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Electromagnetic induction in accelerated conductors

H. E. Wilhelm
Michelson Laboratory, Naval Weapons Center, China Lake, California 93555

(Received 7 October 1981)

Boundary conditions are derived for the interfaces of a conductor moving across an
external magnetic field in an ambient medium (vacuum or nonconductor), which consider
the emission of electromagnetic waves from the conductor surface as a result of elec-

tromagnetic induction. These boundary conditions are applied to the initial-boundary-

value problem for the electromagnetic induction in a conducting slab, which is accelerated
across a homogeneous magnetic field to a nonrelativistic velocity. Fourier-series solutions

are presented for the transient electromagnetic fields in the moving conductor and the
discontinuous electromagnetic waves in the ambient space. It is shown that the transient

electromagnetic fields inside and outside the conductor are due to two mechanisms, i.e.,
"velocity induction" (ordinary induction) and "acceleration induction" [d v(t )i'dt+0)
The latter result cannot be explained by means of the Lorentz transformation, which is
valid only for constant conductor velocities (inertial frames).

INTRODUCTION

Although the theoretical foundations for elec-
tromagnetic induction in conductors moving across
magnetic fields were formulated in 1908 by Min-
kowski, ' only simple problems such as stationary
unipolar induction in rotating disks have been dis-
cussed. The electrodynamics of moving media
has been a subject of basic research and also con-
troversy to date. In the treatment of electromag-
netic induction, e.g., in liners of magnetic field
compressors ' and transient plasma shock waves
interacting with external magnetic fields Bo, ' it
has become customary to use the boundary condi-
tion for the tangential magnetic field in the form
n X(B—Bo)=0 at the conductor-gas interface,
where B is the transient magnetic field in the con-
ductor and Bo is the unperturbed external magnetic
field. This boundary condition leads to elec-
tromagnetic solutions B,E in the conductor which
do not satisfy the corresponding boundary condi-
tion n X(E—Ep) =0 for the tangential electric
fields at the moving interface. These "convention-
al" boundary conditions produce approximate to
incorrect results, depending on the physical situa-
tion.

For an illustration of the problematics of the
conventional boundary conditions, ' which are also
being used in the analysis of magnetic field dif-
fusion into conductors at rest, consider a conduct-
ing slab M =2a with its surfaces initially at
x =+a in a transverse homogeneous magnetic field

&p=(O, Bp,0) for
~

x
~

( oc (Fig. l.). At time t =0,
this conductor is set into motion with a velocity
v(t) = [dx(t) idt, 0,0] so that its front and rear sur-
faces are at x =x(t)+a at time t & 0 where
x(t =0)=0. No matter whether the induction of
the transient magnetic field B(x,t) in the moving
conductor is described by the relativistic wave
equation or the nonrelativistic diffusion equation,
the initial condition B(x,t =0)=Bo, —a &x & +a,
and the conventional boundary conditions
B[x=x(t)+a, tg=Bp t )0, permit only one and the
same solution, B(x,t) =Bo, which implies
E(x,t) = —v(t) X Bo and j (x, t) =0 by Ohm's law
for the moving conductor. These simple solutions
are due to the conventional boundary conditions
without external perturbations and are obviously
not correct since the boundary condition for the
tangential electric field is not satisfied,

n X (E—Ep) =v (t)Bper @0
where Ep= 0. Since Faraday, it is an experimental
fact that transient electromagnetic fields and
currents are induced in the conducting slab as soon
as it is moved relative to the external magnetic
field Bo.

In the following, an analytical solution is
presented for the initial-boundary-value problem of
the electromagnetic induction in a conducting slab
M =2a, which is at rest for t &0 in a transverse
homogeneous magnetic field Bo, and which is set
in motion at t =0 with a nonrelativistic velocity
v(t) of arbitrary (finite) acceleration d v(t)/dt
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Thus, the conventional boundary conditions which
assume that the external magnetic field 80 remains
unperturbed outside of the conductor while tran-
sient electromagnetic processes occur in the latter,
are not correct within rigorous electromagnetic
theory.

FIG. 1. Geometry of fields 8, v, E, and location S(t)
of conductor for t &O.

BOUNDARY CONDITIONS

(Figs. 1 and 2). The electromagnetic induction in

the conductor is shown to produce transient elec-

tromagnetic fields within the conductor and elec-

tromagnetic waves at the moving conductor sur-

faces x =x(t)+a, which propagate with the speed
of light in the surrounding space to infinity. Only
if the electromagnetic waves outside of the moving
conductor are taken into consideration, consistent
solutions of Maxwell s equations exist which satis-

fy the boundary conditions for the tangential and

normal electromagnetic fields at the conductor-
nonconductor interfaces.

The analytical solutions for the moving conduc-
tor and surrounding spaces permit significant con-
clusions. The transient electric field induced in the
conductor is the sum of a field which is propor-
tional to the velocity v(t) and a field which is an
integral functional of the acceleration d v(t)/dt of
the conductor. A fundamental dimensionless

group (0 = conductivity, pj ——permeability of con-
ductor)

9t=p, aac, c=(p,e, )
—1/2

is found which represents a "magnetic Reynolds
number" of (i) "free space" (if the conductor
moves in vacuum or gas with permeabilities eo,po),
or (ii) "nonconducting space" (if the conductor
moves in a nonconducting medium with permeabil-
ities e2,pt). SP determines the coupling of the tran-
sient electromagnetic fields inside and outside the
conductor. The external electromagnetic waves
would be negligible only in the limit A' —+ 00 which
can, however, not be realized in actual experiments.

For the analysis of electromagnetic induction in
moving conductors (conductivity o.~ oo, permit-
tivitics ei,pi) which move with a velocity field
v(r, t) relative to the "laboratory system" in a non-
conducting medium (vacuum, gas, or fluid;
a=0,e2,p2), the boundary conditions for the elec-
tromagnetic fields B&,E& (conductor) and 82,E2
(nonconductor) are required in the I. frame. In-
tegration of Maxwell's equations with displacement
current' over the interface 1-2 with velocity v(r, t)
and normal vector n( r, t) (direction l~ 2) yields
for the tangential and normal electromagnetic field
components the boundary conditions in the I. sys-
tems:

nX(E,—E,)=+(n v)(B,—B,),
nX(B,/p, —B,/p, , )= j' —(n. v)(e,E,—e,E,), (2)

n (e2Eq —e~E~) =p

n (82—B))=0,

=p v, p = lim pM,
hs~0; ~p~ ~ ~o

are the surface current and charge densities of the
interface dkv~ O. A conductive surface current
density does not exist at a conductor of finite con-
ductivity

j'= lim oE&=0
hs~ 0

xtt)-I— 8+(x,t}
1r )~e—x e~j

Btx,t)
B (x,t) —xtt)+e

FIG. 2. Qualitative representation of induced field
8(x, t) in moving conductor and external electromagnet-
ic waves B+(x,t) with fronts at x =+(a+et).

for ~ & ao and E bounded.
In many cases, the permittivities of good con-

ductors and their ambient atmospheres equal the
free-space values ei 2

——e and pi 2 ——p. %'ith this
simplification in notation, the boundary conditions
(1)—(4) are applied to the front (+ ) and rear (—)
surfaces x =x(t)+a of a conducting slab (o & ao)
with the fields (Fig. 1)
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B=[O,B(xt),0], E=[O,O,E(x,t)], x(t) —a &x &x(t)+a

B(x,t=0)=BO, E(x,t =0)=0, —a &x &+a

which moves with the velocity v(t) =[dx(t) Idt, 0,0] in an ambient medium (o =0) with the fields (Fig. 1)

B~=[O,B~(x,t),0], K~ =[0,O,E~(x,t)], x &x(t)+a

B+(x,t =0)=BO, E+(x,t =0)=0, x&+a .

(6)

(7)

BD is an external homogeneous magnetic field which fills uniformly the conductor (1) and the medium (2).
The boundary conditions (3) and (4) are satisfied identically since B,E and B+,E+ are ln so that j '=0 and
p' =0 by Eq. (5). The tangential boundary conditions (l) and (2) yield for the fields (6) and (7)

E+(x =x(t)+a, t) E(x =—x(t)+a, t) = u(t—)[B+(x=x(t)+a, t) B(x =—x(t)+a, t)],
B+(x =x(t)+a, t) —B(x =x(t)+a, t)= —v(t}c [E+(x=x(t)+a, t) E(x =—x(t)+a, t)],

where

c =(pe)

is the speed of light. For nonrelativistic conductor motions, Eqs. (8) and (9) reduce to

E~(x=x(t)+a, t) E(x=—x(t)+a, t)=0, u(t)'&&c

B~(x=x(t)+a, t) —B(x=x(t)+a,t)=0, u(t) &&c

(8)

(9)

(10)

(12)

According to the nonrelativistic Ohm's law for conductors which are moving with a velocity v relative to
the L system, j =cr(E+ v XB), the electric field E(x,t) in the conductor is expressed in terms of B(x,t):

E= vB+(po) —'BBIBx, x{t) a&x &x(t—)+a, v(t) «c (13)

The electromagnetic field B+(x,t), E+(x,t) in the adjacent semi-infinite half-spaces is determined by the hy-

perbolic initial-boundary-value problems:

Q B+/Qt =c Q B+/c}x, x&x(t)+a, t&0

B+(x,t =0)=BO, x&+a

B+{x=x(t)+a,t}=B(x=x(t)+a,t), t &0

since

aE, /ax =aB, /at, aB, /ax =c-'aE, /at

(15)

(16)

by Maxwell's equations for homogeneous nonconductors. Equation (16) couples the solutions B+(x,t) in the

semi-infinite spaces x &x(t)+a to the solution B(x,t) in the conductor x(t) —a &x &x(t)+a. By Eqs.

(14)—(17), the ambient electromagnetic field transients are of the form

x~a
Bog%'~ t g

B+(x t) = c

Bo, a+et &+x & oo

x(t)+a & x & +(a+et)
(18)

x~aE()~c+g t +

0, a+et &+x & oo

x(t)+a &x & +(a +ct)

(19)
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dary conditions

g+ t+ —B(x=x(t)+a, t) —Bo
x(t)

c

by Eq. (16) determines the form of the wave func-
tions ql+(r}+) of the "self-similar" arguments

q+ ——t+x/c+a/c from the conductor solution

B(x,t).
The solutions (18) and (19}are typical for hyper-

bolic initial-boundary-value problems, i.e., the
boundary values 4+{t+x(t)/c ) are transported
with the speed of light c into the half-spaces

x(x(t)+a, so that discontinuous wave fronts re-

sult at x =+(a +ct).
By means of Eqs. (18)—(20), the boundary

values 8+(x =x(t)+a, t },E+(x =x. (t)+a, t },and

0'+{t+x(t)/c) are eliminated from the boundary
conditions (11) and (12):

(20)

BB(x=x(t)+art)
[ ( )]8(

PO'Bx

=+cBo, u(t)'««c . (21)

X+88+(x,t)=%+ t+ c

These are the fundamental new boundary condi-

tions for moving conductors which (i) involve only

boundary values of the magnetic field B(x,t) of the
conductor, and (ii) consider the emission of elec-

tromagnetic waves

(yo) ' +c [8(x=x(t)+a, t) —8, ]i BB(x=x(t)+a, t)

=u(t)Bu, u(t)2( (c2 (25)

( )
i dB(x=x(t)+a, t) { -)

Bx

=u(t)Bo, u(t) ««c . (26)

If the V'XB and u(t}BO terms are omitted, Eqs.
(25) and (26) reduce to the conventional boundary
conditions 8(x =x(t)+a, t) =Bo and
8(x=x(t)+a, t)=0, respectively. Comparison
shows that the conductor currents V X8/p and the
induced currents au(t)Bo at the conductor surface
are the sources of the emitted electromagnetic
waves.

INITIAL-BOUNDARY-VALUE PROBLEM

Consider a rigid conducting slab of width
bx =2a with surfaces in the planes x =x(t}+a at
time t &0 (Fig. 1). This conductor is exposed to an
external magnetic field Bo——[0,80,0] which is
homogeneous throughout the space —00 «x
& + ao, and is accelerated to a (nonrelativistic)
velocity v(t) =[u(t),0,0] from an initial position at
rest x(t =0)=0 so that

from the conductor surfaces x =x(t)+a into the

ambient spaces x &x(t)+a Since the. magnetic

field in the conductor is the sum of the external Bo
and a transient 8(x, t),

dx(t)u(t)=
dt

t
x(t) = J u(t')dt',

with

x(t =0)=0,

u(t =o)=o, &o.du(t =0)

B(x,t) =Bo+B(x,t), x(t) —a «x «x(t)+a (P3)

Eq. (21) gives for the transient conductor field the
boundary conditions

+[c+u(t)]8(x=x(t)+a, t)
puex

=u(t)Bo, u(t) ««c . (24)

Equa«on (2~) indicates that cB(x=x(t)+a, t)
-u(t)80, i.e., u{t)/c in the coefficient [1+u(t)/c]
contributes a negligible term of order u(t) /c .
Accordingly, Eqs. (21) and (24) reduce to the boun-

The electromagnetic induction of the transient elec-
tromagnetic fields B= [0,8(x,t),0] and
E=[0,O,E(x,t)] in the conductor of finite width,
as a result of its accelerated motion v(t) across the
external magnetic field Bo, is determined by the
parabolic initial-boundary-value problem for
B(x,t):

x(t)—a «x «x(t)+g, t ~0 (29)
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(30)

=]c 'u(t)80, t &0 (31)

8( xt =0}=80, —a (x & +a
BB(x=x(t)+a, t }

ductors in the diffusion approximation,
ra ——e/o « 1. The boundary conditions (31) cou-
ple the electromagnetic induction process in the
conductor to the external transients in the ambient
medium [Eq. (25)]. The transformation,

(32)

Equation (29) follows from Maxwell's equations
and Ohm's law j =o(E+ v &8) for moving con-

B(x,t)=80+8(~,t), —a &~&+a, t &0

~=x —x(t), t &0

reduces Eqs. (29)—(31) to the initial-boundary-
value problem (IBVP):

(33)

38/Bt=KB 8/B~, —a &~&+a, t &0

B(»,t =0}=0, —a (»(+a
88( =+a, t)/B~+hB(~=+a, t) =x 'U(t)80, t &0 .

The linear IBVP (35)—(37} is decomposed into a BVP and an IBVP by means of the ansatz

B(~,t) =F(~,t)+G(~, t), —a &~&+a, t &0

where

3 F/9~ ——0, —a &~&+a, t &0

BF(»=+a,t)/B»+hF(»=+a, t) =It 'u(t)BO, t &0

(38)

BG/Bt =x8 6/B~ —BF/Bt, —a &~&+a, t &0

G(», t =0}= F(»,t=0), ——a &»(+a
BG(~=+a,t)/B~+hG(~=+a, t) =0, t &0. (43}

The solution F(», t) of Eqs. (29) and (30), the source BF(»,t)/Bt ln Eq. (41), and the initial vahle F{»,t =0)
in Eq. (42) are

F(», t)=[u(t)BO/(tt+ac)]», —a &»&+a, t &0

BF{»,t)/Bt= Bo/(tt+ac)», —a &»&+a, t &0dU(t)
(4S)

since u {t =0)=0. With BF(»,t)/Bt odd in» and F{»,t =0)=0, the initial-boundary-value problem

(41)—(43) is solved by means of the Fourier expansions

G(», t)= g G„(t)sink„», —a &»&+a, t &0

BF(»,t)/Bt= g S„(t)sink„», —a(»(+a, t&() (48)

where

k„a cotk„a = —Il,a, n =1,2,3,. . .
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determines the eigenvalues k„of the eigenfunctions sink„~ associated with the boundary conditions (43).
Substitution of Eqs. (47) and (48) into Eqs. (41) and (42} yields by means of the inverse Fourier theorem

dG„(t)/dt~trk„G„(t)= S„—(t), t &0

G„(t=0)=0,
where

S„(t)=(a/a)E„Bpdu(t)/dt, t &0

E„=2(h'yk„)sink„a l(k„a)2[(h ~k„)~(h la)],

(51)

(52)

(53)

by Eqs. (45} and (48). The solution of Eqs. (50) and (51) is

G„(t)= —I e " S„(t')dt', t &0 . (54)

Combining of Eqs. (47), (52), and (54) yields as solution of the initial-boundary-value problem (41)—(43):

g ' dg(t ) —~k (i—~')
G(«, t)= Bp g——E„',e " dt' sink„«, —a&«&pa, t&0.dt' (55)

By Eqs. (33), (34), (38), (44), and (55), the magnetic field solution satisfying Eqs. (29)—(31) is

B(x,t)=Bp+[u(t)Bp/(K+ac)][x —x(t)]——Bp g E„J,e " dt' sink„[x —x(t)],
a ' du(t') —~k2(f —f')

Pl =1

x(t) —a &x &x(t)+a, t &0 . (56)

x(t)tg
C

=8(~=+a, t), t & 0 .

The transformations t+ ——t+(t) and its inverses

This is a fundamental result which shows that the
transient magnetic field 8(x, t) is the sum of a field
F(x,t) induced by the motion u(t) and a field
G(x, t) induced by the acceleration du(t)ldt of the
conductor in the external magnetic field 80. Simi-
lar decompositions exist for the electric field E(x,t)
and current density j (x, t) in the accelerated con-
ductor.

The still unknown forms (+ ) of the two external
wave functions 0'+(t ~x/@+a/c) in the spaces

x ~x(t)+a are determined from the solution (56)

by means of the boundary condition (20), which
gives

t=f~{t~ j for the two (+}waves defined by

x(t)
tp t~, t——=fp {tpj, t &0

C

where t~ =t =0 for t =0 [x(t =0)=0] but
t++t for t &0, show that the wave functions are
of the form

q1+(t+ )=8(«= +a, t =f+ {t+ J ) .

Accordingly,

x~Q — x gg%, t+ =8 «=+a, t=f, t+
C C

x(t)+a&x&+(a yct}, t&0. (59)

Since 8(x,t) =8(x,t}—Bp, substitution of Eq. (56)
into Eq. (59) gives the wave functions 1p+ as func-
tionals of f~(t~x/c+a/c):

q'+ t+ =+[aBp/(~+ac)lu f+ t~
x~0 x~Q

C

K 5 1

x(t)+a ~x ~+(a+at), t ~0 . (60)
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The solutions (60) determine the propagation of the
emitted electromagnetic waves outside of the mov-

ing conductor x &x(t)+a. Again, these waves each

consist of a "velocity" wave [u (t)] and an "ac-
celeration" wave [du(t)/dt]. They satisfy all boun-

dary and initial conditions,

For a brief illustration of the transformation {5g}
consider the simple conductor motion u {t)=up,
x(t)=vpt, t &0 .In this case, t+ ——(1+vplc)t and
t =t~ l[1+(up lc )], i.e., f+(t+ ) is proportional to t.

4+~„+„+,—8(~=+a, t), t&0 (61) ANALYTICAL SOLUTIONS

'+ ~r=o=o x &+a (62)

since t+ ——0 and x =+a [Eq. (60)] for t =0, and,
hence, f+ f+ (0——)=0 [Eq. (58}]and v(f+)
=v(0) =0.

For the most general representation of the elec-
tromagnetic fields in the moving conductor and the
ambient medium, dimensional independent and
dependent variables are introduced by

/xar=ittla, g(r)=x(t)la, a„=k„a, v(r)=v(t)/up, (63)

9t((,r) =B(x,t)/Bp, '(g, r) =E(x,t)/(sBp/a), &'{g,r) =j (x, t)/(Bp/pa ), P(g, r) =%(x,t )/Bp . (64)

Conductor solutions

According to Eq. (56), the dimensionless electromagnetic fields 9F(g,r), &kg, r) =GAP(g, r)/Bg, and g (g,r)
in the accelerated conductor are

u{g,r) =1+ v(r)[g —f(r)]
{1+98)

Td—~ g K„J, e " dr' sina„[g —f'(r)], f(r) 1&'g&—g(r)+I, r&0t' (65)

g'(g, r) = v(r)
(1+98)

~ d—M g a„K„J e " dr' cosa„[g—g(r}], g(r) 1&f&g(r—)+ I, r&0
dt'

n 1

8'{g,r}=—Mv(r}A(g, r}+&&g,r), g(r) —1&(&/(r)+I, r&0 (67)

where

a„cota„=—9F, n =1,2,3,. . . (6g)

and

K„=2(~ +a„)sina„/a„[(A' +a„)+A'],
(69)

M=poavo,

9t=paac .

(70)

(71)

M is known as the magnetic Reynolds number of
the conductor with characteristic speed -vo.
Equations (65)—(67) indicate that Ml( I +SF)

I

determines the order of the ratio B/BD of induced
and external magnetic fields. The steady-state in-
duction in moving conductors"' is determined
only by M.

9t is a new dimensionless group which involves
the velocity of light c=(ep) ' so that St &&M
for vo «c. 9t has the physical meaning of a
"magnetic Reynolds number" of the ambient non-
conducting space; i.e., 9t is a coupling parameter
between the conductor (0 &0 & 00) and its external
medium (can=0), which determines the magnitudes
of the external electromagnetic transients [Eqs.
(75)—(76)].

The net electric current flowing through the con-
ductor is per unit width b g =1
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+ dW(r) = f &(g,'r)dg=~v(r)/(1+98) —~ g sinu„rt„ f, e " ' dr',
n=1

External solutions

(72}

For the space surrounding the moving conductor, the wave functions 4+(x, t) of the electromagnetic tran-
sients are by Eqs. (60), (63), and (64) in dimensionless representation

—a„P+[w+((+1I/9P] ~+ + ~+ d/(7') a„Y

n=1 0 d~'

g(r)+1 & (& +(1+9Hz), r& 0 (73)

where

((l+ r+ ~
4+1 =(ir/a')f+ tp

c (74)

By Eqs. (18), (19), and (73) the dimensionless solutions for the electromagnetic field outside the moving con-
ductor are

and

. (g,r)= '- + ~1+)+ r+ +, g(r)+1&(&+(1+sr), r&0

1, 1+8r&+g& m, r&0 (75)

+ 1 A
+SF'+ r+ +, g(r)+1 &g&+(1+9Fr), r) 0

g+(g, r) =

o, 1+~«+(&~, r&0. (76)

DISCUSSION

a„=nn.(1—A' '), A » 1, n =1,2, 3,. . .
Kn ——2( —1)"+'(nm. ) '~ ', A')& 1

(77)

n =1,2, 3,. . . . (78)

The magnetic Reynolds number is M=pcravo

& 1 for conductors and the magnetic coupling

number 9t'=pcrac )& 1 is large, depending on the
parameters o, a, and vo. In the most general case,
electromagnetic induction in a moving conductor is
determined both by M and 9P, where M «A'
since vo «c.

I. Case 9F»1. For most macroscopic conduc-
tors, it is 0.& 10 0 '/m and a & 10 m
(p=4n. 10 Vsec/Am, c=3&10 m/sec) so that
9P & 10, and by Eqs. (68) and (69)

It is seen that the "velocity" and acceleration"
fields in Eqs. (65)—(67) are of the same order
since

~/(1+a) -m(+K, )-~/~
=vo/c «1, R » 1 . (79)

In the magnetic field solution (65), the dominant
term is the external %0——1 »M/A and in the
electric field solution (67) the dominant term is the
motion-induced field ~Mv&0~ && ~~'~ if 8F&& l.
Although significant electric fields are induced in
the conductor, the induced magnetic field is small,

A-M/(1+A') «A =1, A'&)1

and therefore, the current density&' ——89k/Bg is
small, too.

2. Case 9F= 00. In an actual experiment, 9t = 00
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A(g, r) =1,gag, r) =0,
F(g,r)= Mv—(r), g(r) 1&—g&g(r)+1,

(80)

can never be reached but only asymptotically ap-
proached. In this hypothetical situation, the con-
ductor [Eqs. (65)—(67)] and external [Eqs. (75) and
(76)] solutions reduce to 8B 1 BB BB BS=C

Bt v„Bx
where

(83)

magnetic field 8 in conductors, which reads in the
considered one-dimensional case with r-inde-
pendent conductor velocity v (t)

vR ——e/cr « 1 (84)

A+(g, r) =1, g'~(g, r) = Mv—(r),

g(r)+1&g&+ao, r&0

since

lim a„=no., lim K„=O,
A' —+ to 9P-+ oo

lim SPY ——2( —1)"+'/nn. , n =1,2, 3,. . . .
9P~ oo

(81)

(82)

is the field relaxation time, which is extremely
small for conductors. Equation (83) reduces to the
parabolic diffusion equation in the limit ~R && 1:

BB BB 82B
+v =SRC, SR « 1 .

Bt Bx
(85)

The parabolic diffusion equation is an excellent ap-
proximation, since the relaxation time of comiuc-
tors is very small, rtt « 1. By Eqs. (84) and (85),
the field relaxation time rR and the diffusion time
r~ are interrelated by

It should be noted that for 9P~ Oo, only 3F+——0
but g'++0, i.e., the external electric transients are
(behind their wave fronts) of the same order of
magnitude as the electric field 5' in the conductor.
Since V )& B+——c BE+/Bt, the electric transients
8'+ always coexist with (no matter how small)

magnetic transients A+. For this reason, the limit
9F= 0o has no physical meaning, quite apart from
the fact that always 9P & 00 for cr,a,c & 00. The
conventional boundary conditions ' ' for elec-
tromagnetic diffusion processes in conductors im-

ply A'= 0o and 8'+ =0, and are, therefore, physi-
cally incorrect.

As an explanation it is noted that, in conductors,
magnetic field diffusion is a nonrelativistic process,
as is electric conduction, j =o(E+ v &&B). The
electric transients 8'+ in vacuum must be of the
same order as the electric field 8' in the conduc-
tors, 8'+-O'-M9P, since otherwise the tangential
electric field would not be continuous across the
conductor surface. On the other hand, the external
magnetic transients A+ are small, of order
M9P ' =M(p, era ) 'c ', since the electromagnetic
energy flows with the speed of light in the ambient

space. The deeper physical reason for the external
electromagnetic transients is to be seen in the con-
servation laws for electromagnetic energy and
momentum, which follow from Maxwell's equa-
tions.

3. Diffusion approximation It is known that.
Maxwell's equations with displacement current and
the nonrelativistic Ohm's law, j =sr(E+ v )(B),
combine to a hyperbolic diffusion equation for the

7D =7RC /a, 7D =PcTa2 (86)

R
(87)

(@era )

This result again confirms the validhty of the para-
bolic diffusion equation for conductors, for which
9P =poac » 1. More important, Eq. (87) demon-
strates that the neglected relativistic term a'S/at
is small of order 9P « « 1, whereas the cal-
culated electromagnetic fields in the conductor are
of order 8PAP —O' M9P [E-qs. (65)—(67)], and the
external electromagnetic transients are of order
B~ -MA' ' and g'+-MSP [Eqs. (73)—(76)].

Thus, consistent electromagnetic field solutioas
for the regions in and outside of the accelerated
conductor have been obtained within the parabohc
diffusion approximation, which satisfy the boun-
dary conditions for the continuity of the tangential
electric and magnetic fields. If an accuracy of
higher order 9t is to be achieved, then the hy-
perbolic diffusion equation (83) has to be used.

where a is the extension of the conductor. For
conductors, the diffusion time is relatively large if
a is not too small, i.e., 7g) ))7R.

Comparison of the neglected term 3 B/3t with
the leading (0&

~

v
~

&&c) second and fourth terms
of Eq. (83) reveals the relation of the parabolic dif-
fusion approximation to the new coupling number
9F=@+ac:
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For nonrelativistic conductor motions, U g~c,
however, an accuracy of order 9t ' is completely
sufficient. The mathematical advantages of the
parabolic diffusion equation become obvious if it is
used in connection with (time-dependent) moving
boundary conditions (magnetic Aux compressors,
electromagnetic induction generators, etc.), which

are extremely difficult to treat for the hyperbolic
diffusion equation.
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