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An application of the time-dependent Hartree-Fock (TDHF) theory of charge transfer

in atomic collisions is presented. Probabilities for elastic and double symmetric charge

exchange are calculated for a fixed laboratory scattering angle and for collision energies

from 10 to 70 keV. The TDHF equations are solved using finite difference techniques

and propagated in time using the Peaceman-Rachford alternating-direction implicit

method. Plots of time-evolved charge densities are presented also.

I. INTRODUCTION

Charge-exchange processes during the collisions
of atoms and ions have been studied extensively
both theoretically and experimentally. Any of
several recent reviews can provide an introduction
to the extent of the efforts in this field. ' Because
of the high degree of accuracy which has been

achieved in measuring charge-exchange cross sec-
tions, the theorist is challenged to devise new and
more rigorous computational methods. Theoretical
studies of charge exchange between atoms and ions
at medium and high energies generally employ
basis set expansions (either atomic or molecular) to
describe the electronic states of the colliding parti-
cles. The nuclei are assumed to follow either
straight-line or Coulomb trajectories. These tradi-
tional impact-parameter methods require a sub-

stantial effort to obtain the relevant coupling ma-

trix elements between the electronic states and re-

quire the incorporation of traveling wave-phase
factors in order that proper asymptotic scattering
states can be defined. This latter requirement, in

fact, further complicates the task of calculating the
coupling matrix elements. Also in many treat-
ments the truncation of the basis expansion leads
to an origin dependence in the couplings. Many
efforts have been made to find remedies for these
problems. However, by directly integrating the
time-dependent Schrodinger equation using either
finite difference or finite element techniques for
the time evolution of the electronic wave function,

the problems with basis set representations are
avoided. Time-dependent methods and theories are
beginning to be developed by several groups to
study atomic-collision processes. In this paper we
present results of finite difference calculations to
illustrate the time-dependent Hartree-Fock (TDHF)
method and to demonstrate its use. The results we

present indicate that over a substantial range of
collision energies the TDHF solution does yield ac-
curate charge-transfer probabilities. We are en-

couraged by these results and believe that for some
atomic-collision processes this technique is certain-
ly competitive and potentially superior to basis ex-
pansion methods used previously.

In the next section we present the TDHF
method which has been developed over the past
several years for the study of collisions of heavy
nuclei and which we have adapted to study
atomic-collision phenomena. We present the de-
tails of our calculations and the results in the third
section. The final section includes our conclusions
and a statement of the problems which must be ad-
dressed to improve the utility and accuracy of
these methods.

THEORY

We are interested in collisions with relatively
high velocity (10—100-keU laboratory energy) and
with small impact parameters. Therefore we can
make the following two approximations. First, we
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assume that the nuclear motion can be approximat-
ed by a Coulomb trajectory. At the velocities con-
sidered the trajectory differs from a straight line
only when the two nuclei are very close together,
essentially inside the electronic charge cloud.
Second, we assume that the charge density is
cylindrically symmetric about an axis [z axis, see
Fig. 1(a)] which passes through the target nucleus
and is parallel to the line tangent to the scattering
trajectory at its point of closest approach. Then
the equations governing the evolution of the elec-
tronic orbitals depend only on two spatial coordi-
nates r and z ( —00 &z & oo, 0 & r & 00), where r
measures the perpendicular distance from the z
axis. These equations are solved on a two-
dimensional finite difference grid. The origin of
the coordinate system is fixed at the target nucleus.

The numerical methods we use have been
described thoroughly in the nuclear physics litera-
ture and therefore are likely to be somewhat un-
familiar. For this reason we repeat the details of
the calculations here but emphasize that much of
the development has been carried out and present-
ed before.

In this paper we are interested in a two-electron
system whose total electronic spin state is a singlet.
Therefore, we have no exchange interaction and we
can use a single, doubly occupied orbital to
describe the wave function for the system. The

time-dependent Hartree-Fock equation for the evo-
lution of this single spatial orbital can be written
{using atomic units, e =A= m = 1) as

i P—(r, t) =h (t)P( r, t),
at

where

h(t}=——V +—f dr' p{r, t)
2 2 ~ ~/

A 8

Ir —Rs«)
I

(2)

P(r, t) =(2trr) '~
g (r,z, t)e'"~, (4)

where p, the azimuthal quantum number, is zero
for cylindrically symmetric states.

We solve Eq. (1) for gjk, the values of the func-
tion on the mesh defined by

and

rj =(j ——, )hr, j =1,2, . . .,N~

Rq and Rz are the positions, and Zq and Z~ the
charges of the target and scattering nuclei, respec-
tively. The total electronic charge density is given

by

p(r, t) =2
I P(r, t)

I

In Eq. (2) we have shown explictly the time depen-
dencies in the problem.

We write the orbital in cylindrical coordinates as
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Then the time-dependent Hartree-Fock equation
can be rewritten more conveniently as

~ a
g 'k (Hg) 'k + ( ~g)jk

where the (Hermitian) horizontal and vertical
Hamiltonians are defined by

1
{Hg) 'k (g'k 1+g'k —1 2g k )2(~)2 J + j J

1+ ~ ~jkgjk ('7)

0-4 Z 4 and

1
jgj +1k + j —1gj —1k gjk )2(ar)'

FIG. 1. (a) Coulomb trajectory of scattering nucleus.

(b) Axes zl and z2 were used in our modified calculation
as described in the text.

1+, ~jkgjk .

The coefficients cj are given by
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2 1 )1/2

Note we use a three-point formula to calculate the
kinetic energies in each direction. The potential 8'
in the above equations includes the nuclear attrac-
tion terms and the Coulomb term. The Coulomb
term presents two significant problems for the nu-

merical integration. First, the term depends on the
wave function itself, i.e.,

(10)

This means that ideally the operators H and V
should be evaluated at t„+~~2 when propagating
from t„ to t„+&. This is accomplished approxi-
mately by a double-step integration procedure.
The first step is to t„+&. We then calculate h at t„
and t„+& to obtain

h„+)~2———,(h„+h„+i) .

Then this Hamiltonian is used for the final pro-

pagation step, again from t„ to t„+&.
The second problem with the Coulomb term is

that it is very expensive to evaluate the complete
integral in Eq. (10) for every point on the grid.
Fortunately we can obtain the potential much more
efficiently from a differential equation, the Poisson
equation,

V 4,(r, t)= —4m. 2p(r, t) . (11)

We solve this inhomogeneous differential equation
iteratively using an integration technique similar to
that described below. We need, however, the po-
tential on the boundaries of the mesh. This is ob-
tained from a moment's expansion of the density
about the target nucleus.

We have expressed the Hamiltonian in this par-
ticular fashion [Eq. (6)] in order to use the
Peaceman-Rachford (PR) method to perform the
time integration. If we define g'"' to be the value
of the function g at the time t„=

nest,

we have ac-
cording to the PR method

gI" +"=[I+i &V] '[I i'][I—+i'] '[I i wV]g—'"', (12)

where I is the unit operator and r=ht/2'. It is

easy to show that this expression agrees with the
expansion of the exact time-evolution operator,
exp[ i (H + V)—ht/A], through terms of order

(b,t)'.
The PR method is a specific example of a class

of integrators developed for parabolic equations.
This class is called the alternating direction irnpli-
cit (ADI) methods. 7 They require the solution of
two implicit equations which involve tridiagonal
sets of equations. The implicit methods have
much better stability properties than the explicit
difference schemes but they require matrix inver-

sions for their solution. Since the matrices in the
ADI method are tridiagonal, their inversions can
be achieved very efficiently using Gaussian elim-
ination. Other implicit schemes for equations of
this type, for example, the Crank-Nicolson
method, require the inversion of banded matrices.
The ADI methods involve less computational ef-
fort and can be shown to be accurate to the same
order in ht. Predictor-corrector methods also have
been used to integrate similar time-dependent equa-
tions with stable and accurate results. It is neces-
sary, however, to carry several solutions at previ-
ous time steps to accomplish the propagation.
This leads to storage problems for functions de-
fined on large grids. Finally, the Taylor expansion

of the time-evolution operator, keeping enough
terms to preserve the norm and the energy of the
wave function has been used. ' This also has been
found to be stable and accurate and may be the op-
timum method provided the calculation of higher
derivatives is much faster than the inversion of tri-
diagonal matrices. However, the stability properties
of this propagation method are not well under-
stood.

Having described the method we have used, we
now discuss its application to our particular sys-
tem. Our initial conditions for this problem con-
sist of a ground-state He atom at the origin of the
coordinate system and an incident helium nucleus,
He +. In order to compare our results to existing
experimental" and theoretical' ' data we have
chosen the masses of the target and scattering nu-
clei as 4 and 3 amu, respectively. The initial target
state is the lowest eigensolution of the static
Hartree-Fock (HF) equation. By introducing a
discrete representation of the wave function on a
spatial grid we have changed the differential equa-
tion to a difference equation. The ground-state
solution of the finite difference equations does not
equal the ground state of the HF equation except
in the limit of an infinitely small grid spacing. So
we must determine the ground state of our approx-
imate problem. We do this by integrating the
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TDHF equations in imaginary time, t~ —it.
Starting with an approximate ground state and re-

quiring the wave function to remain normalized,
the "time-" propagated wave function will can-
verge to the ground state. ' It is easy to see that
this is true if we expand our initial guess in terms
of the real eigenfunctions P„, and eigenvalues e„,
of the HF equations. The evolving wave function
can be written as

f(t) =g a„g„e (13)

Provided our initial guess is not orthogonal to the
ground state, the evolved wave function converges
to the desired solution with the excited components
dying off exponentially.

The scattering calculations consist of following
the time evolution of the electronic wave function
through the collision until the nuclei separate to
the point where the asymptotic final states may be
determined. We calculate the transition probabili-
ties to the final states of interest by projecting the
wave function onto the asymptotic eigenfunctions
of the system. If we do this as a function of time
during the collision, we observe the probabilities
approach the asymptotic values although this is
not generally true of TDHF equations (see below).
When they have become stable, we stop the pro-
pagation.

We have found it necessary to make one further
approximation due to the finite difference tech-
nique used. The singularities in the potential at
the two nuclei are modified by allowing the nuclei
to have finite size. This is particularly important
in the case of the scattering nucleus, the position
of which changes constantly relative to the nearby

grid points. This would cause severe numerical

problems. Although the finite nuclear size reduces

the binding energy of the electrons slightly, it does
not seem to significantly affect transition probabili-
ties.

P2

He ++ He(1$ )~ He(]$ )+ He + (14b)

for a fixed laboratory scattering angle and a range
of collision energies. The elastic PD and double
charge transfer P2 probabilities are compared with
experimental results of Keever and Everhart (KE)
and with theoretical results of Harel and Salin'
(HS) and of Lopez et al. ' (LMPRY).

The integration parameters used in these calcula-
tions are collected in Table I. The incident particle

0
was approximately 4 A from the target when the
integration was begun and was a similar distance
away when the asymptotic analysis was completed.
The results were insensitive to an increase of this
distance. We used an integration time step of 1 —4
0
A/c with the value chosen so that 600—700 in-

tegration steps were required for each collision.
The spatial grid contained 20 720 points. Each cal-
culation required approximately 12 min on the
CRAY-1 computer. The nuclear radius used in

0

the reported calculations is 0.06 A. We also per-
formed calculations with half as many grid points
in each direction with twice the time step, and
with the nuclear size twice as large. We found the
answers shifted by, at most, a few percent for any
of these changes. Doubling the size of the nucleus
shifted the peak positions by approximately 20%
of their widths at half maximum and their heights
were changed by 20 to 30%. Of course, when the
peaks shift, the results at a particular energy can
change quite dramatically. However, the overall

qualitative agreement remains good.
As discussed above we generated our initial state

by integrating the TDHF equations in imaginary
time. We used a single Gaussian with an exponen-
tial parameter of two for our initial guess and con-

verged to the ground state in about 30 iterations.
We obtained a ground-state energy of —77.7598
eV compared to the restricted Hartree-Fock (RHF)
limit of —77.8692 eV." Errors in this number are

CALCULATIONS AND RESULTS TABLE I. Integration parameters.

PD

He ++ He(1$ )~ He ++ He(1$ ) (14a)

We have calculated the time evolution of the
electronic wave function during the collision of a
helium nucleus with a ground-state helium atom.
We determined transition probabilities for the two
processes,

hr

N,
N,
ht
p, (nuclear radius)
b (impact parameter)
n, (number of time steps)

0.06 A
0.06 A
80
259
1 —4 A/c
0.06 A
0.009—0.063 A
600—700
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due to both the finite size of the nucleus and the
finite difference approximation. The result for
twice the grid spacing and for a nucleus with twice
the diameter is —75.5550 eV.

Having obtained our initial wave function, we
follow its time evolution through the collision with
the scattering nucleus by repeated evaluation of the
propagation equation [Eq. (12)]. The time-depen-
dent position of the scattering nucleus is deter-
mined by a Coulomb trajectory. For the energies
considered, the trajectory, to a good approxima-
tion, consists of two straight line segments joined
at the point of closest approach between the two
nuclei. The angle between the line segments is
chosen to be consistent with a laboratory scattering

angle of 3'. The actual Coulomb trajectory devi-
ates from the two straight lines only when the nu-
clei are very close together and well inside the elec-
tronic charge cloud. Obviously, the field due to
the scattering nucleus is not cylindrically sym-
metric in our coordinate system except for the case
of a head-on collision. In order that our assump-
tion of cylindrical symmetry be accurate, we are
restricted to considering only small impact parame-
ters and small scattering angles. (If this impact
parameter is too small, the consequent large
scattering angle negates our assumption. ) In the
axial symmetric approximation the potential due to
the scattering nucleus [the last term in Eq. (2)] is
given by

f

�2'
dP 2m

~

R—r
~

"o [(Z z) +(—b rco—sP) +(r sing) ]'

=m[2/(a+c)' +c/(o +c) + . ], (15)

where a+c =(Z —z) +(r+b), c =2rb, and Z
and b are the coordinates of the scattering nucleus.
For small values of b it was sufficient to keep the
first two terms in the above expansion to obtain
stable results.

Finally, we report calculations using two dif-
ferent procedures. The first of these simply uses
the Coulomb trajectory for the He +- He + sys-
tem with an impact parameter chosen so that in
the laboratory reference frame the scattering angle
is 3'. To allow for the recoil of the target nucleus
the scattering angle in our coordinate system is
5.25'. At the largest separations, the trajectory
reaches distances &0.2 A from the z axis. We
were concerned that the electrons transferred to the
scattering nucleus would see an attraction signifi-
cantly different from the true interaction due to
the corrections given in Eq. (15). Therefore, we
performed a second series of calculations using, for
the first half of the collision, the z axis of our
coordinate system which is labeled z& in Fig. 1 and
then shifting to the z axis labeled by zz for the
second half. We noted in our earlier calculations
that at the distance of closest approach the charge
density collapses around the two nuclei which, for
the small impact parameters considered, must ap-
pear to the electrons to be a Be nucleus. Thus we
change coordinate systems in the rniddle of the cal-
culations and assume the compact wave function is

unaltered by the shift. Throughout the collision
the distance of the scattering nucleus from the axis
is approximately equal to the impact parameter.
By tilting the axes this way during the collision we
assume that we obtain a more accurate representa-
tion of the charge-exchange states asymptotically.
The results are, in fact, better.

KE measured" the direct scattering and two-
electron capture probabilities at a scattering angle
of 3' for collision energies from 3 to 100 keV.
They did not distinguish ground and excited prod-
uct states. We have calculated probabilities only
for elastic Po and double charge exchange into the
ground state Pq. We presume these are the dom-
inant contributions to the probabilities reported by
KE. We show the comparison of our two calcula-
tions with the experimental results in Fig. 2. The
results of two earlier theoretical efforts which uti-
lize molecular basis set expansions to approximate
the electronic wave functions are shown also. The
earliest of these by LMPRY, employed a three-
term molecular state expansion and Coulomb tra-
jectories for the nuclei. ' Their results for double
charge transfer agree qualitatively with experiment.
HS expand the wave function in a linear combina-
tion of symmetrized products of one electron, dia-
tomic molecular orbitals. ' They use the impact-
parameter method (rectilinear trajectories) and in-
clude 12 molecular states in their expansion. They
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FIG. 3. Charge-density plots at various times during
the collision. The radial coordinate is p. Note large
transfer of probability at later times (P2, large). Con-
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cating that, as one would expect, a two-state ex-
pansion is inadequate for this case. In fact, if the
two-state basis were sufficient, the sum of the pro-
babilities would be larger than 1 due to the
nonorthogonality of the states.

FIG. 4. Charge-density plots (P0, large). E&,b
——20

keV.
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onto excited states. The excited states, of course,
cannot be generated by the imaginary time pro-
pagation technique if they are not the lowest state
of a given symmetry. The major limitation on our

CONCLUSIONS

%e have shown that it is feasible to calculate
reasonably accurate charge-transfer probabilities
over a substantial range of collision energies for
systems with more than one electron. using the
TDHF method. Our results compare well with the
existing experimental data, reproducing the peak
heights and positions somewhat better than the
previous molecular basis set calculations. In prin-
ciple, we would also project our final wave func-
tions onto single charge-exchange final states and

0.6—
P0

0.4—

0.2

I

400
0

0 16001200800

T (A/c)

FIG. 5. Time-dependent projections onto atomic
(asymptotic) states.
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present method is the small range of impact
parameters which can be treated accurately. We
are currently extending the method to solve the
TDHF equations in the rotating coordinate system
whose z axis follows the internuclear axis through-
out the collision. In this case there is coupling be-

tween states with different projections of electronic
orbital angular momentum along this axis due to
Coriolis forces. Fortunately, for electrons, the
number of such angular momentum states which
are important is limited so that it is feasible to
generate complete cross sections.

One of the remaining problems in these calcula-
tions is to find a way to determine the ionization
probabilities. Since in ionic systems and even in
neutral systems there exists an infinite number of
bound states, we cannot determine the ionization
fraction by projecting out the bound contribu-
tions. ' A second major need is to find a prescrip-
tion for projecting wave functions of systems with
more than three electrons onto Hartree-Fock final

states. Owing to the nonlinearity of the HF equa-
tions, the transition amplitudes obtained by pro-
jecting the TDHF wave function onto a set of final
states oscillate in time even asymptotically. ' Possi-
ble remedies for this problem have been suggested
but not thoroughly tested. ' ' "' lf these two
problems can be solved, it would seem possible to
use TDHF calculations for atomic collisions over
the entire range of energies which are too high for
molecular basis expansions to be feasible and too
low for the atomic expansions to be practical.
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