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%'e consider the sideband instabilities that can occur in free-electron lasers which

operate in the regime where the bulk of the energetic electron beam is trapped in the pon-

deromotive potential generated by the beating of the electromagnetic pulse with the static

wiggler field. The general dynamical equations which govern the evolution of the system

in the presence of sideband modes are derived for modes propagating along the axis of
symmetry. All space-charge effects are included in a self-consistent manner, and the

gains for both the primary signal and the upper and lower sidebands are computed. We

find the lower sideband to be excited, and discuss the consequences for operation of both
free-electron-laser amplifiers and oscillators. The effect of the space-charge waves on the

gain depends upon the number of bounces undergone by the trapped electrons in the

length of the system, and can act either to enhance or reduce the gain of the sideband.

I. INTRODUCTION

Several recently proposed free-electron-laser con-
cepts' involve sufficiently large amplitude signal
strengths that electron trapping in the ponderomo-
tive wave, which results from the beating of the
electromagnetic pulse and the static helical mag-
netic pump field, can have a significant effect on
the operation of the device. Trapped electrons will

execute periodic oscillations in the pondermotive
potential which can give rise to excitation of side-
bands of the primary electromagnetic spectrum at
harmonics of the electron bounce frequency. The
trapped electron bounce frequency is anharmonic,
and depends upon the amplitude of both the static
magnetic field and the radiation spectrum. There-
fore, system response may be quite sensitive to the
radiation amplitude.

Our purpose in this work is to examine the gain
of the sideband modes which result from the
trapped electron motion under a variety of operat-
ing conditions, and subject to the inclusion of a
fluctuating space-charge field. In this sense our
work represents an extension over a previous
analys1s of sideband 1nstab111t1es by Kroll and

Rosenbluth, in which the space-charge effect was

ignored. %e find, typically, that the space-charge
effect can be important when the beam density is

sufficiently high that the invariant plasma frequen-

cy is comparable to the bounce frequency of the

energetic electrons in the ponderomotive potential.
The organization of this paper is as follows. In

Sec. II, we derive the general dynamical equations

which govern the evolution of the primary and

sideband signals in a system in which an energetic

electron beam is propagating along the axis of a
static helical magnetic field. The electron beam is

assumed to be cold, and electrostatic (i.e., space-

charge) effects are included in a self-consistent

manner. The equation governing the electron tra-

jectories is derived in Sec. III, and solved for the

case in which both space-charge contributions and

a tapered wiggler (i.e., helical pump) field are in-

cluded. Anharmonic effects on the bounce motion

of electrons in the ponderomotive potential are in-

cluded to lowest order. The gain for both the pri-

mary and sideband signals are computed in Sec.
IV. A summary and discussion is provided in Sec.
V, and the consequences for the operation of both
free-electron-laser amplifiers and oscillators are
d1scussed.

II. GENERAL EQUATIONS

The physical configuration we study consists of a relativistic electron beam interacting with a static, heli-

cal magnetic field which can be represented by the vector potential
2 Z

A (z) = —A (z) e„cos dz'k +e„sin dz'k (1
o ~ & o
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as well as scattered electromagnetic and electrostatic fields of the form
z z

A(z, t) =A (z) e„cos dz'k —cot —e„sin dz'k —ut

g g
A, (z, t) =A, (z) e„cos dz'k, c—o, t +8 —e„sin dz'k, co, t—+8

(2)

4( zt)=4(z) cos f dz'tc cot+—ct

4,(z, t) =4,(z) cos f dz'tc, co,t+a—,

where the amplitudes of the scalar and vector po-
tentials 4(z), 4,(z), A (z), A (z), and A, (z) and the
wave vectors of these potentials k„(z), k (z), k, (z),
~(z), and ~,(z) are assumed to be slowly varying
functions of z. The frequencies ~ and ~, as weH

as the relative phases 8, a, and a, of the wave
fields are taken to be independent of z. It should
be noted that our assumption that the spatial varia-
tion of the fields depends solely on z is valid,
strictly speaking, only near the axis of a realizable
free-electron laser. In the interests of computation-
al simplicity, we choose to write the electrostatic
fields in the alternate form

4(z, t) = 4&(z) cosP(z, t)

+4&(z) sing(z, t),
4,(z, t) = 4, ~(z) cosf, (z, t)

+4,q(z) sing, (z,t),

f(z, t) = f dz'(k +k) —cot—

and

P, (z, t)= f, dz—'(k +k, ) co, t+—8.
In this form, A and 4 represent the primary ra-

diation spectrum which may result either from
coherent Raman scattering of low-frequency noise
on the electron beam or from a coherent external
source of radiation. For a sufficiently large ampli-
tude primary spectrum, electron trapping in the
ponderomotive wave produced by the beating of
the static pump and primary radiation fields can
give rise to the excitation of sidebands of the pri-
mary spectrum at harmonics of the electron
bounce frequency. As a result, in the subsequent
analysis we shall assume that

~
c0, —c0

~
&& co and

adopt the ordering ~A,
~

&& ~A
~

&& ~A

The fields satisfy Maxwell's equations

(8,' —e'8,')A =~~ J,
and

Bg8,@T——4n Jg,
where AT and 4~ represent the total vector and
scalar potentials of the wave fields, and J(z, t)
denotes the driving current. After substituting the
potentials from Eqs. (2) and (4) and averaging over
the long-time scale T =2m/Ro, where
Sco:—

~
co —co, (, we obtain

T/2 g g
(co~ —c~k~)A = 2c5c0 f d—t J„cos f dz'k cot —J sin — dz'k cot——T/2 0 ~ Q

2 —2 2 T/2 ' g, '
g

(co, —c k, )A, = 2cSco —dt J„cos dz'k, co,t+8 —J» sin —f dz'k, co,t +8—
I

2%02k' B,»(k'~'A)= f dt J, sin f dz'k cot +J»cos f dz'k ——cot
C

/2 ~/2 25cu8,(k, A, )= dt J„sin dz'k, co t+8 +J c—os f dz'k —c0 t+8
(6)



25 EFFECT OF FLUCTUATING SPACE-CHARGE FIELDS ON. . . 3123

(k +k, )
$2

Cosgg
dt J,—7 /2 sin (8)

f(z, p, t) =nbv, p f dtp W(tp)5[z g(tp,—t)]5[p rt(tp—, t)],
where W(t0) is a weighting function which describes the distribution of initial phases, nb and v, 0 are the ini-
tial beam density and axial velocity, g(tp, t) and rt(tp, t) are the axial position and momentum of a particle at
time t which entered the interaction region (i.e., z )0) at time t0. The driving current associated with such
a distribution is

00 5[t —r(tp, z)]
J(z, t)= —ensu, p f dtpW(tp)f(tp z)

00 gz(t0, Z)
z

where ~(t0,z) =t0+ dz'/U, (t0,z') is the time required for a particle which entered the interaction region
0

at time t0 to travel an axial distance z, and v, (t0,z) is the axial velocity of a particle at position z which en-

tered the interaction region at time t0.
If the beam electrons initially have negligible transverse momentum, then we may approximate

(10)

z
g„=—(eA /c) cos dz'k (z')

0

In the above, it has been assumed that the frequency shift between the primary and sideband fields satisfies
the conditions 2~/5' =2m.N/co =2m.(N +m)/co„where N and m are integers (N && 1 and N && m), and
that the gradients of the scalar potentials may be ignored.

The nonlinear driving current is derived under the assumption that the initial velocities of all the electrons
are identical, and that only the initial phases vary. Therefore, the electron distribution can be written in the
form

z

Qy
—(ed~ /c) sin dz'k~ (z' )

0

and the nonlinear current

5[t —6 tp, z)] w

J(z, t)=enbv, p
—A (z) I dtpW(tp) —e, dtpW(tp)5[t —r(tp, z)]

b z0 ur 0 0
( )

z

L

Substitution of (11) into Maxwell s equations (5)—(8) yields the following set of equations:

tubu pA nN cosf(gp, z) W(pp)
(cp —c k )A = — dip

2nN —~& y(gp, z)u, (gp z)

Cvsu pA ~N cosg (gp z) W(pp)

2ttN —~& y(l(p, z)v, (l(p, z)

(12)

and

2k'~ B,(k'~ A)= dl(, &2
tvqu, pA w sing(gp, z) W(gp)

2n.Nc —~~ y(l(p, z)u, (gp, z)

2k, B(k, A) = dip
tvbu pA N sing, (gp, z) W(gp)

2mNc —& y(l(p, z)v, (l(p, z)

4ensv P eN cosg(((tp z)
( k~ +k ) q,

' ——— d leap W ( Pp )

(13)
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T

( -+k)
$2

L

4eiisugo ace cosQ (Qo z)
—mN sing, (go,z)

where go= coro —is the initial phase, cos =4ne.nb/m,2 2

itl(po, z)=$0+ f dz' k +k—

and

4.(t('0») = 4(40»)+ f dz'k +co, f dz' ——+8.

The problem, therefore, reduces to solution of the axial orbit equation for u(P&&, z) or, alternately, for

f(fo z)
It will be evident in Sec. III that the equation describing the evolution of g is invariant under the

transformation /~/+2';8~8 +2'(co co, )lc—o. As a consequence, we have the symmetry

g($0+2m, 8+2~(co co, )h—o,z) =g(P(), 8,z)+ 2m, .

which is also possessed by tp, If it is. also required that W(l(&&+2m ) = W(t(0), then the integrals in Eqs.
(12}—(IS) are of the general form f dfoF($0, 8,z), where F($0,8,z) satisfies (lg}. The decomposition of
these source integrals into a sum of X integrals over intervals of 2m. is possible, and we find that for large X

f dg~(y„8,z)= ', f;"d8 f dy~(q„8, z) .

Thus, for sufficiently large X (i.e., for sufficiently
small 5co/u) Eqs. (12)—(15) can be written as

(co —c k )a = cobu, oa—(cosflyu, ),

(co, ck, )a,—= coi, u, oa —( cosg, lyu, ),

2k'c B,(k'c a)=cob a~( sing/yu, ),

2k' c)g(kg ag )=cob a~ ( slung /yu~ )2

2SUso
( cosP),

a)c (k +k)

2s Uso
q, =—, ( sing),

uc (k +k)

2bozo
( cosl(, ),

~,c (k +k, )

Uso

z ( sing, ),
m, c (k~+k, )

where the averaging operation is defined by

. )—=(2ir) f d8 f dg W(l( )

and we have defined the a's and y's as the normal-

ized amplitudes a —=eA/mc' and q =eC /mc'.

III. AXIAL ELECTRON TRAJECTORIES

Since the vector and scalar potentials are independent of the transverse coordinates, these coordinates are
cyclic and the corresponding canonical momenta are constants of the motion. In view of this, the axial
momentum equation takes the form

—p, = mc —g(q, s—in/ —q2 cosg) + g, (q&„sing, —
q&, 2 cosf,)—

Bz 3z

—p — [(k„+k)a asinP+(k +k, )a a, sing, ],2f dz
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where p =1+a~, and terms of second order in the wave fields and in the gradient of the amplitudes of the
wave fields have been neglected. The variation in total electron energy is given by

6f 8—r= —o, —
W(q 1 »ng —gl cosf)+ p, ((},l »nf, —p, l coal(, ) — (co—a a sinl(+co, a a, sing, ) .

z

Combination of (23) and (24} yields

C P
dt

Ug =—— [(k +k~ }(+1sing —gl cosg}+(kg +k~ )(gg l slnfg —pgl cosg)}g )]

c d & c olUg . oggUg2 2—p —— k~+k —
1 Q~Q slnl(t+ k~+ kg —

1 Q~ug slung
dz c C

where terms in the product of (co —co, )/co and either f» or l(, & have been ignored.
Substitution of the axial position for the time as the independent variable and the phase for the axial velo-

city can be made by noting that d/dt =U, d/dz and dl(/dz =k~+k —e/Ug. Therefore, Eq. (25) can be cast
into the form

(k +k}c d 1 p c'(kN+k)l co,

N

2 2
2cosp Ugo CO

sing( cost() —coal(|( sing) + ( sing, ( cos|(t, ) —cosltt, ( sint(, ))
r "r Ng

where e—=a, /a, v„—=~/(k~+k) is the velocity of the ponderomotive wave so that y„=—p(1 —U, /c )
'~ is

the relativistic factor corresponding to the ponderomotive frame. In the derivation of (26) terms of order
(k +k) 'dfldz have been ignored. Equation (26) reduces to that found by Kroll and Rosenbluth in the
limit in which space-charge effects can be ignored, i.e., u~ ~~2y, ~ ak c /y„, where y,o=(1—u, o/c )

%e include the space-charge effect for a diffuse be;tm limit in which we may approximate ~=ck and

m, =ek, . Therefore, under the assumptions that k g~ k, k, and dk/kz=o we find

d' K'
1 f= — sing —sing„+ e sing,

dz cos „ Q7

+5El sing(cosp) —cosl((sinl(g)+ sinpg(cospg) — cost(|, (sinl(g)

where K =4k a~a cosf„/p measures the strength of the ponderomotive potential, 5K —=2p, cob/yoc1 mea-
sures the electrostatic potential, f,=(co, /co)p+rMz +8, kk:—k (ol —co, )/co, and

—1 ~u cf p,Slut(„—= Q~ —
1 k~

describes the effects of the gradients in the wiggler amplitude and period (hence, the acceleration or de-
celeration of the ponderomotive frame). Solution to (27) is found by expansion of P about the resonant
phase, and we assume g=f, +5/, where

~
5$

~
&&gr As a conseque. nce,

Clf 1 eE
sin

' P„+bkz+8 +5K (5tP —(5$)) .
6 cosg,

Observe that upon linearization of (27) 2m/EC is the bounce period in the ponderomotive potential, and
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(30)

2m/MC is the oscillation period (i.e., the invariant plasma period) in the space-charge wave.

If we write 5/=5/+'+5/" ', where 5$' ' and 5P'" denote the contribution to the phase to zeroth and

first order in the effects due to the sideband modes and the space-charge fluctuations, then it follows that

5$' '=—tang, +a cosK, z — tang, cos2K, z

for small deviations from g„. In Eq. {30)

E
K, =K — (1+ , ta—n P„)

16

is the anharmonic bounce period in the ponderomotive wells, and u is a constant fixed by the initial condi-

tion 1(' '(z =0)=1(0 which implies that $0 g, =a—+a tang„/6 for o.'« 1. The first-order correction is

given by

K
2 cosl(t„~+

1+ (1+—,tan P, )
uE 5

16ddC+

1+ (1+—,tan~/, ) [cos(~+z+P, ) —cosg, ]sinKz
SLK~

+[sin(bK+z+P, ) —sing, ]cosKz+ (1+—,tan P„}Kzsing„sinKz
c E 5

SddC+I+ (a —(a) )Kz sinKz,
2E

where P„=a&,P„A~+8, ~+ =—6k+K, and 5$'"{z=0}=8,5$"'(z =0)=0. It is important to recognize that

this solution requires a g ~+/K, which implies that all electrons are deeply trapped and have phases close

to r.

IY. SMALL-SIGNAL GAIN

The gain per pass of the primary and sideband waves in a system of length I. follows from (20):

2

g= I dz(sin1()
2QPCQO Q

(33)

g,= " I dz(sinl(, ),
26)gC fo Q

where the radiation wave vectors, electron energy, and wave amplitudes have been assumed to be slowly

varying functions of z. These expressions may be readily evaluated using the solutions for the phase

described in (30) and (32).
In the case of the gain per pass of the primary wave, we have to lowest nontrivial order

(slug)=siniI'j, (I ——,
' (5&'0'2) —(P"'5$' ') ) .

Because of the average over the relative phase between the primary and sideband signals, this implies that
only those components of 1('" due to the space-charge potential can contribute to g to this order. Specifical-
ly, the coupling between the primary and sideband waves cannot affect the gain of the primary wave to first
order in e. In addition, the space-charge effect is manifested by means of a beating between the bounce
motion of electrons in the ponderomotive potential and the space-charge wave itself. In evaluating these
averages, we shall assume a distribution of initial phases of the form
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W( Pp) = H—( Pp P—,+b )H(tP, +& Q—p),

in the range —~ & 1(p & n, where b, ~~ 1 measures the spread in phases, and H is the Heaviside function.
This distribution describes a tight, uniform bunching of electrons about the resonant phase and is depicted
schematically in Fig. 1. As a consequence, g can be written in the form

b L ~ur . 5 s1nEL 2 sin2EL 5E sin2EL
2

g— st ~ ' 1 +
12 +L + 3+L + t cos2ICL

which vanishes when sinl(t„=o (i.e., for untapered wigglers). Evidently, the space-charge contribution to the

gain vanishes in the limit in which 5~0. This conclusion is quite general and not dependent on the partic-
ular choice of W(gp). It can be shown from (32) that the contribution to the gain from the space-charge
potential must vanish whenever the spread in 1(p vanishes. Finally, we observe that the space-charge tends

to reduce the gain whenever sin2EL p 2EL cos2EL. This inequality holds for EL g m/4 (when the bounce

length of electrons in the ponderornotive well is longer than the system) but not in general and, for proper
choices of the parameters, the space-charge effect could be Inade to enhance the gain.

In computing the gain of the sideband signal, we note that (sing, )=(u, /cp)(P'"cost(, ' ') and the space-

charge effect does not contribute. Gain, therefore, arises because the presence of the sideband induces an os-
cillation in the electron bounce motion. %e find that

slnx +a)b EL aw Eg2 s EL g2 s d'

16'),yacc cosjr, a 48LUC+ ' ' 96 dX+ X+

where x+ =bX+L/2, and it is the lower sideband which is excited (i.e., ~=E).
The preceding applies to operation of a free-electron-laser amplifier. However, when operation is in the

oscillator mode it is the relative gain 6( =—g, /g) which is the significant quantity in determining whether the
sideband signal will grow from noise. The close frequencies of these modes ensure nearly equal loss rates;
hence, the relative gain must be near unity in the steady state and greater than unity if the sideband is ex-

pected to grow from noise. Comparison of Eqs. (36) and (37) shows that since K y
~
~+

~

the space-charge
contribution to the relative gain will be important only when 5E pE, and in this case

6=+ . 1+ (1+—,tan 1(„)+ cos2I(.'L—A@EL 6 E s 2 5E sin2EL
2EL

I.

s1nx +

X+

and the effect of the space-charge field is to enhance the relative gain of the lower sideband when EL g m/4.
Note that the only constraint on the magnitude of 5E imposed by the analysis is that 5 5E &E .

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the question
of free-electron-laser operation in the trapped par-
ticle regime from the standpoint of the excitation
of sidebands shifted from the primary spectrum by
the bounce frequency of the electrons trapped in
the ponderornotive potential. The analysis
described the interaction of a bunched cold elec-
tron beam with the static wiggler, the radiation
fields of the primary and sideband modes, and
with Auctuating space-charge fields. Gradients in
the wiggler field have been included as well. Fur-
ther, in order to make the problem analytically

I

tractable, we have included the anharmonic contri-
butions to the trapped electron trajectories only to
lowest order. This necessitates the assumption of
tightly bunched electrons about the resonant phase.

It was found in the computation of the gain per
pass that the coupling of the electron orbits to the
fields of the sideband Inodes had no effect on the
gain of the primary spectrum to lowest order in a, .
It should be remarked here that the space-charge
components of the sideband ~aves were found to
be unimportant to the gain of either radiation
mode for the parameter regimes under considera-
tion. However, the space-charge fluctuations
which couple to the primary radiation spectrum
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d~idZ

(g'.s&) t:".p
4'i'

FIG. 1. Schematic representation of phase-space dis-
tribution about the resonant phase, showing the separa-
trix for a tapered wiggler.

are found to provide a contribution of order
6 5K /K, where 5 measures the trapped electron
spread about the resonant phase. Since 6 & 1 in
the present analysis, we conclude that the space-
charge contribution to the gain of the primary
wave can be important only if 5K )K . It is in-

structive, therefore, to consider specific examples
of experiments (either in current operation or pro-
posed) to determine whether space-charge effects
will be important in the trapped particle regime.

The first example is the experiment being con-
ducted at Los Alamos National Laboratory which
is intended to operate in the infrared (at 10.6 pm).
In this case a constant amplitude linear wiggler of
about 2.4 kG is allowed to vary in period from 2.7
to 2.4 cm over a length of 1 m. As a consequence,
the resonant phase is such that cosg„-0.94. The
experiment employs an electron beam of 20-MeV
energy (hy/y-0. 01) with a radius of 0.5 mm, and
the maximum anticipated current is 25 A. Finally,
the input signal intended to bunch the electron
beam is to provide between 0.5 and 1 GW at 10.6
pm into an optical system with a 56-cm Rayleigh
length. It is readily apparent, therefore, that for
an equivalent system using a helical wiggler
5K /K (0.009 and the space-charge effect is like-

ly to be negligible. Indeed, this appears to be the
case for all present or future free-electron-laser ex-
periments which are to operate in the infrared due
to the high-energy, low-current electron beams em-

ployed in such experiments.
In contrast, however, the space-charge effects

may be important in free-electron lasers intended
to operate in the millimeter or submillimeter range
of wavelengths. Such devices operate at much

lower energies and are thus able to achieve higher
beam currents. One example of such an experi-
ment is to be conducted using a Van de Graaff-
accelerator capable of producing a 2-A beam of
3-MeV electrons (with effective Ay/y-0. 005) with
a radius of approximately 2 mm. The wiggler
field to be employed is uniform and of approxi-
mately 4 m in length with a 2-cm period and an
amplitude of between 400 and 500 G. The radia-
tion field amplitude required to trap the beam is
about 1.6)&10 (at approximately a 0.2-mm
wavelength). Using these parameters it follows
that 5K /K & 1.2 and, therefore, this experiment
constitutes an intermediate case in which the
space-charge fields may have an effect on the emis-
sion.

For still higher currents, the space-charge effect
becomes still more important. A free-electron-laser
experiment is being planned which makes use of
the Experimental Test Accelerator at Lawrence
Livermore National Laboratory to test efficiency
enhancement schemes with a tapered wiggler.
Typical beam properties are a 4-MeV energy at a
current density of greater than 500 A cm . Beam
densities, therefore, are expected to reach about
10" electrons/cm . The projected wiggler field is
linear and 6f 3-kG maximum amplitude with a
period of 10 cm, and an input radiation pulse of
about 930 kW/cm (at a wavelength of 3 mm) is to
be used to trap the beam with an effective

&y/y —9%. As a consequence,
5K'/K'-4. 1/cosf„(where P, is variable,
0.5 & cosg„& 1), and it is clear that space-charge
effects are important for such an experiment.

In conclusion, space-charge effects are important
only when 5K &K (i.e., the electron bounce
period in the ponderomotive potential is longer
than the invariant plasma period). Such a condi-
tion is not generally satisfied for free-electron-laser
experiments which operate at infrared wavelengths
where beam currents and energies are of the order
of several tens of amperes and MeV's. However,
experiments operating at submillimeter wave-

lengths employ beams of much lower energy
(several MeV) and higher current (1 kA) and col-
lective space-charge effects are important.
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