
PHYSICAL REVIEW A VOLUME 25, NUMBER 6 JUNE 1982
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Resonant two-photon transition rates from the ground state of atomic hydrogen to ns

excited states have been computed as a function of photon frequencies in the length and

velocity gauges in order to test the accuracy of the calculation and to discuss the rate of
convergence over the intermediate states. The dramatic structure of the transition rates

produced by intermediate-state resonances is exhibited. A two-photon transparency is

found in correspondence to each resonance.

I. INTRODUCTION

Two-photon spectroscopy has become a very
powerful tool for the study of the excitation level
of atoms, molecules, and solids. ' In particular, the
great advantage obtained by using counterpro-
pagating beams to eliminate the Doppler broaden-
ing has allowed determination of energy levels with
much greater precision than in one-photon spec-
troscopy.

Two-photon transitions have been induced in
various types of atoms, particularly Na and Cs,
where the optical (ns) electron is excited to higher
s or d states or above the ionization threshold. A
resonance enhancement of many orders of magni-
tude has been observed in all alkali atoms when the
frequency of one of the photons corresponds to the
energy of an intermediate state. The hyperfine
splitting has been observed in the initial and final
states and also in the intermediate state.

As in all the spectroscopic problems, the case of
hydrogen is particularly significant because exact

calculations can be carried out and a detailed com-
parison between theory and experiment can be
made on the transition probability as well as on the
energies. So far, only the two-photon transition
from the ground state to the 2s state has been stud-
ied both experimentally and theoretically. The
Lamb shift of the 1s state and the hyperfine split-
ting have been observed, though a comparison be-
tween theoretical and experimental transition rates
has not been possible. Two-photon transitions
from rnetastable excited states have also been con-
sidered recently.

With the advent of synchroton radiation and the
increase in power of the laser beam, it has now be-

come possible, in principle, to measure two-photon
absorption coefficients for hydrogen transitions
from the ground state to all excited states. For
this reason, we think it is of interest to compute
the corresponding transition probabilities from the
ground state to all excited states. The exact eigen-
functions of the Schrodinger equation are con-
sistently used, while relativistic effects, hyperfine
splittings, and the Lamb shift can be taken into ac-
count in the energies of the levels. Both the length
and velocity gauges are used to check the accuracy
of the results by their agreement and to learn the
rate of convergence over intermediate states.

We compute the two-photon transition rates to
all ns excited states as well as to the ionization
limit as a function of the photon frequencies. We
find a very strong dependence on the frequency of
the photons with a resonance enhancement in
correspondence to every intermediate state np and
a transparency frequency before each resonance.

We organize the material as follows: In Sec. II,
we describe the general procedure in both length
and velocity gauge; in Sec. III, we give the relevant
matrix elements in closed form; in Sec. IV, we
describe the results for the transition rates to a
number of cases of particular interest; in Sec. V,
we discuss the phenomena of resonance enhance-
ment and two-photon transparency; in Sec. VI, we
discuss the detailed structure of the resonance, in-

cluding relativistic effects and radiation shifts; in
Sec. VII, we obtain and discuss the two-photon
ionization limit; and in Sec. VIII, we give con-
clusions and suggest possible experiments.
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II. TWO-PHOTON TRANSITIONS FROM THE GROUND STATE OF HYDROGEN

25

The two-photon transition rates from the ground state of atomic hydrogen to an excited state ns of the
discrete spectrum reads in any gauge j and in the dipole approximation

e4a,4~sois2o ~'
W", =

~

D",[j] ~
5(hv) .

36(2 )zR

The dimensionless transition amplitude Di [j] is separated as

Di[j]=Di [j]+Di [j],
where D~ and Di' are the contributions from the summation on discrete and continuum spectrum, respec-
tively.

The gauge invariance of any physical observable requires that D i [j]be independent of the particular
gauge. In an explicit calculation, care must be taken to preserve gauge invariance, in particular, when ap-
proximations are adopted. ' In the particular case of atomic hydrogen, the complete set of exact eigenstates
can be used in order to evaluate D, [j]. Furthermore, we adopt the dipole approximation in describing the
electromagnetic field and we make explicit calculations in two different gauges, the length gauge Jo and the
velocity gauge J. The electron-photon interaction is given in the gauges Jo and J by

hJ"' ——e4(x, t) = —eEO"e& x(e ' +c.c. ) —eEO 'e2 x(e '+c.c. ) (2a)

and
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In the gauges Jo and J the transition amplitudes D& and D~ read

Di'"[Jo]=
~ g [(1—I/u —vi) '+(1/n I/p —+vi) ']R~pR o,

@=2

Di'"[Jii]= —, f dw[(2w+1 —vi) '+(2w+1/n +vi) ']Rio'R„o',

(3a)

(3b)

Di'"[J]=——, g [(1—I/ii4 —vi) '+(1/n 1/I4 +—vi) ]R~ioRio

X(1—1/n )(1/n2 —I/M )[vi(1 —1/n2 —vi)] (3c)

Di'"[J]=——, f dw[(2w+1 —vi) '+(2w+1/n +vi) ']R io'R„o'
0

X(1+2w)(1/n +2w)[vi(1 —1/n vi)]— (3d)

where R„o' and R„"o are the matrix elements of r/ao, appropriate to intermediate states belonging to con-
tinuous and discrete spectrum, respectively. In (1) and (2), ao denotes the Bohr radius, e„e2 the polarization
unit vectors of the incident beams of amplitudes Eo",Eo ', and frequencies m& ——Rv&, co2 ——Rv2, R being the
Rydberg frequency. The energies of the discrete and continuum spectrum are fiRv(p) =—AR/p and
2wAR & 0, respectively.

From now on, we take both beams to be polarized in the z direction, so that only the states with angular
momentum I =1 and m =0 have to be considered in the summation over the intermediate states. Because
of the spherical symmetry of s states, this transition probability has to be multiplied by a factor cos (e),
when the two beams are polarized with a relatvie angle e. This gives a factor of —, for unpolarized light,
the direction of propagation being generally fixed in an absorption experiment.

In order to verify the accuracy of the calculation and to assess the relative importance of different energy
ranges in the summation over intermediate states, we compute separately D i [J] and D i [Jo] for all

~
n00)

final states of the discrete spectrum.
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III. COMPUTATION OF THE DIPOLE MATRIX ELEMENTS

3081

(n +1)!&t
(n —2)!(p—1)!

The matrix elements R„"0 for nQp, have been computed from the following expression obtained by Gor-
don" and reported by Bethe and Salpeter':

' 1/2
( —1)" (4np) (n —p)i'+"

4 (n ~p)" +~

X F —n +2; —@+1;2;— 4np

(n —p)

'2
n —p —4npF —n; —p —1;2;
n+@ (n —p)

(4a)

where F(a;P;y;x) is the hypergeometric function defined, e.g., in Bethe and Salpeter, '2 Eq. (63.3).

For n =p the simple expression

Rno = ——,n(n —1)n 1 3 2 1/2 (4b)

holds. We notice that the negative sign is missing in expression (63.5) given in Bethe and Salpeter. ' For
large values of the principal quantum number p and for all n, the following asymptotic expression holds:

(1 n)kR"'=p ne—"g 2 (k+1)4F( —k —1'4'2n).o—,
(2)

=c (n)LM (4c)

with

(n)k =n (n +1)(n +2) (n +k —1),
and where F(a;P;x) is the usual confluent hypergeometric function [see, e.g., Bethe and Salpeter, 'i Eq.
(3.4)]. We observe that care must be taken in using expression (4c) for large n For l.arge values of n, ex-
pression (4c) becomes

00

e(n)- 3/2 J](~)I d» ~

128„ /

The dipole matrix element R„"0 between a discrete state
~

n 00) and a state of the continuum
~

w10) is
computed analytically using the procedure of Sommerfeld and Schur. ' We obtain

' 1/2 2

exp[ —(2/v'2ic )arctan(nv'2w )] n(2ui+1) 4n&2w

16w [1—exp( —2m. /v'2w ) ] '~~ ui 1+n 22w

(4d)
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IV. TRANSITION RATES

Using the computed dipole matrix elements, we
calculate the dimensionless transition amplitudes
for 1s-ns two-photon transitions. The sum over
the discrete states ~ p, 10) is carried out term by
term up to an appropriate value N, which depends

on the final state
~

n 00) and by integration, for
p & N. The substitution of the discrete sum by an
integral gives results as accurate as 0.1%. The
contribution of the intermediate states belonging to
the continuum is evaluated by numerical integra-
tion.
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~2——E„p—E)p —fico) . (6)

In Table I, we report the values of the transition
amplitudes D"i[Jo] and D", [J] for transitions to fi-
nal states

~
n00), with n =3,6,20 as a function of

the frequency col of one of the incoming beams.
The frequency co2 is given by energy conservation

It can be observed that the computations per-
formed in the length and velocity gauge give re-
sults in total agreement. However, the role of the
discrete and continuum spectrum is dramatically
different in the two gauges. In particular, in the
gauge Jp the largest contribution in the summation
arises from the intermediate state with p =n, be-

cause of the large value of the dipole matrix ele-

TABLE I. la) Dimensionless two-photon transition rate amplitudes D i [Jo] and D, [J] for Is-3s transition in hydro-

gen for a number of values of v] in the length and velocity gauge, respectively. D] and D]' denote the contributions
from the discrete and continuum spectrum, respectively. (b) Same as (a) for the 1s-6s transition. (c) Same as (a) for the
1s-20s transition.

V] Di[Jo]" &i [JO]' & i [Jo] Di[J]

(a)

0.3750
0.6750
0.6875
0.7000
0.7125
0.7250
0.7375
0.7475
0.7650
0.8000
0.8250
0.8500
0.8750
0.8860

V]

—5.4479
—4.1756
—3.2446
—1.6096

1.5137
8.5166

31.4663
224.0014

—61.1148
—41.4777
—49.9815
—78.1203

—224.0759
—1121.5411

2.2125
2.5063
2.5483
2.5943
2.6446
2.6996
2.7600
2.8125
2.9147
3.1678
3.4019
3.6999
4.0912
4.3051

&i[JO]'

—3.2354
—1.6693

0.6963
0.9847
4.1583

11.2162
34.2263

226.8139
—58.2000
—38.3099
—46.5797
—74.4204

—219.9846
—1117.2360

Di [Jo]

0.5605
3 SAAA

5.1183
7.1475

10.7269
18.2615
41.8371

234.9570
—48.8976
—25.1949
—28.0138
—43.0919

—128.7985
—669.9164

D', [J]"

—3.7960
—5.5137
—5.8146
—6.1628
—6.5686
—7.0453
—7.6107
—8.1431
—9.3024

—13.1150
—18.5659
—31.3285
—91.1861

—448.0724

—3.2354
—1.6693

0.6963
0.9847
4.1583

11.2162
34.2263

226.8139
—58.2000
—38.3099
—46.5797
—74.4204

—219.9846
—1117.2361

(b)

0.4860
0.6750
0.7000
0.7250
0.7475
0.7525
0.7800
0.8000
0.8500
0.8750
0.8860
0.8900
0.9000
0.9200
0.9350
0.9400
0.9500
0.9575
0.9625
0.9650

—3.5678
3 AAAQ

—3.0060
—1.2564
35.1736

—46.5525
—9.5969
—8.6193
—8.1031
—3.2078
36.1922

—148.4926
—29.8864
—21.3657

62.4806
—160.0602
—78.2764

S4.3860
—656.7408
—634.3876

2.8154
3.1723
3.2911
3.4363
3.5948
3.6342
3.8841
4.1087
4.9127
5.5265
5.8695
6.0086
6.3972
7.4097
8.4894
8.9430

10.0575
11.1499
12.0573
12.5826

—0.7524
—0.2717

0.2851
2.1799

38.7684
—42.9183
—5.7128
—4.5107
—3.1903

2.3187
42.0617

—142.4840
—23.4893
—13.9560

70.9700
—151.1172
—68.2189

95.5359
—644.6836
—621.8050

0.7415
1.6316
2.3378
4.4249

41.2361
—40.3933
—2.8052
—1.2284

1.6987
8.7623

49.5225
—134.5755
—14.2202
—0.1709
91.7405

—126.4391
—30.0409
156.6250

—574.9131
—488.2735

—1.4938
—1.9032
—2.0526
—2.2449
—2.4671
—2.5244
—2.9074
—3.2820
—4.8889
—6.4434
—7.4600
—7.9065
—9.6863

—13.7848
—20.7691
—24.6759
—38.1767
—61.0861
—96.7605

—133.5234

—0.7523
—0.2716

0.2852
2.1799

38.7690
—42.9177
—5.7126
—4.5105
—3.1901

2.3189
42.0624

—142.4820
—23.4888
—13.9557

70.9714
—115.1149
—68.2175

95.5389
—644.6736
—621.7969
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D [J] D20[g )c

TABLE I. (Continued. )

g) 20[J]c &i [Jl

0.4950
0.7250
0.7475
0.7525
0.7800
0.8000
0.8500
0.8860
0.9000
0.9200
0.9400
0.9485
0.9660
0.9700
0.9720
0.9740
0.9760
0.9780
0.9800

—2.8912
—3.1394

1.7171
—9.5643
—4.7289
—4.8213
—5.6016
—1.9177
—9.5226
—9.7726

—20.5128
—15.8589
—24.3015
—17.7632

81 AAA3

—43.4070
—34.8986
—24.2734

—110.8083

2.7824
3.4466
3.6281
3.6737
3.9656
4.2325
5.2213
6.4619
7.1748
8.5983

10.8900
12.3523
17.3789
19.2463
20.3551
21.6126
23.0516
24.7160
26.6649

—0.1088
0.3071
5.3452

—5.8906
—0.7634
—0.5888
—0.3803

4.5441
—2.3478
—1.1743
—9.6228
—3.5065
—6.9226

1.4832
101.7994

—21.7944
—11.8470

0.4426
—84.1434

0.1936
0.7445
5.8231

—5.4021
—0.2060

0.0352
0.5185
5.8494

—0.7781
0.9892

—6.3161
0.6508
0.9151

11.0023
112.4041
—9.8831

1.6684
15.9613

—66.0645

—0.3023
—0.4372
—0.4778
—0.4882
—0.5572
—0.6238
—0.8986
—1.3051
—1.5693
—2.1632
—3.3059
—4.1568
—7.8368
—9.5180

—10.6014
—11.9096
—13.5138
—15.5173
—18.0750

—0.1087
0.3072
5.3453

—5.8902
—0.7632
—0.5886
—0.3801

4.5443
—2.3474
—1.1739
—9.6219
—3.5060
—6.9217

1.4843
101.8027

—21.7927
—11.8454

0.4439
—84.1395

ment, which has a sign opposite to all other con-

tributions. In the gauge J the intermediate state

IJ, =n gives zero contribution because of the degen-

eracy in the energy. It can be observed from the

agreement between the two gauges that the accura-

cy of the computation decreases with increasing

value of the principal quantum number of the final

state.
A problem that one has to consider in an ap-

proximate calculation is the rate of convergence of
the sum over the discrete intermediate states and

the relative contribution of the continuum. For
frequencies out of the condition of resonance

enhancement, a heuristic approximation generally

adopted is to consider only a limited number of in-

termediate states, choosing those close to initial

and final states because of their smaller energy

denominators. For the case of 1s-2s transition in

hydrogen, we have shown that this is well justified
in the length gauge Jp. This conclusion cannot be

generalized to higher excited states because the

contribution of all states from the discrete and

continuum spectrum are comparable. Therefore,

gauge invariance has to be consistently used as a
test of the accuracy of the calculation. Indeed

such a test has led to display nonlocal effects in

two-photon transitions to exciton states in solids. '

V. RESONANCE ENHANCEMENT
AND TWO-PHOTON TRANSPARENCY

In order to illustrate the physical significance of
the results, we discuss the amplitude of the 1s-ns

transition as a function of m~. For

1
R 1 ——

2
=Rv"(res)

p
(7)

with @=2,3, ...,n, the amplitude has a first-order

pole, and thus near resonance the amplitude is
dominated by the term

Di[&0]=
n 00 p10 @10 100

Qp ap

1
1 —v) ——

p
(8)

Since all matrix elements are positive except those
with p=n all resonances have positive amplitude
for v~ (v"(res) except the last one for which p=n;
futhermore for v~ ——v2 the amplitude D ~

is nega-

tive. Therefore, there exists in correspondence to
every resonance with p (n —1 a frequency
vf(2 (p, (n —1), for which the amplitude van-

ishes; we expect a two-photon transparency to be
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(a)

0.5 0.7 a9

4-
OS 40

pP

20-

-20-

05 07 0.9 -40
(b) Vt

FIG. 1. (a) Two-photon transition amplitude Di for
1s-3s transitions as a function of coi ——R v~ for

9 (v] ( 9 (b) Same as (a), but with a magnified verti-

cal scale in order to display the two-photon transparency
frequency vg= .

observed at such frequencies. The values of v|' for
the 1s-3s, 1s-6s, and 1s-20s transitions are given in
Table II. For the last case, only the first five
transparency frequencies have been calculated.

The above results are clearly displayed in Figs. 1

and 2, where we plot the two-photon transition
amplitudes for the 1s-3s and 1s-6s transition ampli-
tudes, respectively, as function of v&. The dimen-
sionless two-photon absorption coefficient

~
Di

~

is plotted in Figs. 3 and 4 for the 1s-3s and 1s-6s
transitions, respectively. Over the entire frequency
range the absorption displays a dramatic structure.
Besides the resonance enhancement at vi ——v"(res),
the plots clearly show the two-photon transparen-
cy.

The above results and, in particular, the detailed
line shape as displayed in Figs. 3 and 4 suggest
that two-photon spectroscopy can give new precise
information on the excited states of atomic hydro-
gen. Not only the final state can be determined
with great accuracy, but highly precise spectros-
copy of intermediate states can be performed. In
fact, resonance enhancement is an extremely pre-
cise tool since more than a seven order of magni-
tude variation can be reached.

0.5
(b)

0.7 0.9

VI. DETAILED STRUCTURE OF
THE RESONANCES

The line shapes described in Sec. V, with sharp
resonances at all allowed intermediate states and
well-defined photon energies to eliminate Doppler
broadening between initial and final states, clearly
indicate that the experimental accuracy is suffi-

10

Q5 0.7
Vt

0.9

FIG. 3. Dimensionless two-photon absorption coeffi-
cient

~
D

~ ~
for ls-3s transition plotted for —& v~ & —.

FIG. 2. (a) Two-photon transition amplitude D
&

for
1s-6s transitions as a function of coi ——R v~ for
35 35
7Q

(v] ( 36 (b) Same as (a), but with a magnified vert-

ical scale in order to display the two-photon transparen-
cy frequencies vg, @=2,3,4.
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TABLE II. Two-photon transparency frequencies v(%' for the ls-3s, ls-6s, and ls-20s two-
photon transitions in atomic hydrogen. The v(I', 2&p & n —I are the solutions of D i(vi) =0.
For the ls-20s transitions only the first five values of vf are reported. Units are in Rydberg
frequency.

viii"( ls-3s)
vl(' ( ls-6s)
vg''( ls-20s)

0.6935
0.6882
0.6895

0.8675
0.8703

0.9292
0.9293

0.9556
0.9551 0.9697

cient to display the internal structure of the
resonant intermediate states. This will appear as a
multiple resonance of the kind observed by
Bjorkholm ' for the case of sodium.

As an illustrative example we present in Fig. 5

an energy-level scheme relevant to the two-photon
transition 1s-3s in hydrogen. Though the transi-
tion probabilities can be computed with the states
obtained from the Schrodinger equation as we have
done, the energies appearing in the initial, final,
and in the resonant state at resonance are chosen to
include fine-structure Lamb shifts and hyperfine
structures. We report in this figure the values of
the energies as originating from the Dirac relativis-

tic equation, then we add the Lamb shifts of the s

states and the hyperfine splittings due to the nu-

clear magnetic moment. ' For a detailed discus-
sion of recent experiments, sufficiently accurate to
give the values reported in Fig. 5, we refer to the
review articles by Hansch et al."and by Ferguson
et al. ' For comparison, we show in Fig. 5 also
the 2s level, though it is not relevant to the 1s-3s
transition.

The two-photon transition 1s-3s proceeds via the
intermediate states

DIRAC
VALUE S

LAMB
SHIFTS

HYPERFINE
SPL I T T ING S

ss
—

g (1+g ) I 271 MHz
I

3Ssg, 3Ps] 5 Pqp

F-1
F~O
F ~1
F~o

52 AH z

17.S

--'((.—")4 16
2P3@

F~2
24

I

I

I

I

1057.9 MH z

--"(& '—")l4 15

2 51/ Z Pei 2 Ps/

F mo

i

177.5

5'Q

nP3/2(F =1,F=2),
where resonances can occur. We must take into
account the selection rules on the individual matrix
elements ~=+1,0 with exclusion of F=0~

nPig2(F =O,F=1) 15]

10'

10

lo', /'

I
I
I

I
I

I

—R(1+—)',
I
I

1SiI,

Q2QO &H z

F~0
1420.4

10

10

10
0.5 a6 a7 O8 O.9 1

FIG. 4. Dimensionless two-photon absorption coeffi-
cient

~
D i

~

i for ls-6s transition plotted for —& vi & i6 .

FIG. 5. Schematic energy-level diagram for the
lowest states of atomic hydrogen relevant to the 1s-2s
and to the 1s-3s two-photon transitions. The relativistic
eigenvalues are given on the left side in terms of the
fine-structure constant a, the Lamb-shift corrections are
reported at the center, and the hyperfine splittings are
given on the right side. Numerical values for the hyper-
fine splittings of p states have been roughly estimated
from existing experimental data along lines developed
for alkali atoms (Ref. 14).
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F=0, and the two-photon selection rule for transi-
tions between states ~' '=0 due to the fact that
the electron-photon interaction does not operate on
electron- and nuclear-spin coordinates. ' The two
allowed two-photon transitions 1Si/2(F =0)
~3Si/2(F =0) and 1S]/2(F =1) ~3S]/2(F =1)
will be separated by the ground-state hyperfine
splitting (1420 MHz), decreased by the hyperfine
splitting of the state 3s (of the order of 10 MHz).
The first transition F=O~F =0 will have two al-
lowed resonances in correspondence to the two al-
lowed intermediate states 2P«2(F =1) and

2P3/2(F —1) separated by the fine-structure split-
ting a /16 in Rydberg units, decreased by about

1 5
( 4 59+ —,24) MHz. The second transition
F=1~F=1, will have four allowed resonances, a
doublet corresponding to the intermediate states

2P&/2(F = 1,F=0), and another doublet corre-
sponding to the states 2P3/2(F =2, F= 1). It is
quite conceivable that experimental resolution will
be sufficient to detect this structure. Another in-
termediate state resonance will occur in correspon-
dence to the 3Pi/2(F) state separated from the fi-
nal state by the Lamb shift.

In high-resolution two-photon spectroscopy with
an intense light beam it is important to account for
the shifts of atomic energy levels due to the
dynamical Stark effect. ' These shifts are particu-
larly large in a resonantly enhanced two-photon
process, as it was shown by Liao and Bjorkholm'
in the case of sodium. The shift ~„ofan atomic
state

I
n ) induced by the radiation field

E=eEoe '"'+c.c. is given by perturbation theory
as

(9)
IeEOI I(nIe xIm)I IeEofiI(nIe xIm)I~

E„—E —fuu E„—E +fun

The summation is taken over all unperturbed atomic states
I
m ), but near resonance we may consider in the

sum only the term with the smallest energy denominator.
We consider first the 1S]/2(F =0)~3S]/2(F =0) transition with co& close to the resonance frequency cor-

responding to the 2P]/2(F =1) intermediate states. For light beams polarized in the z direction the frequen-
cy shift of the 1S]/2(F =0) level reads

—2

5v[1~1/2(0)
I
2Pin(1)](Hz)=1 03&10'

& I & ls
I I

x
I I 2p & I'«'u )av(Hz) (10)

where

hv= —[E[1Si/q(0)] —E

[2Pi/z(1)]+Pic@i�

]
1

h

is the frequency detuning and I the intensity of the
beam of frequency co&. A similar expression holds
for the 3S]i2(0) level, but now the radiation to be
considered is that of the second laser beam, in this
case

4v= —
[ E [3&1/2(0)]—E[2P,/p(1)] —ficoi J .

1

h

We recall that Eq. (10) is valid provided that

I

5v((hv and hv many times larger than the natur-
al linewidth. As an example for an intensity of
2 kWcm and a detuning of 10 6Hz the shift of
the 1S»2(0) level is of the order of 35 MHz. It is
important to notice that this frequency shift is
comparable with the hyperfine splitting of the
3Si/2 state, and therefore can not be neglected in
comparing it with the experiment near inter-
mediate-state resonance.

In Table III, we give the relevant matrix ele-
ments for the evaluation of the frequency shifts of
the 1S&i2(F) and 3S]/2(F) levels for the resonant
enhanced 1S&i2(F)~3S]/2(F) two-photon transi-

TABLE III. Relevant matrix elements for the evaluation of the frequency shifts of the
1S&/2(F) and 3S&/2(F) levels for the resonant enhanced 1S1/2(F)~3Si/2(F) two-photon tran-
sitions.

Transition Resonant intermediate states I(vp Ix
I
1s) I' I(vp Ix I3s) I'

(a.u. ) (a.u. )

1S|/2(0)~3Si/2(0) 2P|/2(1), 2P3/2(1)
1Si/2(1)~3S1/2(1) 2P&/2(0), 2Pi/2(1), 2P3/2(1), 2P3/2(2)

3Pi/2(0), 3P1/2(1)

1.665
1.665
0.267

0.881
0.881

162.0
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TABLE IV. Dimensionless two-photon threthreshold
probability to I ——lim

~
D

~ ~

2n for a number of frequen-
h~ rN

cies v~ &0.75.

V&

/D", f'n'
n =45

W)

92

I

20 30 40 n

tions. Similar considerations can be made for deu-

terium, where the smaller hyperfine splittings can
be also detected as they have been in the two-

photon transitions 1S&&2~2S~~2.
'

FIG. 6. Rate of convergence of n ~Dj
~

~ D" ~ towards the
threshold probability, evaluated in the gauge J for
v) ——0.5.

0.7475
0.7425
0.7350
0.7275
0.7100
0.7000
0.6900
0.6800
0.6700
0.6600
0.6000
0.5800
0.5000

2.2259 x 10
2.0080X 10'
3.5499x 10'
1.0568 x 10'
8.8970x 10
1.4286 X 10
2.69p7 x lp
5.1047
1.6415x 10
2.8493 x 10
7.5727X 10
8.2919x 10
9.2581 X 10

«o IEt&o I „2n
4 0 2 2

.-- 3g2M)'z'

2.17SSx 10'
1.9989x 10

1.0528 x 103

8.8893 x 10
1.4188x 10

1.6150x 10
2.7881 x 10
7.4503 x 10
8.1583x 10
9.0964X 10

VII. IONIZATION LIMIT

10

0.5 0.6 0.7 O.e

FIG. 7. Dimensionless two-photon thres phreshold roba-
b'l' ' = lim

~

~D"
~

2n3 as a function of v~.bility w~ ——im
Ih~m

In order to evaluate the two-photon threshold

the limit n ~ oo. The density of final states being
n /2R, the threshold probability is given by

For m& ——co2 ——R/2 we obtain

to'(v =0.5)= lim ~D&
~

n =90 9. .
n~co

The threshold probability can also be obtained as
the limit of the two-photon ionization for zero-
electron momentum using the procrocedure described

by Rahman. 20

n ofIn Fig. 6, we display
~
D&

~
n as a function o

n and for co&
——co2 in order to visualize the conver-

ence towards the threshold probability. Also ingence ow
this case, the calculations have been pe ormedrmed in

Fi . 6 shows how the threshold probability con-
verges towards a finite value, which has been com-

uted by a polynomial extrapolation.pu
Similar calculations have been performed for a

number of frequencies up to the first resonance at
0.75R. In Fig. 7, we display the values of the
threshold probability Wi as a function of the fre-

uency vi ——mi/R for 0.5&v, &0..75. The two-q
photon transparency occurs at vi- .68.—.68. A selec-
tion of numerical values of w

&
is presented in

Table IV. It is of interest to observe that the
threshold ionization line shape given in Fig. 7 is
very similar to the line shapes of transitions to
discrete levels. The two-photon transparency re-
quency shifts towards lower values with increasing

that similar line shapes with two-photon trans-
parency will occur also for transitions above the
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ionization limit.
We finally mention that the line shape here

described should be very similar to those for many
electron atoms, particularly the alkali atoms. De-
tailed calculations have been performed for the
ionization limit of rare-gas atoms, ' but unfor-
tunately their accuracy is not sufficient to prove in
this case the existence of two-photon transparency,
because the results are strongly gauge dependent.

VIII. CONCLUSIONS

We can summarize the main results obtained in
the present work as follows.

(i) Two-photon transition rates from the ground
state of atomic hydrogen to any excited state of the
discrete spectrum have been computed as functions
of photon frequencies.

(ii) Gauge invariance of the transition rates can
be verified only by using the complete set of inter-
mediate eigenstates of hydrogen. The contribution
from discrete and continuum spectrum are general-

ly of the same order of magnitude. The contribu-
tion from the states of the discrete spectrum and
those of the continuum are found to be completely
different in the velocity and length gauges, this
trend being more evident as one approaches the
ionization limit.

(iii) Intermediate-state resonance enhancements

produce a dramatic structure in the transition
rates, which can be used to perform an
intermediate-state spectroscopy of the hydrogen
atom which will reveal hyperfine splitting, rela-
tivistic effects, and radiative corrections.

(iv) In correspondence to each resonance
enhancement, we find a two-photon transparency.

(v) The two-photon threshold transition is ob-
tained from a limiting process and shows a line
shape similar to that of transitions to discrete lev-
els.

(vi) Synchroton radiation appears as a particular-
ly useful light source to verify the above points.
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