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Dynamical contributions to the quantum defects of calcium
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Nonadiabatic effects on the structure of Rydberg states of alkaline-earth atoms are ex-

amined and found to be large in many cases. Calculations for the quantum defects of the
singlet I' and 6 series in calcium, including dynamical contributions, are shown to be in

good agreement with recent experimental data. This is in contrast to predictions based on

the adiabatic core-polarization model, which significantly overestimates the quantum de-

fects. Values for quantum defects of Ca for /) 4 are presented.

I. INTRODUCTION

The progression of energy levels for hydrogen-
like atoms can be conveniently described by the ex-
pression

1 ZE„=——
2 '2(

where 5I, the quantum defect, represents the effects
of interactions between the valence electron and the
atomic core or any short-range spherical perturba-
tion in a many-electron system. ' (Atomic units are
used unless otherwise indicated. ) For alkali-metal

atoms, 5I is nearly constant over a series of levels

having a given angular momentum l. The
quantum-defect formula allows the energy-level
scheme of these atoms to be characterized suc-
cinctly with the use of a few general parameters.
In two-electron systems such as the alkaline-earth
atoms, there are many states which can be treated
using the one-electron approximation. For these
states, the quantum defect of Eq. (1) remains a
convenient parameter for the prediction of the en-

ergy levels.
For states having angular momentum less than

the maximum angular momentum of a core elec-
tron, the quantum defects are usually large and are
determined primarily by the penetration of the core
by the Rydberg electron. For "nonpenetrating"
states, in which I is greater than the maximum
core angular momentum, core penetration is small
and the quantum defects are usually less than 0.1.
The dominant electron-core interaction in these
states arises from the polarization of the core by

the Rydberg electron. The associated quantum de-

fect is usually calculated in an adiabatic fashion
with the Rydberg electron treated as stationary:
The expression

'
& (r —2(t+1))

I
(2)

where aI is the 2-pole polarizability, is used to
determine the polarization energy. This model has
worked well for the alkali atoms where the cores
are closed shells and thus insensitive to the dynam-
ics of the outermost electron.

Eissa and Opik have considered nonadiabatic
corrections to the polarization interaction of alkali
and alkalilike systems and have found them to be
small, generally less than a few percent of the total
polarization energy. In two-electron systems, how-
ever, nonadiabatic effects can be large due to corre-
lations between the Rydberg electron and the
valence electron in. the open-shell core. Dynamical
effects on atoms such as the alkaline earths can
therefore be anticipated to be much more substan-
tial than for the alkalis. Thus these systems are
well suited to testing the theory of Eissa and Opik
and demonstrating the important role dynamical
effects can have on the polarization energy.

In this paper we confirm the validity of the Eis-
sa and Opik theory by examining critically some
singlet F and 6 states of calcium for which the
nonadiabatic corrections are large, typically as
much as 50%o of the static term. We then discuss
how the results can be used to predict the general
structure of calcium Rydberg states and Rydberg
states of other alkaline-earth atoms.
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II. THEORY

In this section we recapitulate the method of
Eissa and Opik, applicable to atoms with a spheri-
cally symmetric core.

The Hamiltonian for the atom, neglecting the in-
teraction between the Rydberg electron and the
core, is taken as

N
1

iR —r;i
(4)

with R the position vector of the Rydberg electron
and r; the position vector of the ith core electron.

The unperturbed eigenfunctions of the core and

H =H|-+Hg .

Hc is the Hamiltonian for the ionic core consisting
of N electrons and Hz is the Hamiltonian for the
Rydberg electron in the field of the screened nu-

cleus. The Rydberg electron-core interaction is

Rydberg electrons satisfy

Hc@ (r„rz, . . ., r„)=e 4 (r, , r2, . . ., r„),

H„halo(R)=rl Q (R), (5)

The first-order correction to the hydrogenic en-

ergy vanishes due to the spherical symmetry of the
core. The second-order correction can be obtained

by minimizing the functional

with e and g the respective eigenenergies. In
lowest order the total atomic wave function is writ-
ten as

+o(R, r;)=@'(r;)g'(R) .

Note that by writing the wave function in this
nonsymmetrized form, exchange effects between
the core and Rydberg electron have been neglected.
Through first order the wave function is

(7)

E' '=2(4'Q +Cpg'
~

W
~

4 Q ) + ((y'Q +(y Q'
~

H (e +g ) —
~

rp'Q + rp p )

The first-order correction to the Rydberg electron wave function f vanishes. Upon expanding W in
terms of Legendre polynomials, assuming that R & r;, the correction to the lth term in the expansion for the
core wave function can be written as

4I"(R,r;)=p1(R)R ' 'XI(R, r;) .

XI is the adiabatic core distortion, that is, the first-order correction to the core wave function in the adiabat-
ic model, and the term P~(R) allows for a change in its magnitude due to dynamical effects. Equation (8)
thus takes the form

2

E' '=g I R ' P(R) ai[ , p(R) l3(R)]—~—,(X—I ~XI ) l(l+1)R 2p(R)2+ p(R)— dR

2ai=
2l+1 „~

with P(R) the radial portion of the Rydberg electron wave function and

I (0
I
r'I n & I

'
&n —&0

(10)

the 2-pole polarizability.
Parametrizing P1(R) as yo '+y2'/R, the y "s are determined from the simultaneous differential equa-

tions resulting from the minimization of the energy functional. yz" in the Eissa-Opik model is analagous to
the quantity "6P" in alternative approaches to the dynamical contribution. Because of the neglect of ex-
change, the Legendre expansion, and the particular parametrization of P, the radial integrals diverge at
small R. A cutoff radius Ro, which is of the order of the core radius, is therefore used as the lower limit of
integration in the resulting matrix elements. As discussed in the subsequent sections, the results are insensi-
tive to the choice of cutoff radius.

Minimization of the energy functional through the dipole and quadrupole terms leads to the following
correction to the hydrogenic energy:

E' '= ——,a&(yo (r )+yz" (r ))——,az(yo (r )+y2 '(r )) .

This reduces to the customary adiabatic result for yo" ~1 and y2'~0.
(12)
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III. APPLICATIONS TO CALCIUM

25

A. Core parameters

The dipole and quadrupole polarizabilities were determined by evaluating the first several terms in the
summations of Eq. (11) employing matrix elements calculated with relativistic Hartree-Fock wave func-
tions. Experimental excitation energies from Risberg were used to evaluate the energy denominators.

The alkaline-earth cores are isoelectronic to the alkali atoms and share the property that most of the oscil-
lator strength lies in the resonance transition. A single term in the summation for the dipole polarizability
constitutes over 99% of the contribution to the summation. For the quadrupole polarizability, three terms
were retained in the summation. By using the sum rule

n =n, +1

(0( r '(0) —g /
(0/ r'/ n)

f

'
(&n,.+1 &0) n =P

(13)

have a higher-power energy denominator than the
polarizabilities, they are even less sensitive to the
truncation of the sum. The polarizabilities and
norms used to calculate the polarization energy are
listed in Table I.

8. Contributions to the quantum defects

The expression for the energy of the Rydberg
level, Eq. (1), can be expanded in the form

5I
E = —Z' — + 1+0—

2n2 n3 n
(15)

for states with 51 ((n. This expansion enables a
quantum defect to be associated with any perturba-
tion energy which has the form —C/n, where C

TABLE I. Calculated core parameters, in a.u. , used
in the evaluation of the polarization energy.

Dipolar guadrupolar

&xixl
89

386
987

5657

we found that the remaining terms could change
the Hartree-Fock polarizability by no more than
5%. Since the norms of the adiabatic core distor-
tions used in Eq. (10),

(
~

)
1 ~ [ (0(r'(n) ( (14)

(Zl + 1 ) (p —&0)

is approximately constant as a function of princi-

pal quantum number. In particular, since the in-

teractions which occur between the Rydberg elec-
tron and the core for nonpenetrating Rydberg
states give rise to energy shifts which scale as n

these shifts can be described simply in the
quantum-defect model. The various interactions
and their contributions to the quantum defects are
now discussed.

Polarization contributions. Polarization contribu-
tions were calculated using both the dynamical
model discussed in Sec. II and the usual adiabatic
model, including dipolar and quadrupolar terms.
The polarization energy using the dynamical model
was found to be fairly insensitive to the inner cut-
off radius Ro. For the 'F state the polarization
quantum defect changed by 3%%uo as Ro was varied
between 2.5 and 4.0 a.u. For the higher l states,
the change was even less. While the expression
used for calculating polarization effects is not valid
for distances less than the core radius, where ex-
change effects must be included, for the high l
states this is not a serious problem as core penetra-
tion is insignificant. Table II compares the results
of the two models where it is noted that the adia-
batic theory predicts a significantly larger contri-
bution to the quantum defect for both the 'F and
'6 states.

Nonpolarization contribution. Nonpolarization
contributions include those arising from core
penetration, relativistic and retardation effects, and
residual configuration interaction. Table III con-
tains the calculated quantum defects for these non-
polarization interactions for the 15 'F and 13 '6
states.
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TABLE II. Polarization quantum defects for the 4s 15f 'F and 4s 13g 'G states of calci-

um in the adiabatic and dynamical models A (B)=A X 10 .

4s 15f
8diqle

po

4s 13g 4s 15f
5quadrupole

pol

4s 13g

Adiabatic
Dynamical

1.38(—1)
8.84( —2)

3.70(—2)
3.07(—2)

4.23(—2)
1.11(—2)

3.81(—3)
1.79(—3)

Penetration contributions

The zero-order energy was calculated by solving
for the energy of the Rydberg electron in the field
of a Hartree-Slater core. The difference between
this energy and the hydrogenic energy represents a
contribution to the quantum defect from the
penetration of the electron into the non-Coulombic
region at small r. The energies were calculated us-

ing the Cooley method for solving the nonrela-
tivistic Schrodinger equation in the Hartree-Slater
potential. As expected, penetration effects had a
negligible influence on the levels with I )4.

2. Relativistic corrections

Relativistic effects are not large for the Rydberg
states of interest in this work. Allowance was
made for the energy change resulting from the
relativistic variation of mass with velocity. The
hydrogenic expression

a n 3

2n4 I +1/2 4

was used. For singlet states L S vanishes, leading
to the absence of any fine-structure splitting.

3. Retardation corrections

Nonadiabatic effects arising from retardation
were estimated using the model of Kelsey and
Spruch, ' who introduced a correction to the polar-

ization potential

11 a
retard 4~ g' a~. (17)

Retardation effects are also noted to be negligible
for the Rydberg states considered in this work.

4. Configuration interactio-n corrections

5=a+bt+ct + d

tinterloper

where

(18)

1

{nH}2

Eion Emeasured
(19)

with E;,„=49305.92+0.10 cm ' and
R =109735.81 cm for calcium.

The last term in Eq. {18}is a measure of the
residual configuration interaction in the perturba-
tive limit, which is a valid approximation for the
Rydberg 'F states since the configuration interac-
tion for this series is strongly localized at low n.
Table IV depicts the fit and compares the results

For the 'F state, a further correction was made
to estimate contributions to the energy shifts from
configuration interactions. The 4s nf 'F series in
calcium is strongly perturbed at low n by the 3d 4p
interloper. The effect of this interloper on the
Rydberg states was determined by fitting available
experimental energy levels for this series to a modi-
fied Ritz expansion for the quantum defect":

TABLE III. Nonpolarization contributions to the quantum defects of the 4s 15f 'F and
4s 13g 'G states of calcium. A (B)=A X 10~.

~tot, nonpln

4s 15f
4s 13g

2.27( —3)
1.73(—5)

7.61(—6)
5.92(—6)

—9.81(—6)
—5.31(—7)

—1.12(—2) —8.93(—3)
2.27(—5)
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TABLE IV. Fitted coefficients in the Ritz expansion for the quantum defect of the 'F
series in calcium with the inclusion of one interloper. A(B)=A )& 10 .

Present work

Risberg (Ref. 6)
1.085(—1)
1.052( —1)

—8.928(—1)
—7.708(—1)

7.325
4.677

8.46( —4)
7.44( —4)

with a previous determination by Risberg which
was based on a smaller number of data points.

C. Results and discussion

Table V compares experimental quantum defects
for the 'I' and 'G states with those predicted by
the adiabatic and dynamical models. Nonadiabatic
effects are clearly seen to play an important role in

determining the structure of these states. The
agreement between the Eissa-Opik model and ex-

periment may seem rather unexpected for systems
where the dynamical corrections are large. Howev-

er, Opik' has obtained similar results in studying
the polarization interaction between two neutral

atoms, where dynamical effects are even larger
than those studied in this work. The incorporation
of nonadiabatic influences by including the P(R)
term in the first-order correction to the wave func-
tion thus seems to be a good approximation over a
wide range of interaction strengths.

For states with I & 4, the quantum defects are
dominated by the polarization interaction and thus
can be predicted reliably using the Eissa-Opik
model. It was found that by including only dipo-
lar contributions with hydrogenic expressions for
(r ) and (r ), the quantum defects obtained
were within 10% of the results of the more elab-
orate calculation of Sec. II. The major source of
the discrepancy when this simpiification is made
arises from the neglect of the quadrupolar interac-
tion, which was found to be significant only for
the G state.

In Table VI, the y;" for the G,H,I states are

presented, with the y
' included for the G state, as

calculated for n =20. These parameters are nearly
constant as a function of the principal quantum
number n. For states with I &6, the polarization
interaction is predominantly due to the adiabatic
dipole interaction, the higher-order correlations be-
tween the valence electron and the Rydberg elec-
tron being significantly reduced as a result of the
stronger centrifugal barrier. For these states the

n, l dependence of E~~ is dominated by the factor

4) [3n —l(1+1))
2n (1+—,)(1+1)(l+—, )l(1 ——, )

in the hydrogenic approximation. Using this ex-

pression, quantum defects for states not tabulated
can be obtained.

Although we have studied a particular element,
the case of calcium is expected to be typical of
other alkaline-earth atoms. For the heavier ele-
ments such as strontium and barium, nonadiabatic
effects may be even more pronounced due to the
larger core polarizabilities and distortion functions.
The calculational techniques used in this work to
estimate the core parameters for calcium could in
principle be used to estimate the analogous quanti-
ties in other alkaline-earth atoms. The case of cal-
cium was simplified by the need for summing over
only three states to obtain a good estimate of the
quadrupole polarizability. In the event that a
direct summation over states becomes unwieldy for
Sr and Ba, other techniques are available' to esti-
mate the core parameters, which can then be used
in conjunction with the Eissa-Opik model to
predict the structure of the high I states.

TABLE V. Comparison of quantum defects calculated in the adiabatic and dynamical
models with experiment. A (B)=A X10 .

Adiabatic Dynamical Expt. (Refs. 12 and 13)

4s 15f 1.71(—1)
4s 13g 4.08(—2)
' Average of two measurements.

9.06(—2)
3.25( —2)

9.32+0. 10(—2)
3.25( —2)'



25 DYNAMICAL CONTRIBUTIONS TO THE QUANTUM DEFECTS OF. . . 3113

TABLE VI. yi', where 5~i ———a~ n (ys'(r )+yz" (r )) + za2n (ys (r
+yg'&r-'&)

(1)
Po

(2)
Xo

(2)
3'2

0.80
0.98
1.02

—0.56
—16.6
—33.7

0.33 —0.01
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