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We apply two methods to predict integral and differential elastic and absorption cross
sections for electron-neon scattering at 150—700 eV: a matrix-effective-potential (MEP)
formalism and an optical-potential formalism. For the optical potential we use the ab-

sorption potential that Green, Rio, and Ueda adjusted to give accurate absorption cross
sections, and we show that the real part of the potential can be chosen so that the calcu-
lated elastic-scattering cross sections also agree with experiment. The MEP model, with

no parameters adjusted to experiment, is even more successful. The agreement with

available experimental elastic differential cross sections is better than 10% in many cases
and is about 40% at worst; agreement with experimental total inelastic cross sections
averages 3% at four energies. An interesting conclusion from the optical-potential calcu-
lations is that when the absorption potential is included in the optical potential, accurate
elastic cross sections can be calculated even at high energy by using an adiabatic polariza-
tion potential.

I. INTRODUCTION

The inclusion of the dynamic effects of charge
polarization is the most difficult part in quantum-
mechanical calculations of electron-atom and
electron-molecule scattering. ' There are several
models that take into account the polarization ef-
fect. The adiabatic polarization potential (APP)
takes into account the complete response of the
target to the presence of a stationary electron.
Since, however, the atom or molecule does not
have infinite time to respond to the incident elec-
tron, the true effect of charge polarization on the
interaction potential is always less than that
predicted by the adiabatic model. Furthermore,
the polarization effect should decrease as the in-
teraction time decreases, so any realistic incorpora-
tion of charge polarization in the effective poten-
tial should be explicitly energy dependent. Anoth-
er method to include nonadiabatic polarization ef-
fects in the treatment of electron collisions makes
use of matrix-effective potentials, and it has been
shown that with matrix-effective potentials the
nonadiabatic polarization effects can be simulated
by energy-independent local potentials. ' In this
paper we use this approach to calculate integral
and differential cross sections for elastic scattering
and total (elastic and inelastic plus ionization)

scattering cross sections for electron-neon scatter-
ing.

The matrix-effective-potential (MEP) method
was first proposed in a version based on perturb-
ation-theory adiabatic polarization potentials, and
it was applied successfully to electron-helium
scattering at impact energies in the range 30—400
eV. ' In a later paper we considered a version of
the MEP based on variational adiabatic polariza-
tion potentials, and in this paper we apply this
MEP method to electron-neon scattering at impact
energies in the range 150—700 eV. In the MEP
method, the matrix potential is determined so that
it takes into account the full target response at r (r
being the distance of the incident electron from the
origin at the center of mass of the target) in the
adiabatic limit and goes to the static-exchange lim-
it in the decoupling limit. In the previous study of
electron-helium scattering an APP determined us-

ing second-order perturbation theory was used to
obtain the MEP, whereas the APP used in the
present study is a variational one. In our previous
study of both versions of the MEP method we sug-
gested two- and three-channel implementations.
However in the present study we consider only the
two-channel one.

Another approach to treating charge polarization
is the use of phenomenological complex optical po-
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tentials. For such potentials the imaginary part of
the potential causes a loss of flux from the incident
channel and plays a comparable role to the pseudo-
channel of the MEP. This sort of approach is a
reasonable way to analyze experimental data; it has
been used very widely in nuclear physics and more
recently it has also been applied to electron-atom
scattering. For comparison with the MEP ap-
proach we present calculations employing the
phenomenological form of the imaginary part of
the optical potential suggested by Green et al.
The results of the two approaches will be com-
pared to each other and also to recent experimental
and other theoretical results.

We use hartree atomic units throughout this pa-
per. The unit of energy is the hartree (E~); dis-
tance is measured in units of bohrs (ao); the mass
is in units of mass of an electron; and angular
momentum and action are in units of A.

II. THEORY

d2

dr
+A: f, (r)

r
M

=2 g Vjfj(r), (2)

where, because of M, VJ is a nonlocal operator. In
Eq. (2) the wave number k; in channel i is related
to the total energy E and the internal energy e; of
channel i by

k; =2(E —e;) .

The general approach of the coupled-channel
formalism involves expanding the total scattering
wave function of the target plus the incident elec-
tron in terms of angular functions for the orienta-
tion of the incident electron and either eigenfunc-
tions of the target or some suitable pseudostates,
a ]i.e.,

M

P(r, x ) = g Mf (r) Y~ (r )P;(x ),
i=1

where r denotes the coordinate of the incident
electron, x denotes collectively the coordinates of
the target electrons, and M is an antisymmetrizer;
P;(x ) stands for either a target eigenfunction or a
pseudostate; and f; (r) is a radial wave function of
the scattering electron. The specification of 1; and
m; for each i depends on the details of the chosen
basis set; these details are not needed for the
present discussion. The well-known variational
equations for the radial function are

We choose the zero of energy so that e& ——0. Such
a calculation takes into account all the dynamic
charge-polarization effects within the chosen M-
channel basis to all orders. However, in some
cases M must be very large to yield convergence.
The MEP method used here involves a two-
channel effective representation of the scattering
problem, i.e., we set M =2 and replace the actual
potential matrix V(r) by an effective one V (r),
such that the elements of the 2X2 effective-
potential matrix V (r) are local. (In principle
one could retain a nonlocal description of the
static-exchange effects but still reduce the M XM
matrix of nonlocal operators to a 2X2 one as a
way to simplify the treatment of charge polariza-
tion. In our work, however, we have only exam-
ined approximations in which the matrix-effective
potential is local. ) For the diagonal elements
V;; (r) we use the sum V (r,E) of the ground-
state static potential V (r) and a local approxima-
tion' V (r,E) for exchange. We make the centri-
fugal sudden approximation"

12
——I )

and we set

(4a)

k2 ——k )
—2', (4b)

where co is an average excitation energy. We re-

quire Vp~ (r) = V~p (r) so that V (r) is Her-
mitian. Then the quantities that need be specified
to construct V (r) are V~2(r) and co. We choose
e equal to an effective-excitation energy as dis-

cussed in the Appendix, and we determine V~~ (r)
so that the adiabatic potential implicit in V (r)
is equal to the variationally calculated adiabatic
polarization potential V '(r). This gives

—V '(r) V~q (r)
VMEP ( ) VPa( )

Solving Eq. (5) for V, z (r) yields

(5)

V&z (r) = [ [V '(r)] co V '(r)]'—
This completes the prescription for V (r) and
reduces the dynamics to an effective two-channel
problem.

Notice that both terms in the radicand in Eq. (6)
are positive and that Eq. (6) reduces in the pertur-
bative limit to the result that has been previously
used, 3'4 i.e.,

(6)

VMEP ( ) —[ — VPa( )]1/2

This limit applies at large r where V '(r) is small.
As an alternative to the MEP method we consid-
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—r/d —r/s
V (r,E)=—Wo(E) (8)

er the method of complex single-channel optical
potentials. Although formal prescriptions exist for
the ab initio determination of the exact optical po-
tential, these are too difficult to apply. Thus the
customary procedure is to assume a reasonable

(physically based) form with adjustable parameters
for the optical potential and subsequently to tune
these parameters to yield correct observables. Un-

fortunately there is no general theoretical justifica-
tion for any particular parametrized form for the
optical potential. Thus empirical tests and com-
parisons are very useful. Here we use the energy-

dependent functional form suggested by Green

et aI.':

III. CALCULATIONS

As explained in Sec. II, V;; (r) is set equal to
the sum V (r,E) of the static and exchange poten-
tials for the ground state of the target. The static
potential is evaluated from the analytic fit of
Strand and Bonham, based on the Hartree-Fock
results of Roothaan et al. ' The exchange poten-
tial is evaluated using the semiclassical exchange
approximation, ' which makes it a functional of
the static potential and the target density. The
latter was also taken from the compilation of
Strand and Bonham. The APP used in the calcu-
lations was obtained from ab initio extended-basis-
set perturbed-Hartree-Fock variational calculations
described elsewhere. At large r the APP was fit
to

W (E) —E
E~ ao

Based on these constraints they postulated the
form

. &2 E
Wo(E)=w —ln P ——1 +1E (9)

where e2 is the lowest electronic excitation energy,
and m, P, and v are adjustable parameters. Green
et al. adjusted these parameters so that their cal-
culations reproduced the experimental absorption
cross sections as well as possible. The actual
values of the parameters appearing in V (r,E) and

Wo(E) are given in Table I.

TABLE I. Values of parameters used in the absorp-
tion potential of Green et al.

where the r dependence in Eq. (8) was chosen by
Green et al. by analogy to the static potential.
They obtained a functional form for Wo(E) by im-

posing two constraints: (a) Wo(E) should be zero
below the threshold of the atom, and (b) it is as-
sumed that asymptotically Wo(E) should go over
to the form of high-energy inelastic cross sections,
i.e.,

ao C
V '(r)-

2r4 r' ' (10)

We also tried

where ao is the dipole polarizability. The basis set

used in Ref. 7 gives the following value for ao', it
equals 2.359a 0.

Notice that the MEP model tacitly includes the
parameter co. We showed in Ref. 4 that the results
are not overly sensitive to this parameter. In the
present work we chose co without reference to ex-
perimental data by the method discussed in the
Appendix. Other choices are of course possible,
but the choice in the Appendix is the only one we
tried.

For comparison purposes we also made calcula-
tions using a complex one-channel potential with
the imaginary part equal to the phenomenological
absorption potential V"(r,E) of Green et al. , as
summarized above. For these calculations we tried
three different forms of the real part of the optical
potential. In the original calculations of Green
et al. the real part of the optical potential was
represented by an approximate static-exchange po-
tential; thus the first potential we try is

V (r,E)= V (r,E)+iV (r,E) .

Parameter Value (a.u. )

1.841a0
3.292a0

42.72'
1.872
0.01108
0.62'

V ' (r,E)= V "'(r,E)+i V (r,E),
where

VsF-P'(r, E)= Vs~(r, E)+ V '(r) (12)

This includes the effects by virtual charge polariza-
tion by including the APP in the real part of the
optical potential. As mentioned in the introduc-
tion, however, the polarization potential should be
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nonadiabatic (abbreviated na) and energy depen-

dent. Thus we also tried

sEPnaA(r, E)= V (r,E)+ V (r,E)

+i V"(r,E), (13)

V'"'(,E)=V"(.)/(1»E/ ' '),

where V "'(r,E) is the energy-dependent polariza-

tion potential of Ref. 4, i.e.,

d 0'e)

g (2I + 1)(SI—1)Pi(cos8) 2

dQ 4k'

, g(21+1) ISI —1~'
)

der, )=2' Jd8sin8
dQ

2 g (2l + 1)(1—
~
SI

~

'),
)

(16)

(17)

(18)

0.2

0.0

-0.2 Pa

(14)

where co is determined by the method described in

the Appendix. Some of the components of these

optical potentials are illustrated in Fig. 1.
In the MEP method the two-channel real

Schrodinger equation was solved by our variable-

step-size Numerov program. ' For the optical-

potential calculations the complex single-channel

Schrodinger equation was solved by integrating the

phase equation' using a variable-step-size fourth-

order Runge-Kutta integration procedure. For
both sets of calculations, the resulting phase shifts

are complex, i.e.,

n) ='6]+)r)

The physical observables are calculated from these

complex phase shifts by the standard formulas' '

2KtTtot=, y (2I+1)(1—Res/),
)

(20)

=~el+Oabs ~

0.,~

——2m. d 8 sin0(1 —cos8)
m do, i

dQ

S, =exp(2ig) ),

(21)

(22)

(23)

where do,~/dQ is the elastic differential cross sec-
tion; 0 is the scattering angle; 0.,~,

O.,b„and o.t
are the integral elastic, absorption, and total cross
sections, respectively; 0.,~

is the elastic momentum-

transfer cross section; and S) is a diagonal element

of the scattering matrix for orbital angular quan-

tum number l. In the computation of differential
cross sections for the MEP method the small-I

contributions (1 & l(I~) were calculated as described
above and augmented by asymptotic polarized
Born phase shifts for large 1 (1~I~ &1 & 1{2~). The

asymptotic polarized Born approximation (APB) is

the first Born approximation for the first term of
the large-r expansion of the APP. This yields'

-0.4

~ -06
UJ

-0.8

-1.0

-1.2

-1.4
0.5

I

1.0

Ne

I

1.5 2.0

(24)
n.apk

(21 +3)(21+ 1)(21—1)

For each energy, 1(&~ and 1(2~ were chosen large
enough so that differential cross sections were con-

verged with respect to increasing either of them.
The final values are given in Table II. For the
optical-potential calculations, we included phase
shifts for 1 &1,„ for the calculations with the

r(ao)
FIG. 1. Components of the interaction potential as

functions of the distance of the scattering electron from
the nucleus. The static-exchange-plus-nonadiabatic-
polarization (SEPna) potential and its polarization part,
the energy-dependent polarization potential (EDPP), are
shown for an impact energy of 150 eV. The absorption
(abs) potential is shown for both 150 and 700 eV impact
energy, and the energy-independent adiabatic polariza-
tion (Pa) potential is also shown. The SEPna and EDPP
potentials were multiplied by 0.2 and 10 before plotting.

E (eV) 1(2) lmax
I

Imax

150
200
400
700

62
71
87
107

120
130
150
260

34
36
30
29

43
49
67
100

TABLE II. Angular momenta limits for differential
cross sections using the present MEP method.
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EDPP polarization potential and for l &1',„ for
the calculations with V '(r) where l,„and l',„
were chosen large enough so that a relative conver-
gence of 10 was obtained in the calculation of
elastic cross section and the absorption cross sec-
tion. For the optical-potential calculations with no
real polarization potential we used l& l,„. The fi-
nal values at all energies are given in Table II. To
test the adequacy of these values of l,„we repeat-
ed the MEP calculations with l~z~ reduced to I,„.
We found that do/dO at 0', where it is most sen-

sitive, was reduced by less than 10% at all energies

by this choice, and the integral and momentum-
transfer cross sections were converged to more
than three significant figures. Thus l,„was
judged adequate.

For comparison with the above results we also
made calculations with the real V '(r, E) poten-
tial. For these calculations we used numerically
computed phase shifts for l & l',„and augmented
them with APB phase shifts for (l',„+1)&l &l~z~.

IV. RESULTS

Some of the calculated phase shifts are presented
in Tables III and IV. The partial-wave contribu-
tions to the elastic and absorption cross sections in

the MEP and SEPnaA models are presented in

Table V. Table VI gives the total elastic cross sec-

tion, the elastic momentum transfer cross section,
the absorption cross section, and the total cross
section obtained by all the methods studied here;
the present results are compared here to previous
experimental' and theoretical 9 values.

Table VII contains the MEP values of the differen-

tial cross sections at four energies. Figures 2 —5

and Table VIII compare the present calculations of
the differential cross sections by the MEP, SEPa,
and optical-potential methods to various experi-
mental' ' ' measurements and to the calcula-

tions of Byron and Joachain and McCarthy
et al."

V. DISCUSSION

A. Phase shifts

At high energy the adiabatic model (SEPa)
should overestimate the polarization effect and
thus yield phase shifts that are too high,
corresponding to a polarization potential that is
too attractive. Since accurate phase shifts are not

known for high-energy e -Ne scattering, we will

treat the SEPa phase shifts as approximate upper
bounds and the SE phase shifts as approximate
lower bounds, and we will study the variations of
the phase shifts of the other models with respect to
these physical limits. The MEP and SEPnaA
phase shifts are complex, and we will compare
their real parts to the SEPa values. Table III
shows that these phase shifts are less than SEPa
values for all I and at all energies. Table III also
shows that the SEPna phase shifts are considerably
less than the SEPa values, showing that the EDPP
model predicts large effects of nonadiabaticity. In
fact the evidence of our previous study of the
EDPP as applied to e -He scattering is that the
EDPP overestimates the nonadiabaticity at high E
and thus underestimates the attractiveness of the
polarization contribution at high energy. We will

return to this point when we compare the SEA,
SEPnaA, and SEPaA cross sections to experiment.
Our previous study of the MEP based on
perturbation-theory adiabatic polarization poten-
tials for e -He scattering also showed that 5~

(MEP) was usually not less than 5~ (SEPa); this
violated our interpretation that the MEP includes
the nonadiabatic effects in a natural way. The
present application of the MEP based on variation-
al adiabatic polarization potentials for e -Ne,
however, does generally lead to 5~(MEP) &5~(SEPa)
for low l; there is only one exception in Table III.
This is more satisfactory. However, Table IV
shows that at high l at 150 eV, 5~(MEP)
& 5~(SEPa). This indicates that the effective opti-
cal potential implied by nonadiabatic calculations
involving the MEP model is more attractive than
V '(r) at large r, even though, as shown by Eq. (7),
when the MEP coupled-channels equations are
solved in the second-order adiabatic approximation,
they do reduce to the correct adiabatic limit. In
the next three paragraphs we examine some of the
trends in the phase shifts more quantitatively.

The s-wave SEPna phase shifts at 150, 200, 400,
and 700 eV are, respectively, 27%, 36%, 4%, and
4% lower than the SEPa values. Since for s-wave
scattering there is no centrifugal potential, the in-

cident electron experiences the short-range forces
as fully as possible. For higher partial waves the
centrifugal potential keeps the incident electron
farther from the origin and hence the long-range
polarization forces become more important. But
even in the case of p and d waves there is a consid-
erable decrease in the values of SEPna phase shifts
as compared to the SEPa values. The percentage
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TABLE III. Phase shifts for selected I values for various methods for low I and I = 10.

E (eV) Phase shift (rad, mod w)

SE SEPa' SEPnab MEP SEPnaA

150 0
1

2
6

10

0
1

2
6

10

0.499
1.932
0.683
0.014
0.001

0.298
1.843
0.747
0.024
0.001

0.688
2.161
0.913
0.045
0.009

0.471
2.050
0.927
0.061
0.013

0.502
1.936
0.687
0.017
0.002

0.300
1.846
0.750
0.026
0.002

0.601+i0.141
1.068+ i0.192
0.859+ i0.176
0.043+ i0.017
0.011+i0.004

0.373+i0.122
1.198+i0.161
0.874+ i0.167
0.052+ i0.022
0.013+i0.006

0.505+ i0.187
1.943+i0.235
0.681+i0.178
0.016+i0.011
0.002+ i0.001

0.303+i0.207
1.852+ i0.259
0.746+ i0.205
0.026+ i0.019
0.002+ )0.002

0
1

2
6

10

2.958
1.635
0.840
0.068
0.007

3.096
1.792
1.005
0.172
0.026

2.959
1.636
0.841
0.069
0.008

2.993+i0.080
1.464+ i0.098
0.888+ i0.106
0.088+ i0.028
0.018+i0.011

2.961+i0.199
1.640+ i0.235
0.840+ i0.203
0.068+ i0.042
0.008+ i0.009

0
1

2
6

10

2.578
1.470
0.857
0.123
0.021

2.690
1.594
0.985
0.181
0.047

2.578
1.470
0.858
0.123
0.021

0.545+ i0.053
1.491+i0.062
0.879+ i0.065
0.137+i0.027
0.029+ i0.013

2.580+ i0.152
1.472+ i0.172
0.858+ i0.154
0.123+i0.052
0.021+i0.017

(r,g)=V (r,g)+y '(r)
bgsEwa{r, g)= V (r,g)+ P "'(r,g).

decrease is largest at 150 eV and least at 700 eV.
At the higher energies the EDPP phase shifts do
tend toward the SE values as expected, and at 700
eV the difference is negligible. Even at 150 eV the
SE phase shifts are very similar to the SEPna ones

for lower partial waves, but for higher partial

waves the SE phase shifts are too small. This is

expected bacause the SE potential is short in range,
and higher partial waves are more sensitive to
long-range polarization effects.

Comparing the real parts of the MEP and SEP-
naA phase shifts to each other, we see that 5I ob-

TABLE IV. Phase shifts for selected I values for various methods for high l.

E (eV)

SE

Phase shift (rad, mod m)

MEP SEPa APB

150 15
20
25
30

9.573(—6)
1.595(—6)
1.853(—6)
1.988{—6)

3.994(—3)+i6.644( —4)
1.853(—3)+i1.443( —4)
1.102(—3)+i3.794(—5)
6.203(—4) +i1.044( —5)

2.828( —3)
1.198(—3)
6.240( —4)
3.649(—4)

2.754(—3)
1.188(—3)
6.169(—4)
3.604( —4)

15
20
25
30

4.937(—4)
4.267(—5)
1.080(—5)
2.201(—6)

5.886(—3)+i4.133(—3)
3.062( —3)+i1.741(—3)
1.845( —3)+i8.100(—4)
1.200( —3)+i4.054(—4)

7.772( —3)
3.286( —3)
1.693(—3)
9.848( —4)

7.344( —3)
3.169(—3)
1.645( —3)
9.610(—4)
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tained by the SEPnaA method decreases most ra-
pidly with increasing I. Furthermore the SEPnaA
values of 5I are very similar to the SEPna phase
shifts. These facts indicate that the real part of
the phase shifts is not very sensitive to the pres-
ence of the absorption potential (a result we also
found using a different kind of absorption poten-
tial for e-He), and they are consistent with the
EDPP underestimating the effect of polarization at
high energy, as discussed above.

Now consider the variations in the imaginary
part of the phase shift as predicted by the MEP
and SEPnaA methods. Both the models yield
much smaller yI as compared to 5I, and the yI ob-
tained by the SEPnaA method decreases more ra-

pidly with l compared to the MEP values. Howev-
er at all energies for small I values the yI values

predicted by the SEPnaA model are larger than the
MEP values. Eventually at larger I the MEP
phase shifts become larger than the SEPnaA
values. This means that the absorption potential
"implied" by the MEP is longer in range than
V"(r,E) of Green et al.

B. Elastic scattering

80.0 I
J

l
]

I
)

s
]

l

10.0

e=Ne
150 eV

MEP

CV 0
1.0O

Cy

b

0.1

I s I i I i I i I

0 30 60 90 120 150 180
8 (deq)

FIG. 2. Differential cross sections at 150-eV impact
energy as functions of scattering angle. The theoretical
results calculated here are shown as solid, long-
dash —short-dash, and dotted curves as indicated in the
figure. The experimental results of Gupta and Rees are
shown as circles and those of Jensen et al. are shown as
crosses.

Figures 2 —4 show that the MEP model yields

excellent agreement with the experimental elastic
differential cross sections at 150—700 eV. At 150
eV the MEP dir/dQ agrees with the experimental
results within experimental error for 8 &40' and

for 0=70—100'; at 50', 60', and 110', it is about

20% below the experimental results of Gupta and

Rees, and at 120'—150' it is about 35% below
their experimental result. The trend is similar at
200 eV in that agreement is again excellent at
small 8 and do.,I /dO is underestimated at larger L9.

At this energy though the difference from the

average of the experimental results is 7%, 27%,
17%, 25%, and 41% at 30, 60, 90, 120', and
150', respectively. At 400 eV one again finds some
small underestimates at middle angles, but the
agreement of theory and experiment is more uni-

form than in the other cases; at this energy the
differences from the average or only available ex-
perimental results are only 0.3%, 8%, 9%, 5%,
and 3% at 30, 60', 90', 130', and 160', respective-
ly. We can summarize these comparisons of the
MEP do.,~/d0 to experiment as extremely en-

couraging.
Figures 3 and 4 also show that the SEPaA cal-

culations and the eikonal optical model of Byron
and Joachain are about as accurate as the MEP

80.0

10.0

e -Ne
200 eV

MEP

co 0
U

1.0

b

0.1

I i I i I i I

0 30 60 90 120 150 180
8 (deg)

FIG. 3. Same as Fig. 2 except for 200 eV and three
additional sets of differential cross sections are also in-

cluded. The calculations of Byron and Joachain are
shown as a long-dash —double-short-dash curve, the ex-

perimental results of Williams and Crowe are shown as
squares, and those of Dubois and Rudd are shown as di-
amonds.
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80.0 I ' I '
I

'
I

10.0

e=Ne
400 eV

MEP
-—BJ—SEPnaA
--- SEPaA

CV

1.0
Cg

b'D

0.1

52~JA

80.0 g

10.0

e=Ne
700 eV

MEP

BJ
SEPnaA
SEPaA

h

1.0
CV p0
Cg

b

0.01 i I i I s I i M~~ I

0 30 60 90 120 150 '180

e(deg)

FIG. 5. Differential cross sections at 700-eV impact

energy as functions of scattering angle. The experimen-
tal data of Bromberg are shown as triangles. Three sets
of calculated values from the present work and the cal-
culations of Byron and Joachain are shown as curves as
indicated in the legend within the figure. The SEPna
and SEPaA curves go off scale at the bottom; their
values at 180' are 8.87)&10 a+sr and 8.54
X 10 a +sr, respectively.
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FIG. 4. Same as Fig. 3 except for 400 eV and only

two sets of experimental results are available at this en-

ergy: those of Gupta and Rees are shown as circles and

those of Jensen et al. are shown as crosses.

model at low scattering angles but are uniformly
less accurate than the MEP calculations at large 0.
The SEPnaA model is in turn less accurate than
the SEPaA model.

Table VI shows that the MEP model and the
SEPaA model both predict accurate integral elastic
cross sections and that the SEPnaA calculations
systematically underestimate the integral elastic
cross sections. These trends are consistent with

those seen less quantitatively in Figs. 2 —5. Since
the MEP model predicts such accurate differential
cross sections as well as integral cross sections, we

conclude that the dependence of the partial cross
sections on I is probably accurate. Tables III and
V then indicate that the errors in the SEPnaA cal-
culations are more important at high l than at low

I, and that the SEPnaA calculations underestimate
the high-I elastic scattering. This confirms that a
large part of the fault in the SEPnaA calculations
is that the EDPP is too weak (recall that Green
et al. used an even weaker real polarization poten-
tial, i.e., zero). Table VI shows that indeed the
EDPP used here for the real polarization potential
does have only a small effect at these high ener-

gies, i.e., the SEPnaA results are very similar to
the SEA results. The success of the SEPaA calcu-
lations is intriguing since there is little or no justif-
ication for using the APP at such high energies.
We recall that our previous work on electron-He

scattering also indicated that the EDPP is too
weak at high energy. But there is no generally ac-

cepted better model for an energy-dependent real-

polarization potential at high energy so it will be

hard to improve on the SEPaA model using this

kind of approach. The difficulty of modeling the

energy dependence of the real-polarization poten-

tial, i.e., of modeling the energy dependence of
nonadiabatic charge-polarization effects, is a cen-

tral issue in the present study because it was the

original motivation for developing the MEP. The
MEP starts with the energy-independent APP and

models nonadiabaticity in a very dynamical way,
i.e., by embedding the APP in an effective
coupled-channels problem. As we have just seen,

this approach to nonadiabatic effects appears to be

quite successful.
The excellent agreement of cross sections calcu-

lated using the MEP theory gives us confidence in

trying to analyze the partial-wave contribution to
elastic cross sections. Table V shows that accord-

ing to the MEP and SEPnaA methods, p and d
waves make the maximum contributions to the
elastic cross sections at these energies. In particu-
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TABLE V. Partial-wave contributions to the elastic and absorption cross sections (ao) at
impact energies 150—700 eV.

E (eV)

MEP

Elastic

SEPnaA MEP

Absorption

SEPnaA

150 0
1

2
3
4
5

6
&7

2.92(—1)
1.87
2.43
7.24( —1)
2.06(—1)
7.21(—2)
3.07(—2)
4.03(—2)

2.12(—1)
1.96
1.71
4.06(—1)
8.93(—2)
2.12(—2)
5.58(—3)
2.57(—3)

1.23(—1)
4.59( —1)
7.20(—1)
5.16(—1)
3.89(—1)
3.05(—1)
2.39(—1)
8.21(—1)

1.50(—1)
5.27(—1)
7.26(—1)
5.42( —1)
3.65(—1)
2.40(—1)
1.55{—1)
2.56(—1)

0
1

2
3
4
5
6

&7

9.91(—2)
1.66
1.89
6.96(—1)
2.20(—1)
7.94(—2)
3.36(—2)
4.36(—2)

7.48(—2)
1.51
1.43
4.55(—1)
1.26(—1)
3.58(—2)
1.08(—2)
5.60(—3)

8.27(—2)
3.05(—1)
5.20(—1)
4.23(—1)
3.34(—1)
2.75(—1)
2.29(—1)
1.06

1.20(—1)
4.14(—1)
5.98(—1)
5.22( —1)
3.94(—1)
2.84( —1)
1.99(—1)
4.07(—1)

0
1

2
3
4
5

6
7

&8

1.03(—2)
1.05
1.06
5.51(—1)
2.40( —1)
1.01(—1)
4.49(—2)
2.14(—2)
3.12{—2)

2.08(—2)
8.43(—1)
8.50(—1)
4.40(—1)
1.90(—1)
7.89(—2)
3.29(—2)
1.40(—2)
1.14(—2)

2.92(—2)
1.04( —1)
1.85(—1)
2.03(—1)
1.83(—1)
1.61(—1)
1.45( —1)
1.31(—1)
1.15

5.87(—2)
1.95(—1)
2.97(—1)
3.22( —1)
3.00(—1)
2.60(—1)

2.15(—1)
1.73(—1)

5.64( —1)

0
1

2
3
4
5
6
7
8

9
&10

5.97(—2)
6.46( —1)
6.41(—1)
4.04( —1)
2.21(—1)
1.14(—1)
5.82(—2)
2.99(—2)
1.58(—2)
8.71(—3)
1.59(—2)

5.54(—2)
5.30(—1)
5.35(—1)
3.45( —1)
1.91(—1)
9.96(—2)
5.08(—2)
2.58(—2)
1.32(—2)
6.85(—3)
7.87(—3)

1.17(—2)
4.01(—2)
6.98(—2)
8.88(—2)
9.30(—2)
8.86(—2)
8.20( —2)
7.63(—2)
7.16(—2)
6.73(—2)
9.34(—1)

2.78(—2)
9.09(—2)
1.40(—1)
1.65(—1)
1.71(—1)
1.63(—1)
1.49(—1)
1.32(—1)
1.14(—1)
9.72(—2)
4.34(—1)

lar the sum of the p- and d-wave contributions ac-
counts for 76% of the MEP cr,~

at 150 eV, 75% at
200 eV, 68% at 400 eV, and 58% at 700 eV. In
contrast, in the SEPnaA model these two partial
waves combine to give 65% of o,~

at 150 eV, 62%
at 200 eV, 41% at 400 eV, and 48% at 700 eV.
These values are less reliable since the SEPnaA
model seems to yield too little forward scattering
at all energies.

It is somewhat surprising that the SEPaA model
works so well in predicting the elastic cross sec-
tions at such high energy since the adiabatic polar-
ization potential is generally regarded as too attrac-
tive at all energies, and this should be especially
true at high energy. However, the adiabatic polari-
zation model is usually applied without an absorp-
tion potential, and one would draw different con-
clusions about its validity when V"(r,E) is neglect-
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TABLE VI. Integral and momentum transfer cross sections (a 0) at impact energies 150—700 eV.

3067

E (eV) 150

oel oel oabs otot oel O'ab O 101 Oe& ~ei o abs o'tot o el o el o'abs o'tot

Experiment
Bromberg'
Gupta and Rees
Dubois and Rudd'
Jansen et al.
deHeer et al.'
Wagenaar and deHeer

Kauppila et al.~

Theory
First Born"
Dewangen and Walters"
Jhanwar et al. '

McCarthy et al.j

Byron and Joachain"
Fon and Berrington'
SE
SEPa
SEA
SEPnaA
SEPaA
MEP

6.37 3.15

6.03
6.20

4.96
5.00 2.10
5.40 2.30
5.04

3.05 9.25 4.99
9.50
9.02

3.21
3.30 0.88

3.21
2.99 8.00 3.22

8.29
7.98

2.21

2.30 5.51 2.21
5.65
5.47

1.67 3.88
3.95
3.90

8.72 0.00
5.82 2.91 2.99

6.31 3.72
6.04 3.93 0.00
7.71 4.37 0.00
4.38 1.88 2.95
4.41 1.88 2.96
5.74 2.17 3.03
5.67 2.26 3.57

12.3
5.50 4.27

8.72 6.26 0.00
8.81 4.87 2.06 2.97

4.39 1.41 5.26
5.17 2.70

6.04 5.07 2.83 0.00
7.71 6.55 3.10 0.00
7.33 3.60 1.24 2.92
7.37 3.65 1.26 2.94
8.76 4.79 1.43 2.99
9.24 4.72 1.68 3.23

6.44
9.77 3.36 2.99
6.26 3.20 0.00
7.84 3.26 0.88 2.28
9.64 2.94 0.77 3.35

5.07 3.31 1.14 0.00
6.55 4.31 1.22 0.00
6.52 2.47 0.53 2.38
6.59 2.48 0.53 2.39
7.78 3.26 0.58 2.41
7.95 3.11 0.81 2.29

4.25
6.35 2.61 2.35 4.96
3.20 2.08 0.00 2.08
5.54
6.29 2.12 0.41 2.28 5.66

3.31 2.31 0.51 0.00 2.31
4.31 2.46 0.70 0.00 2.46
4.85 1.86 0.29 1.68 3.54
4.87 1.86 0.29 1.68 3.55
5.67 2.44 0.31 1.70 4.14
5.40 2.21 0.31 1.62 3.84

'Reference 18.
'Reference 19. The values of u, &

and o,i reported by Gupta and Rees are inconsistent with their de,~/dQ from which

they computed them. We repeated their calculation using Eqs. (18) and (22) to obtain the values tabulated here. We
note that this reintegration brings their vaIues of o,~

into better agreement with those of other workers.
'Reference 23. The value of o,~ was obtained by extrapolation and integration of their reported differential cross sec-
tion. The extrapolation was guided by the present SEPnaA results.
dReference 20.
'Reference 21.
Reference 22.

~Reference 24.
"Reference 27.
'Reference 28 (values at 700 eV are interpolated).
'Reference 26. These authors report only do,&/dQ and o,b,. We corrected the units on their o.,t and calculated the
other quantities tabulated here by Eqs. (18), (21), and (22).
"Reference 25. These authors report only do,&/dQ and o„,. We calculated the other quantities tabulated here by Eqs.
(18), (21), and (22).
'Reference 29. These authors did not report cr,t or crt t.

ed. Table VI shows that the SEPa model overesti-
mates O,I and o,~

at all energies, with the percent
overestimate higher for the latter. Table VIII
shows that neglecting the absorption part of the
SEPaA model overestimates the elastic differential
cross sections at all energies with the relative
difference between the SEPa and SEPaA values be-

ing larger at larger scattering angles. These trends
are consistent with the fact that the absorption
part of the SEPaA potential absorbs flux from the
elastic channel, and, being more short range than
the real part of the potential, its greatest relative

effect is at small r and hence large 8. In summary,
these results show that even for elastic scattering,
it is important to include the effect of absorption
to calculate accurate cross sections and to draw
valid conclusions about the quantitative adequacy
or inadequacy of various model potentials.

C. Inelastic and total scattering

Table VI shows that the inelastic cross sections
predicted by the optical-potential calculations are
much less sensitive than the elastic cross sections
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TABLE VII. Differential cross sections (in ap/sr) for elastic scattering of electrons by
neon in the energy range 150—700 eV, as obtained from the present MEP method.

0
(deg) 150

E (eV)

0
5

10
15
20
25
30
40
50
60
70
80
90

100
110
120
140
160
180

13.8
10.0
7.04
4.87
3.31
2.22
1.47
6.40( —1)
2.92(—1)
1.51(—1)
9.44( —2)
7.38(—2)
7.21(—2)
8.41(—2)
1.07(—1)
1.40( —1)
2.20( —1)
2.92(—1)
3.22( —1)

14.0
9.60
6.44
5.48
4.27
1.81
1.16
4.84( —1)
2.24( —1)
1.25(—1)
8.68(—2)
7.37(—2)
7.38(—2)
8.21(—2)
9.54( —2)
1.11(—1)
1.44( —1)
1.68(—2)
1.76(—1)

13.8
8.39
5.12
3.12
1.86
1.11
6.64( —1)
2.73(—1)
1.44( —1)
9.44( —2)
7.11(—2)
5.86(—2)
5.16(—2)
4.78(—2)
4.60(—2)
4.55(—2)
4.62( —2)
4.75(—2)
4.78(—2)

13.9
7.47
4.29
2.40
1.30
3.19(—1)
4.19(—1)
1.77(—1)
9.69(—2)
6.24( —2)
4.43(—2)
3.36(—2)
2.70(—2)
2.28(—2)
1.99(—2)
1.80(—2)
1.53(—2)
1.46(—2)
1.43(—2)

to the real-polarization potential. Furthermore
Tables III and V show that the optical-potential
calculations, with the absorption potential of Green
et al. , predict more inelasticity than the MEP cal-
culations do at small l but less at high l. It is hard

to judge which model is more accurate for this

feature so it will be interesting to compare the re-

sults in these tables to any future theoretical treat-
ments of this problem. Table VI shows that the

optical potential u,b, agree with experiment at each

energy, but that is simply a consequence of Green
et al. having successfully adjusted their parameters

to achieve this. The comparison of the MEP cal-
culations to the experimental O.,b, is more instruc-
tive since these calculations contain no adjustable
parameters. The comparison in Table VI shows
that the present calculations agree with experiment
within 17%, 8%, 0.4%, and 3% at 150, 200, 400,
and 700 eV. We conclude that the present MEP
performs excellently for this problem. In fact,
since the MEP model predicts the energy depen-
dence of o.,b, so accurately with no parameters ad-

justed to experiment, one is tempted to put some
trust in the l dependence for a general energy. If

TABLE VIII. Differential cross sections (a+sr) for elastic scattering of electrons from neon at impact energies 150
and 400 eV.

E (eV) 150 400

8 (deg) SEPa SEPaA MEP
McCarthy

et al.' Expt. b SEPa SEPaA MEP
McCarthy

et al.' Expt b

10
30
60
90

120
140
150

7.28
1.83
0.274
0.117
0.251
0.0487
0.821

7.19
1.55
0.152
0.0689
0.123
0.207
0.251

7.04
1.47
0.151
0.0721
0.140
0.220
0.260

6.51
1.42
0.155
0.0532
0.171
0.338
0.422

7.1 1

1.54
0.183
0.058
0.169
0.464
0.689

6.80
0.911
0.155
0.0833
0.0687
0.0667
0.0663

6.62
0.611
0.0771
0.0314
0.0280
0.0259
0.0253

5.12
0.664
0.0944
0.0516
0.0455
0.0462
0.0469

5.75
0.578
0.0931
0.0555
0.0534
0.0565
0.0580

5.39
0.729
0.103
0.057
0.048
0.047
0.046

'Reference 26. Reference 19.
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we accept this, then the discussion above of Tables
III and V gives a constructive clue for improving
the optical potential of Green et al. , namely, that
the functional form should be given a longer range.

D. Comparison arith other methods

The results of the MEP method studied here are
compared in this section to the results obtained by
previous workers.

The approach of McCarthy et al. is a
phenomenological one very similar to that adopted

by Green et al. They used a static-exchange po-
tential very similar to the one used here, but they
used the hydrogenic adiabatic dipole approxima-
tion, scaled to give the correct dipole polarizabili-

ty of Ne, to obtain an approximate energy-indepen-

dent V '(,r) The .absorption potential was taken to
have the phenomenological form

(253

where u; {r)/r is a valence orbital " and the

strength parameter W(E) was adjusted to give the
correct absorption potential at all energies. Since

o,b, comes out right by adjustment, the test of
their model is the accuracy of the predicted elastic

cross sections. Tables VI and VIII show that these

are actually slightly more accurate than those

predicted by the SEPaA model studied here. Thus

this phenomenologieal approach has merit. In fact
the elastic differential cross section calculated by

McCarthy et al. is the most aeeurate theoretical

value at all scattering angles at 150 eV, and it is in

good agreement with experiment at 400 eV. The

good agreement of their results with experiment

even at medium and large scattering angle is re-

Aeeted in their calculations of o,], which uniform-

ly agree better than any other model with the ex-

perimentally measured values (see Table VI). It is

interesting that the values of do,~/d0 and o,&

predicted by the MEP model become increasingly

accurate at higher energies, and at 400 eV the

MEP differential cross section is more accurate
than the McCarthy et al. one at all scattering an-

gles even though the McCarthy et al. potential has
a parameter adjusted to experiment but the MEP
model does not.

We can also compare to results obtained by the
eikonal optical theory which has been applied to
electron-atom scattering by Byron, Joachain, and
Vanderpoorten. * ' This theory is based on

multiple-scattering expansion of the optical poten-
tial in terms of the full interaction between the
atom and the incident electron. Exchange effects
are included by the Mittleman-Watson exchange
potential, which has been tested elsewhere. Po-
larization and absorption effects are included by
seeking a local, spherically symmetric form for the
effective potential such that the eikonal amplitude
from this potential agrees through second order
with the many-body Glauber amplitude. For the
imaginary part of the potential this criterion yields
an integral equation that can be solved for an ab-
sorption potential VG (r,E). The resulting
VG (r,E), however, has an "incorrect" behavior at
large r because the Glauber amplitude has serious
defects for small scattering angles. This problem
is corrected by taking the difference between the
second-Born amplitude and the amplitude obtained
in the Glauber approximation to second order and
Fourier transforming the difference amplitude.
This yields a correction potential V" (r,E), which
ls added to ~G (rsE) to give the elkonal optical
absorption potential. The interested reader is re-
ferred to Refs. 25 and 36 for a discussion of the
real part of the eikonal optical potential and for
further details. Figures 3—5 and Table VI show
that the eikonal optical model is almost as success-
ful as the MEP model for elastic cross sections al-

though it does seem to slightly underestimate
them. However, it is much less successful than the
MEP model for the absorption cross sections,
which it systematically overestimates. Whereas the
errors in the MEP values of o,b, do not exceed 8%
at 200—700 eV (see above), the Byron-Joachain
calculations differ from the experimental o,b, by
76—37% over this energy range.

Dewangen and Walters applied a distorted-
wave second-Born approximation to calculate o.,]

and o.„,at energies of 200 eV and higher. Their
elastic cross sections are reasonably accurate, but
their o.,b, cross sections are systematically too high
by 30—43%.

Jhanwar et al. applied a real effective potential
of the SEP type. Since they neglect the absorption
potential their method yields zero for o,b,. This
probably also explains why their calculations
overestimate o,] at 200 and 400 eV.

Fon and Berrington performed R matrix calcu-
lations in which the ground-state wave function is
coupled to a 'P pseudostate. These calculations are
in excellent agreement with the experimental dif-
ferential and integral elastic cross sections at both
150 and 200 eV.
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VI. GENERAL CONCLUSION

The MEP model is very successful at predicting
the integral and differential cross sections for elas-
tic scattering and the absorption cross section for
electron-neon collisions at 150—700 eV. In fact it
is even more successful for this case than it was
for electron-helium scattering, ' although it was
quite successful in that case too. These studies
show that the MEP approach deserves further
study, and it should be considered a strong candi-
date for making predictive calculations on practical
problems where no data is available for adjusting
parameters and where a more rigorous calculation
is prohibitively difficult.
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where

(A5)

(A6)

APPENDIX

Combining (A4) and (A5) yields a value for the
average excitation energy

The leading energy-independent terms in the
large-r polarization potential are

V (r)p ap 3P
2f r

(A1)

co=ap/2P .

For Ne, we take ap ——2.359ap (Ref. 7) and
P=1.27ao (Ref. 39). Then (A7) yields
co =0.9288EI, .

(A7)
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