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inelastic electron scattering: Collective or single particle?»
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Simple models suggest that the momentum-transfer (q) dependence of inelastic electron
scattering is sensitive to the difference between collective and single-particle behavior in

atomic dynamics. We measured the energy centroid of the 4d continuum peak for
0

0(q (1.4 A ' in the following solids having complete 4d shells: Sb, Te, and BaF2, and
find that a single-particle description is favored.

I. INTRODUCTION II. INELASTIC ELECTRON SCATTERING

The complete 4d shell has become an arena for
theories of electron correlation in atoms. Models
have been tested by comparison with continuum

photoabsorption measurements on Xe and its
neighbors in the periodic chart. ' The failure of
certain single-particle models to describe these
spectra is well documented. While one such
model, based on the Hartree-Fock-Slater potential,
shows some shift in the peak of continuum oscilla-
tor strength away from threshold, it does not go
far enough to agree with experiment. Further-
more, the continuum bump in Xe is much broader
than this single-particle model predicts.

By including statistical correlations inside the 4d
shell, a Hartree-Fock (HF) calculation by Kennedy
and Manson approaches the measured continuum
in Xe. Recent HF theories by Kelly, Carter, and
Norum have given fair agreement with Ba 4d
measurements while emphasizing the importance
of relaxation effects. In Xe, Amusia uses an
infinite-order perturbation scheme called random-

phase approximation with exchange (RPAE) to
find good agreement with experiment. The best

descriptions of 4d photoionization in Ba are pro-
vided by Kelly's use of ground-state correlation in

finite-order perturbation theory, Wendin's RPAE
with relaxation, and the recent time-dependent

density-functional approach of Soven and

Zangwill. An intriguing interpretation of the 4d
continuum peak in Xe is provided by Amusia and
Wendin. For them, it signals the occurrence of
collective oscillatory notion in the 4d shell —an

atomic analog of giant dipole resonances in nuclei

and plasmons in metals.

The above approaches are based on rather diver-

gent points of view, yet all but the simplest can
produce reasonable agreement with the measured
spectra. Here we describe results of an additional
experiment, inelastic electron scattering, which can
provide a new parameter to be used in distinguish-

ing between the above theoretical approaches.
Our experimental objective is the measurement

of "dispersion" in the 4d continuum. Our opera-
tional definition of dispersion is the shift in the en-

ergy centroid of the 4d continuum (E )4a as a
function of momentum transfer q.

In our scattering experiment, we measure the
rate of transfer of momentum q, and energy
E( =%co), from a fast electron beam to a thin-film
target. Our work is similar to earlier experiments
that studied 4d excitations in gaseous XE over a q0
range of from 0.5 to 5.4 A '. In a given experi-
mental run we fix the scattering angle 8, while the
scattered beam is counted as a function of E, the
energy loss in the target.

For E and q which are small compared to the
incident energy and momentum, q is given by

2 2

A'-k,

where k, is the outgoing projectile momentum.
Since the first term can be made small compared
to the second term at sufficiently large scattering
angles, q and E can be decoupled.

The differential scattering cross section can be
expressed three ways. First, Fermi's golden rule
gives
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„ l(fle "' l~&l' .
dEdQ q4
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(3)

S(q,co) is the dynamic structure factor. We are
interested in the quantity

(E)—:

dQd

f S(q, a))%co dro

f S(q,co)de

The numerator is given' by the f-sum rule

f AS(q, co)dco=Zq /2m .
0

The denominator, which is called the instantaneous
structure factor, is given by'

1S(q)= —0 ge 'e ' 0
fi

The sum is over all the electrons in the atom, their
positions being r;, r~. Now, we have

Zq
2mS(q)

(2)

To show that (E ) is an even function of q, all that
is necessary is to show that S(q) is even. But this
is obvious, since replacing q with —q and switch-
ing labels i and j in the expression for S(q) returns
the same result.

A third interpretation of the differential cross
section is in terms of the energy and wave-vector-
dependent dielectric function for longitudinal
response 81 (Ref. 10):

dQ is the differential scattering angle. The born
approximation is valid since the incident beam en-

ergy, 300 keV, is large compared to the charac-
teristic energies to be examined. A power-series

~ ~
expansion in q of the transition operator, e' q ' ' re-
veals that as q is increased from zero, monopole
and quadrupole as well as dipole excitations are
created in a localized system.

At this point, we can derive a result which will

guide us later. We show that the energy centroid
(E}of an atom's entire spectrum is an even func-
tion of q. We use a second expression for the dif-
ferential cross section'

do. 4A

dEdg & 4

We will use this expression in order to normalize
our measurements.

III. EXPERIMENT

A description of our inelastic electron scattering
spectrometer has been published. " At our incident
beam energy of 300 keV, the attenuation length is
on the order of 1000 A in solid Te. Consequently,
we prepared thin evaporated films as targets. The
Te and Sb specimens were prepared as thin as 200
0

A, and were supported on a copper wire screen.
Our thinnest BaFq sample, 480 A thick, was on a
carbon film substrate again held by a copper
screen. We cover an energy-loss range of
0 &E & 300 eV with a fixed resolution in the range
0. 1 &~&0.3 eV. The useful q range, limited by
quasielastic-inelastic multiple scattering, is
0 & q & 1.4 A '. Since the size of a 4d orbital is
(r)4o=0.5 A, we have sufficient momentum
transfer to vary the selection rules for transitions
from this shell.

Our experimental program is as follows. We
measure the scattering rates in the range of the 4d
excitation for each of the three materials at various
scattering angles. We then apply a small correc-
tion to the spectra to account for the E dependence
of q seen in Eq. (1). This allows us to regard q as
the momentum transfer that is perpendicular to the
primary beam direction only. Next we extract the
centroid of the 4d continuum bump (E)~. The
difficult step in this procedure is to remove the
background contribution to the rate caused by exci-
tations of electrons with binding energy less than
that of the 4d electrons. We therefore begin by
performing a background fit. We then extract the
4d centroid by background subtraction and mo-
ments analysis of the difference. This procedure
was carried out in several different ways to allow
an estimate of the uncertainties involved. Finally,
given (E )4o, we look for its change with q.

Examples of 4d spectra with fitted back-
grounds' for the three materials studied are shown
in Fig. 1. In Sb and Te the continuum bump ap-
pears as a broad peak centered about 40 eV above
the sharp lines at threshold. The small modula-
tions at the peak could be solid-state effects, as
seen in the gas- and solid-photoabsorption studies
of Xe." ' In BaFq the continuum bump is more
asymmetric, with more severe modulations. From
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tributes a significant cross section which falls with
increasing energy across the 4d region. We do not
detect additional features near the 4p and 4s bind-
ing energies (as given by Ref. 13).

By applying a Kramers-Kroning transformation
0 0

to our q =0.3-A, 200-A-thick Te spectrum, we
can generate absolute values for the real and ima-

ginary part of the dielectric function [see Eq. (3)].'

We normalize the spectrum with the aid of a low-

frequency measurement: At 8=0.3 eV,
Re(1/e) =0.03 which we take to be zero. ' Our
value of the photoabsorption coefficient over the
4d region is in good agreement with synchrotron
measurements. ' In making this comparison, we
have relied on the fact that at low momentum
transfers, the transverse dielectric function meas-
ured in photoabsorption and the longitudinal
dielectric function provided by inelastic electron
scattering are the same. '

To see how important multiple scattering is to
our observations, we calculate the effective number
of electrons per atom, n*, for different target
thicknesses':

UJI-
I- 2
O
V)

a I i s i i I i s i a I s i s s T0
50 100 150 200

ENERGY (eV)

I
I

I I I

(c)

where N, is the number density of atoms, ' e the
electron charge, and m the electron mass. The in-

tegral is over the 4d portion of the spectrum
(39&E &250 eV for Te). We get n* =12.3 elec-
trons per atom for a 200-A-thick target and
n' =16.3 electrons per atom for a 400-A-thick Te
target (both for q =0.3 A '). We see that multiple
scattering can be important. We will discuss the
effects of multiple scattering on our dispersion
measurements below.

IV. DISPERSION ANALYSIS

50 100 150 200 250
ENERGY (8V)

FIG. 1. Inelastic electron scattering spectra of the 4d
shell; rate (arbitrary units) vs energy (E). Solid lines are
background fits. Atomic binding energies are indicated.
(a) Sb, 200 A thick, q =0.8 A ', (b) Te, 200 A thick,

q = 1.0 A ', (c) BaF2, 480 A thick, q = 1.1 A

comparison with vapor phase Ba photoaborption
results, "' we conclude that these wiggles are not
atomic in origin. In all materials, the background
due to excitations with low-energy thresholds con-

—
CX2

Rb ——aiE +a3 . (5)

We divide the measured spectrum into three re-
gions: one below the 4d threshold which is due to
the background alone, a central region containing

Returning to the question of how the centroid of
the 4d continuum changes with momentum
transfer, we discuss our first method of centroid
extraction —background fit followed by moments
analysis.

We take the regions, given in Table I, for our
background fits to the function
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TABLE I. Intergration regions for background fits and moments analysis.

Material
4d threshold

(eV)

Background-fit regions
(in eV)

Moments integration region
(in eV)

Sb
Te
BaF2

33
41
91

(22.4, 25.4)(170, 190)
(37.5, 39.5)(185, 205)
(83.0, 92.2)(210, 250)

[49.0, 165]
[39.5, 180]
[90.0, 230]

the 4d continuum resonance, and a region well

above the resoncance which we take to be dominat-

ed by the background. These three regions are list-

ed in Table I. The crucial choice is the lower limit

Eo to the threshold region. We computed the 4d
centroid ((E&4d ) for various values of Eo. We use

Eo values for which (E&4d is not significantly

changed by small changes in Ep. In the case of
Sb, we are careful to stay below the energy region
in which double scattering of the 15-eV solid-state

plasmon loss might occur.
We find values of ai in Eq. (5) that are in the

range 2 —3 for low-q values. This appears reason-

able since one generally expects a2-3 for the
high-energy tail of an electron scattering spectrum.
Assuming only counting uncertainties in the spec-

tra, the P /v (chi squared divided by number of
degrees of freedom) values for the fits over the
0 & q & 1.4-A ' range are as follows: for Sb,
2&1 /@&48 for Te, 0.2&7 /v&11, and the

BaFz, 2 &7 /v & 13. In view of the poor fits, we

inflate the estimated data point uncertainties in

order to give 7 /v= 1.
With a background function in hand, we are able

to strip away the spectrum due to low threshold

excitation and leave an approximate 4d spectrum

(R~). That is,

R~——Rm~, —Rb .

Next, we evaluate the centroid of R~.

ER4ddE
&E&~=

R~dE

The moments integration regions used are given in

Table I. In Sb, we start well past 30 eV in order to
avoid the strong double-scattering region. In com-

puting the uncertainty in (E &~, we include the
correlated error in each data point arising from the
use of a background function. The background-
fit contribution to the error in (E&~ greatly
exceeds that due to electron counting uncertainty
in the measurements.

Using Eq. (4), we calculate the effective number

0

of electrons in the 4d bump. For a Te, 200-A-
0

thick target, q =0.3 A ', with background re-

moved we find n~ ——9.5 electrons per atom. From
our measurements of integrated oscillator strength
for different thicknesses, we estimate an uncertain-

ty of 3 electrons per atom to this value. Since
most of the 4d shell's ten electrons worth of oscil-
lator strength is found in the continuum bump, we

conclude that this shell does not interact strongly
with the rest of the atomic electrons. Our meas-
urement is therefore consistent with the continuum

bump being a feature of intrashell interaction.
Taking up our results for (E&4d versus q, we

use the following form for our low-q data:

(E&~ ——c+(dq'), (6)

where c and d are constants, d being the interesting
coefficient of dispersion. We are guided to this ex-
pression for low-q dispersion by our proof that, in
averaging over the entire spectrum, (E & is an even
function of q. Therefore, we drop the linear term
in q from a power-series expansion. Equation (6)
is also the form predicted by all the models we
have studied. Table II (moments analysis) gives
our fits to Eq. (6) using the above analysis. We
use 0&q & 1.4 A ' in order to avoid confusion due
to inelastic-quasielastic multiple scattering. Since
the 7 /v values are large, we again inflate the er-
rors to produce unity for X /v. This gives the er-
rors n~ for the dispersion coefficient. In both Te
and Sb we find agreement for 200- and 400-A-
thick samples. Therefore multiple scattering does
not appear to present a problem for our dispersion
measurements at low q ( & 1.4 A '). The disper-
sion is largest for Te and about the same for Sb
and BaF2.

In Figs. 2 —4, we show the dispersion extracted
by the moments analysis in Sb, Te, and BaF2,
respectively. The uncertainties in the centroids
correspond to a X /v=1 for the background fits.
Note the effect of inelastic-quasielastic multiple
scattering for q &2 A . The best-fit line
corresponds to Eq. (6).
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TABLE II. Dispersion results (see text for explanation).

Material
Thickness

(A)

Moments analysis

g /v d(eV/A ) o~

Gaussian fit

0
o.q I /v d(eV/A ) og og d] d2

Sb
Sb
Te
Te

BaF2

200
400
200
400
480

60/7
16/8
26/9
19/6
15/3

1.24
0.96
3.66
5.37
1.50

0.12 0.35 16/7
0.13 0.18 6.3/8
0.33 0.56 39/9
0.60 1.07 24/6
0.20 0.45

—2.4
—2.0

2.1

3.4

0.3 0.5 (—4, —2)
0.3 0.3
0.2 0.4 (1.6,2.8)
0.4 0.8

(—3.2, —1.6)

(1.2,3.0)

As a check on our moments-analysis results, we
recompute (E)~ versus q using a Gaussian plus
background fit. This is an inferior method since it
presupposes a particular shape for the continuum.
We find that for Sb and Te, both Gaussian and
Lorentzian shapes give usable fits. However, the
complicated asymmetric shape of the 4d continu-
um in BaF2 puts it beyond the reach of this
method.

Our Gaussian-fit procedure is as follows: First,
we fit the background in the same manner as was
used in the moments analysis, Then we fit the
continuum line shape over the integration regions
given in Table I with

R =Rs+a3exp[ a4(E —as)—] .

By keeping the background fixed, we ignore the
nonphysical contribution to the Gaussian shape by

I I
I

I I l I
/

1 I ~ I

points below the 4d energy threshold.
The advantage of the Gaussian-fit method is

that it helps us to understand the contribution of
potential systematic errors. We can look for
changes in the dispersion coefficient caused by
varying the range of the fit. The two crucial
parameters are the lower limit of the high-energy
fit region, and the centroid of the low-energy back-
ground region. The range of variation of the
dispersion coefficient for small, reasonable varia-
tions of these parameters are given by d& and d2,
respectively, in Table II (Gaussian fit). The results
are consistent.

Our Gaussian-fit dispersion results are given
under d in Table II. The errors crd are derived
from the fits to Eq. (6). Taking X Iv= I for these
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FIG. 2. Energy centroids vs q for Sb using moments
analysis: (a) 200-A thick target; (b) 400-A thick target.

2 (g-2)

FIG. 3. Energy centroids vs q' for Te using moments
analysis: (a) 200-A thick target; (b) 400-A thick target.
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Eq. (2). Use of a product wave function for the
ground state allows us to express S(q) in terms of
the expectation values of the single-particle orbitals
of the fully occupied 4d shell':

S(q)=Z —g f
(i

f

e' q '
f i) f

'.
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q (V)
FIG. 4. Energy centroids vs q for BaF2 using mo-

ments analysis. 480-A thick target.

fits gives the final errors cr~.
In conclusion, the Gaussian-fit method gives us

a sense of the variation of the measured dispersion
with fitting method. As in the case of the mo-

ments analysis, it gives agreement for different tar-

get thicknesses. The dispersion coefficient values

agree with the moments analysis for Te, but not
for Sb. Possibly the increased double-plasmon con-
tribution at low energies in Sb accounts for this
variance.

In conclusion, we rely on the moments analysis

to supply the measured dispersion. We find agree-
ment for different thicknesses in Te and Sb indi-

cating that multiple scattering is not a problem. A
second method of reducing the data, a Gaussian
fit, suggests that uncertainties in the dispersion
coefficient may be as large as +1 eV A . The
dispersion in Sb and BaF2 is small, =1 eV A .
For Tejtis =4eVA.

V. MODELS

In order to appreciate the significance of our
dispersion measurements in understanding 4d
correlations, it is necessary to find out what vari-
ous single-particle and collective models predict.
We derive inelastic electron scattering results for
Te in one very simple model of each type. While
neither is capable of explaining photoabsorption
measurements, they suggest the degree to which
our experiments are sensitive to correlations in 4d
electronic motion. More sophisticated approaches
to the calculation of atomic dispersion are feasible.
An important example is Amusia's RPAE predic-
tion of inelastic electron scattering in Xe. '

For our single-particle model, we assume a
Hartree-type atom composed of a complete 4d
shell of hydrogenic orbitals around a core with

The sum is over the states of the 4d shell.
Evaluating S(q) with hydrogenic 4d wave func-
tions for Z =10, we find the values c =8 eV; and
d =2.0 eV A for small q, and d =2.7 eV A for
the largest momentum transfer used in the experi-
ment (q =1.4 A ').

By way of comparison, we also find the 4d
dispersion using a collective model of the excita-
tion. In the simplest model of this type, one re-

places the 4d shell by a metallic ball of uniform
charge density. Before studying the consequences,
we first check to see whether the usual criterion
for plasmalike behavior is met in the 4d electronic
system. If the ratio of average kinetic energy K, to
average interparticle potential energy 8' is greater
than or equal to one, the system is said to be a
good plasma and collective charge oscillations may
occur. In order to evaluate the situation in Te,
we calculate (E)4d ———, (r 6 V)4d using the 4d

wave function from the Hartree-Fock-Slater model,
and the atomic potential V, seen by an electron in
this model. We find (Jt )~ ——454 eV, close to
the value given by E~ (E )~ + ( V——)4d, where

E~ is the Hartree-Fock-Slater binding energy.
To compute Fwe use the Hartree-Fock-Slater

potential but only consider the contribution due to
nine 4d electrons. We get ( W)~ =208 eV.
Therefore K/8'=2, a favorable ratio for plasma-
like behavior. Other theoretical searches for
atomic plasmons have also reached positive conclu-
sions for particular atomic systems.

In our collective model for 4d excitations, we
imagine a metal ball with a radius equal to
(r )4d

——0.49 A (obtained using the Hartree-Fock-
Slater model "). If the ball is filled with the ten 4d
electrons, we have a number density of n =20 A
An alternative picture represents the 4d system by
a metallic "shell" with mean radius (r )~ and
thickness:

br~=((r )~—(r)~)' =0.20 A.
0

This gives n=16 A inside the shell. We there-
fore take the electron density to be in the range
16(n (20 A

Given this electron density, and taking the col-
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lective mode energy from experiment on Te,
(E)~=85 eV, we compute the cutoff wave vector
for Landau damping, '

qt
——(E)4d/vF ——1.4 A

where vF is the Fermi velocity for the derived den-

sity. The atomic 4d system is unusual as a metal-
lic gas supporting plasma oscillations since qL is
on the order of the size of the system (0.5 A).
This suggests that the localized collective mode
mixes well with single-particle excitations. Thus
we expect the collective resonance to be strongly
damped. This is consistent with the large observed
width.

In considering the excitations that can occur on
the metal ball, we note that the primary difference
between an actual metal ball and the Te 4d shell is
that the Te shell has an energy gap, the 4d binding

energy, Eg[ =42 eV (Ref. 13)]. Therefore, we ex-
pect the energy of a longitudinal mode of excita-
tion E~, seen as a scattering resonance in our exper-
iment to be different from the corresponding plas-
ma mode energy of the metal ball E~. We relate
the two using an expression developed to connect
exciton and plasmon modes in wide-gap insula-
tors~6:

E,'=E'+E,' .
W'e use the classical bulk and surface waves that

can occur on a sphere as our plasma modes. Their
energies are the solutions to

function. For volume plasma waves, the low-q
cross section is

3d CTvp r QCOvp

dQ 3apR (qap)

where co„p is the volume plasmon energy.
0

At low momentum transfers, e.g., q =0.2 A
the l =1 surface wave is the dominant mode, fol-
lowed by the bulk mode. At higher momentum
transfers, e.g., q = 1.0 A ', the l =2 surface mode
has risen in excitation probability to become
second only to the l =1 mode. We perform a
weighted average at each q to find the centroid
(E)~ of the spectra On. e might expect that since
the various modes occur at different energies, the
change in relative excitation probability would ac-
count for any shifts in (E)4d with q. Instead, the
dominant "dispersing" mechanism is the change in
the eigenenergies themselves with q. Therefore, the
dispersion we predict is closely related to the q
dependence of the Lindhard dielectric function.
Our dispersion result in this model has the form of
Eq. (6) with

10.9&d &11.5 eV A

100 &c & 109 eV .

The uncertainties reflect the range of densities
described earlier.

for surface waves of angular momentum l, and

a=0

for a bulk wave. For e, we use the real part of the
Lindhard dielectric function whose parameters
are supplied by a free-electron model with the den-

sity derived above.
In order to compute the electron scattering spec-

trum, we must know the probability of excitation
of these modes as a function of momentum
transfer. For this we turn to work performed on
x-ray and electron scattering from metal balls and
voids in metals. ' ' For low q, we have the rate
for exciting l-wave surface plasmons:

p j( (qrQ)
=2maprp (2l-p 1)

(qa, )

where ap is the Bohr radius, rp is the radius of the
ball, R is the Rydberg constant, co~ is the eigenen-

ergy of the plasmon mode, j~ is a spherical Bessel
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FIG. 5. Dispersion coefficient (d) vs atomic number

(Z): Squares, 200-A thick targets; circles, 400-A thick
targets; triangle, 480-A thick target. Three models are
presented.

VI. CONCLUSIONS

In Fig. 5, our measured and predicted values for
d, the dispersion coefficient, are given as a func-
tion of atomic number Z. Multiple scattering does
not appear to be a problem in Te and Sb since the
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results are independent of sample thickness.
Besides our collective- and single-particle predic-

tions, we have included the free-electron response
expected to occur at large momentum transfer.
This is the regime of Compton scattering for
which qr && 1, where r is the radius of the 4d
shell. This means q && 4 A while our experi-
ments extended only up to q =2 A . The disper-
sion in this model is simply given by the recoil en-

ergy (E)=Pi q /2m, where m is the electron
mass. The free-electron result d =3.8 eV A is
independent of Z. We find that our Te results are
remarkably close to this high-q limit. Overall our
measured dispersion appears to favor single-
particle as opposed to collective descriptions.

To summarize, we have been able to examine 4d
excitations with nonzero momentum-transfer in-
elastic electron scattering experiments in solid Sb,
Te, and BaF2 A Kramers-Kroning analysis shows
that our Te spectrum is consistent with absolute
photoabsorption measurements. The oscillator
strength contained in the broad bump in the 4d
continuum of this material is approximately equal
to the total value expected from the 4d shell. We
have drawn attention to the shift in the continuum
centroid as a function of momentum transfer.
From simple model calculations, we expect these
dispersion measurements to be sensitive to whether
or not collective behavior is occurring in these 4d

excitations. Our measurements favor a single-
particle interpretation.

It would be valuable to compare these dispersion
results with predictions made by more realistic
models which are in agreement with photoabsorp-
tion spectra. The models mentioned above, such as
Hartree-Fock, ' Hartree-Fock improved using
many-body perturbation theory, RPAE (Refs. 5
and 7), and the time-dependent density-functional
approach are all able to describe the (q =0) photo-
absorption spectra reasonably well. At present
there is no physical basis for distinguishing be-
tween these rather different approaches to under-
standing 4d-shell core spectra. The dispersion
measurements presented here provide a new param-
eter with which these models must be consistent
and which may be useful in sorting out the dif-
ferent effects described in these models.
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