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Linked-cluster many-body perturbation theory has been used to calculate the Sternhei-

mer hexadecapole antishielding factor g„ in Pr'+. This parameter is a measure of
enhancement of a possible nuclear electric hexadecapole (16-pole) moment due to polari-

zation of the core electrons in an atom or ion. Large and predominant contributions due

to the angular mode of excitations neglected in earlier works have been found. Self-

consistency contributions to g„are found to be small (about 3%), similar to those in the

quadrupole antishielding factor y„. These contributions in the case of quadrupole polari-

zability aq and the crystal-field shielding parameter 0.
2 in Pr'+ were found to be larger

(about 17% but of opposite sign in both cases).

I. INTRODUCTION

Nuclei with spin I)2 can possess a nonvanish-

ing nuclear electric hexadecapole moment which is
several orders of magnitude smaller than the quad-
rupole moment. Experimentally it is very difficult
to detect hexadecapole interactions, because their
small size makes it very difficult to distinguish
them from the much stronger effects of quadru-

pole interactions. Typical quadrupole energies lie
in the range 1 —100 MHz, whereas hexadecapole
energies are in the region of 1 —100 Hz. Such
small interactions can only be detected in very
favorable circumstances. ' This explains why the
literature of hexadecapole interaction is so scanty.
Nevertheless, their existence is now confirmed and
in a few cases they have been experimentally
detected. One of the earliest claims to detect this
interaction is due to Wang followed by several

other workers. More recently, Dankwort et al.
have detected a nuclear hexadecapole interaction in

the ground state of ' Ho (I = —, ) using the
atomic-beam magnetic-resonance method.

Even if the nuclear hexadecapole moments are
small, their effects can be amplified considerably
via an antishielding effect similar to that for the
nuclear quadrupole moment ~ It was with this no-

tion that Sternheimer ' introduced the nuclear an-

tishielding factor g, the counterpart of the corn-

monly known Sternheimer quadrupole antishield-

ing factor y„ in the case of hexadecapole interac-
tions.

As the experimental efforts to detect hexade-

capole interactions are still continuing, accurate
calculations on g„could prove to be a step for-
ward in this direction. The purpose of the present
calculation has been basically twofold. Firstly, to
carry out a complete calculation for g „including
all possible mechanisms that might be anticipated
to contribute. In previous calculations, angular
contributions have altogether been omitted.
Secondly, to study the role of self-consistency ef-

fects to this parameter. Self-consistency effects to
various spectroscopic parameters have been calcu-
lated in the past and have been found varying in

magnitudes and signs. Therefore, it was also of
considerable interest to calculate such contributions
in the case of g„. We have chosen Pr + for the

present calculations owing to the fact that self-

consistency contributions to y„, aq (quadrupole
polarizability), and 0.

2 (crystal-field parameter)
have already been calculated by the same pro-
cedure employing the same basis set as in the

present case. This choice will make the compar-
ison more realistic.

In Sec. II we give a brief outline of the pro-
cedure. Results of the present calculation are
given in Sec. III. Section IV gives the discussions
and main conclusions of the present work.

II. PROCEDURE

A. Method of calculation

Linked-cluster many-body perturbation theory
has been adopted for the present calculation. This
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theory was developed by Goldstone and is now
commonly known as the Brueckner-Goldstone
(BG) linked-cluster many-body perturbation theory
(LCMBPT). It was first introduced to atomic phy-
sics problems by Kelly. '

A discrete basis set of occupied as well as excit-
ed wave functions was generated by confining the
Pr + ion in an infinite potential well of suitable ra-
dius. The potential inside the spherical well is the
Pr + Hartree-Fock-Slater potential, and at the
boundary it is infinite. Because of the nature of
the potential well continuum states are transferred
to the excited bound-state spectrum. This model

of generating one-electron wave functions has been

successfully used in our previous many-body calcu-
lations and its detailed characteristics are given by
Ahmad and Newman. "

A modified version of the Herman and Skill-
man' Hartree-Fock-Slater program was used to
generate the occupied orbitals and the self-
consistent HFS potential for Pr +. In line with
the suggestion made by Lenander' and Newman
and Taylor, ' the Slater exchange term of the po-
tential was multiplied by a correction factor of 0.8.
Lenander has shown that this correction factor
produces solutions for Pr + whose matrix elements

agree well with those of Freeman and Watson's'
Hartree-Fock solutions. Excited states were gen-
erated under the boundary conditions which are
equivalent to placing the ion at the center of an in-

finite spherical potential barrier of radius R. It

has been demonstrated" that the calculated physi-
cal quantities are always independent of the choice
of the size of the potential well. However, from
the computational point of view, it is found that
the larger the well radius the greater is the effort
required in determining the states because the spac-
ing between excited-state energies decreases with
increasing radius and the orbitals become more
sensitive to the precise energy values. It is also be-
cause of this that, for a larger well, convergence of
perturbation series in terms of the sum over the ex-
cited states is slower compared with that of a
smaller well. For the present calculation the
adopted value was R =11.621 au. (This value for
the potential-well radius may seem rather odd but
is taken because it occurs at a grid point in the in-

tegration mesh. )

B. Diagrams and expressions

The lowest-order and the major self-consistency
diagrams contributing to g„are given by Figs. 1

and 2, respectively. The physical mechanisms
represented by these diagrams and other details
have been extensively discussed earlier. Algebraic
derivations corresponding to similar diagrams are
also available in the literature. For the present
purposes, therefore, we consider it sufficient to
give the final algebraic expressions corresponding
to these diagrams. Thus for Fig. 1 one can write
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~here the notation [a] stands for 2a +1 and the 3—j symbol is presented in its standard form. The minus

sign appearing in this expression ensures that the sign of the calculated factor is consistent with the
definition —that a negative value corresponds to antishielding while a positive value corresponds to shielding.

The multiplicative factor 4 takes into account the summation over spin and the diagram multiplicity.
Similarly, the diagrams of Fig. 2 correspond to the following expressions:

(nz12
~

r " '
~

n'21'2 &R'"'(n~l~n'212nIl', n212)(n~l'~
I

r"
I
n~lf &

X
E(n &l &

~n'~l'~ )E(n2lz~n 212 )
(2)



25 ANGULAR AND SELF-CONSISTENCY CO¹RIBUTIONS TO. . . 2931

(Iq k Iq) (lq L I') ( (I) L lp) (I) k I()
o o 0J (0 () oJ!(0 o 0JI(0 o o J~"~ ri, i', i, i',

I

(nqlz! r '!nzlz )R' '(n&I'zn~l~n &I'& nzlz j(n'~ I',
!
r"!n, l, )X'

lp L lg E (n ) l ] n ) I ) )E (n ply n pl p )
tl ]PJ ] Op tf

p

(I) k I) t 1'Ip k Ipl fl) L lp'1 fl'( L Ipl

[k] ~ ~ ' ''~'~](0 0 0J (0 0 0J (0 0 0J (0 0 0J
Ll]1]l~l ~

I
R' '(n, l, nqlqnqlqn'~l', )(nial~! r '!nz zI)(n', 'I! r

! n, l, )X'
lp L lq E(n)l) n )l ) )E(nylon n2lp )

n]n ] npnp

(3)

(4)

where the standard notation for the 6j symbols has been used and L gives the multipolarity of the
electron-electron interaction. R' ' is the conventional Slater radial integral.

III. RESULTS

A. Present calculations

The results of the present calculations for g„ in

Pr + are presented in Tables I and II. Table I cor-
responds to the lowest-order (zero-order) contribu-
tions to g„which are obtained by numerically

evaluating expression (1). All possible combina-
tions of n, I, and l' are included and the summa-

tion over the excited states is carried out up to
n =30. This choice is crucial in all the calcula-
tions employing a similar basis set. The upper

limit of the basis set would be decided by the con-
vergence required. Fairly good convergence is not
necessarily always obtained, and therefore, there
remains an uncertainty in estimating the contribu-
tions from the remaining higher excited states.
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FIG. 1. Lowest-order contribution to g„. nlm and
n'I'm' represent the ground and excited states, respec-
tively. V] and Vz are perturbations representing the
crystalline and nuclear multipole fields.

(c)

FIG. 2. Dominantly contributing self-consistency dia-
grams. Diagrams (b) and (c) are exchange diagrams of
type (a). a; =n;1;m; and a—:n 1 m .
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TABLE I. Lowest-order contributions to hexadecapole antishielding factor g„ in Pr +.
Contributions smaller than 0.001 are omitted as they are negligible compared to the large
magnitude of q„. Contributions for Cs+ ion, which is isoelectronic with Pr'+ apart from
the 4f shell, are given for comparison.

Perturbations Contribution to g„

Cs+
Sen and

Narasimhan
(Ref. 18)

Pr'+
Sen and

Narasimhan
(Ref. 18)

3$ ~g
4$ ~g
5$ ~g

0.008
0.028
0.082

0.021(0.003)'
—0.854( —0.483)
10.075(37.817)

—1805.997( —2818.569)

3p ~h
4p ~h
Sp ~h

0.002
0.043
0.124

3d ~d
4d ~d

—1.136
—624.842

—11.018
—866.58

3d ~g
4d ~g

0.045
—0.124

3d ~l
4d ~i

0.001
0.054

Total —2422.470( —2781.232) —877.59 —557.54

'Bracketed quantities are the 4f contributions.

For the present calculations, however, convergence
has posed no problem. In fact, for the accuracy
with which the results are presented here an upper
limit of n'=22 could have been enough.

Self-consistency contributions to g were ob-
tained by evaluating expressions (2) —(4) for k =4.
Dominant contributions to this effect are presented
in Table II. As before, summations over excited n'

values up to 30 were taken.

B. Previous calculations of g„

Calculations of g „were first carried out by
Sternheimer ' for Cu+, Ag+, and Hg +, all of

which have configurations of completed shells;
with nd (n =3, 4, and 5, respectively) being the
outermost shell for all of them. Very large values
of g„=—1200, —8050, and —63 000 were found
in these ions. These values correspond to an-
tishielding and arise from the radial mode of exci-
tations nd~d. In the case of Ag+ and Hg +,
where there are two d shells, major contribution
( y 99%) carne due to the outermost shell. Corn-
pared to y„values, the magnitudes of g„are large
suggesting that the detection of nuclear hexade-
capole moments may be possible in favorable cir-
cumstances.

Further calculations by Sternheimer' suggested
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TABLE II. Dominant self-consistency contributions to g„ in Pr'+ corresponding to the
three appropriate diagrams of the type represented by Figs. 2(a), 2(b), and 2(c). Symbols
I& l&, lq, lz imply the summation over all the occupied values of n &, nz and the excited n &,n &

values up to 30.

l), l) ,
.Ip, lp Diagram type L values Contributions to g„

d, d;d, d

388.8
—93.2

—217.3
—3.5

8.6
—117.2

—3.3
—0. 1

—15.9
—1 ' 3
—0. 1

Others'"
Total —54.5

—19.5

Net Total —74.0

"Sum of other diagrams not shown in the figure.

similar values of g „for other ions, except that the
value of —670 obtained for Cs+ is much smaller
than the values for other ions. It should be
remembered that this value like others arises from
nd~d excitations, but the nd shell in Cs is inter-
nal to the 5s and 5p shells. We will comment on
this aspect later.

The most recent calculations for g„ in the
literature are those by Sen and Narasimhan' who
have employed Sternheimer's method and extended
their calculations to a number of ions. Hartree-
Fock-Slater ground-state wave functions have been
used in these calculations. Sternheimer's values of
—1200, —8050, —670, and —63000 for Cu+,
Ag+, Cs+, and Hg + can be compared with these
authors's respective values of —1471, —9580,
—877, and —37390. For the first three ions
Sternheimer used Hartree-Fock wave functions
while for Hg + he employed Hartree wave func-
tions (without exchange). The reason for the rath-
er very large difference in the two sets of g„
(Hg +}values can be attributed to this different
choice of the ground-state wave functions. This
clearly suggests that g„values are highly sensitive
to the quality of the wave function.

IV. DISCUSSIONS AND CONCLUSION

From the previous section it can be noted that
for all the calculations of g„available in the
literature, no attempt has been made to calculate
the g contribution due to the angular mode of
excitations. Angular mode of excitation is charac-
terized by one in which change of angular momen-
tum is involved, i.e., an excitation of the type
1~I+k where k represents the multipolarity of the
interaction. In earlier calculations it has been as-
sumed that g„(angular) is very small ( (1). This
assumption is derived from an argument due to
Sternheimer based on the Thomas-Fermi model,
and previous results for y„. Since the magnitude
of g (radial) is very large, q (angular) has been
neglected in these calculations and it has been as-
sumed throughout that g„(total) =g„(radial).
Thus only d and f occupied orbitals are assumed
to contribute because selection rules forbid radial
contributions to g from the s and p shells.

In our calculation for Pr +, we have included
both the radial and angular contributions and, as is
evident from Table I, we arrive at a very different
conclusion concerning their relative magnitudes.
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r) „(angular) due mainly to Sp ~f excitation, is
not only large but also predominates the g (total),
as this contribution is approximately a factor of 3
larger than the radial contribution. In physical
terms this result is not unexpected. The Sp shell,
being the outermost shell in Pr +, is particularly
susceptible to perturbation and therefore should
contribute considerably to the relevant physical
quantities. In fact, for almost all physical quanti-
ties like y„, electric multipole polarizabilities,
crystal-field parameters, etc. , it has been found
consistently that the Sp shell makes the largest con-
tribution. Therefore the present result is not
unexpected. An unusual aspect of this angular
contribution is, however, that it has the same sign
as the radial contribution. This is because of the
large contribution coming from the 4f shell (listed
separately in Table I), which appears with the same
sign as the radial contribution. Other nf (n & 5)
contributions have opposite signs as expected. The
large Sp~4f contribution can be attributed to the
near-degeneracy of the 5p and 4f levels in the Pr +

ion. ' This indicates that a similar order of magni-
tude for 5p~f contributions can be expected for
all the lanthanides, and perhaps also a substantial
6p~f contribution in the case of actinides. In

fact, in the light of the above observation we be-
lieve that except in the case where the outermost
shell is a d or an f shell, t) „(angular) contribu-
tions may be large and therefore it is important to
calculate them explicitly if any reliable estimate of
g„(total) is to be obtained.

This calculation shows that the self-consistency
contribution to g„ is small (about 3% of the zero-
order contribution and of the same sign), a situa-
tion very similar to that found in the case of y„ in
Pr +. This seems to be consistent with our expec-
tations because the quantities y„and g „are of the
same physical nature except for the order of the
multipolarities they represent. However, this is
very different from the situation encountered in
the case of a& and o.

2 in Pr + where self-
consistency contributions were found to be larger
(about 17% of the lowest-order contributions, but
of opposite signs in both cases). Thus one can con-
clude that the self-consistency effect cannot alter
the zero-order values of g„ to any appreciable ex-
tent.

I am thankful to Professor D. J. Newman for
several useful discussions.
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