])(n2) p(n]+1),

p C] p A] A2
(B9)

A] B] B2
n]+ 1+ H2(n2) [I—p(n] ——0)],

C] A] A2
(B10)

where the approximation H2(n] ) =Hz is made. As
already stated, the change of H2(n] ) with n] is
very small. Equation (43) in the text can be
rewritten as

B] A] B2(n])= —1 — H, (np) .
A] C] A2

(B11)

From Eqs. (BIO) and (Bl 1) we obtain
r

B] B2
(n, —(n]))= 1+ H2(n2) p(n, =0) .

A] A2

(B12)

Comparing Eq. (B12) with Eq. (B7), it can be
shown that the center of gravity of the curve of
the photon-statistical distribution shifts even more
from the peak position towards the positive direc-
tion of the coordinate axis. By inspection of Eq.
(42) we can conclude that H ) 1 is also valid in
two-mode lasers when both modes are above
threshold. Furthermore, it can be shown from Eq.
(B12) that even if the peak position of mode 1 is
small, the average photon number of mode 1 can
still take a considerable value as long as mode 2 is
strong enough.
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