
PHYSICAL REVIEW A VOLUME 25, NUMBER 6 JUNE 1982

Fixed-shell statistical atomic models with piecewise
exponentially decaying electron densitiesa

Wen-Ping Wang~
Department of Chemistry, University of North Carolina, Chape/ Hill, North Carolina 27514

(Received 17 January 1979; revised manuscript received 11 January 1982)

Various versions of a statistical model of atoms are developed in which the numbers of
electrons in different regions of an atom are fixed by certain postulates. It is assumed
that the electron density can be represented by a sum of exponentially decreasing func-
tions. The electronic energies and electronic densities of these new models are found to
be comparable to the corresponding Hartree-Fock results and are substantial improve-
ments over the original Thomas-Fermi statistical model and its various extensions. Den-
sities of the new models are improvements over the modified statistical models of Wang
and Par [Phys. Rev. A 16 891 {1977)]. Some corrections to this reference are included.

INTRODUCTION

Most statistical treatments of atoms' have con-
centrated on obtaining the electronic density by
minimizing the total statistical energy; these densi-
ties and energies may then be compared with the
experimental or the Hartree-Pock (HF) results.
Some workers have used HF and other highly
accurate densities to calculate the statistical ener-
gies. A combination of these approaches, in which
one imposes certain constraints on electron density
while minimizing the total energy, can provide in-
formation about both the validity of the statistical
treatment and the correctness of energy-density
functionals.

Wang and Parr ' have developed a new statisti-
cal model of atoms, in which the total one-electron
density in an atom is represented by a sum of de-
caying exponential functions. Energies of this
model are comparable to HF values and are big
improvements over the original Thomas-Fermi
(TF) (Ref. 7) and Thomas-Fermi-Dirac (TFD)
(Ref. 8) models. Nevertheless, the densities of
some atoms are in poor agreement with HF results,
and errors were made in these calculations. In the
present work, we propose a modified model, the
fixed-shell model, in which we compose the con-
straint that the number of electrons in each "ex-
ponential region" is fixed by a postulate, and we
compare this model with the model of Wang and
Parr. Henceforth we call Ref. 6 paper I.

Following paper I, we express the total energy E
of the nondegenerate ground state of an atom with

atomic number Z in terms of the exact density p

E [pl = T[pl+ v-[pl+ v:[pl
where T[p j is the kinetic energy, V„,[p] is the
nuclear-electron attraction energy, and V„[p] is
the electron-electron repulsion energy. V„[p] can
be separated into two parts

V-[pl=J[ ]+&[pl

where J[pl is the classical Coulomb repulsion ener-

gy between p and itself, and It [pl the exchange-
correlation energy. We neglect the correlation en-

ergy part of K[p], and adopt the homogeneous
electron-gas approximation of Dirac for the ex-
change energy'

For T[p], we adopt the first two terms of the gra-
dient expansion

T[pl =To[pl+ T2[pl,

where the quantity

To[p]= —„(3m )
r' Jp ~ dv

is the original formula of Thomas "' and Fermi, 7'b'

while the quantity

(6)
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is one-ninth the inhomogeneity correction T~ in-

troduced by Weizsacker. '

II. MODEL

We now propose a rule for separating electrons
into regions': The number of different exponen-
tial regions or shells is the same as the maximum

occupied principal quantum number of the atom.
The region nearest the nucleus is called the K shell.
Similarly, L,M, N, . . . shells are labeled according
to their relative positions with respect to the nu-
cleus. Each region can have as many electrons as
allowed by the corresponding principal quantum
number. Thus for the K shell, the maximum num-

ber is two, and for the L shell the maximum num-

ber is eight. In paper I, we did not set an upper
limit on the number of electrons in each shell.

As in paper I, we assume that the density is
spherically symmetric and can be represented in
the form

A&exp( —2A&r), 0&r &R&

A 2exp( —2A,2r),p(r)= .
A 3exp( —2A, 3r ),

etc. ,

R& &r &R2

R2&r &R3

(K shell)

(L shell)

(M shell)

(7)

with 0&R
~ &R2, etc., and k] )X2) A,3, etc. We re-

quire that p(r) but not dp/dr be continuous. The
parameters A.; are constants. The resulting fixed-
shell models of Thomas-Fermi (FTF), Thomas-
Fermi-Dirac (FTFD), Thomas-Fermi-Dirac- —,-

1

Weizsacker (FTFD —,W), and Thomas-Fermi-
1 1

Dirac- —, Singular-Weizsacker (FTFD—,SW) models

are defined by different assumptions for T[p] and

is the number of electrons in the K shell, and

N2 ——I p(r)4rrr dr (10)

is the number of electrons in the L shell. The cal-
culational parameters are A, i and A,2. We first dis-
cuss first-row atoms in detail and subsequently
present detailed results for second- and third-row
atoms.

III. RESULTS

A. First-row atoms

1. Thomas-Fermi model

As shown in Table I, for the "two-shell" atoms
Li through Ne, the FTF energies are higher and

E[p], and by whether or not corrections' for the
discontinuity in dp/dr at r =R; are included,
where R; is the radius separating the regions. The
energy expressions are minimized with respect to
the parameters in the density, subject to continuity
and normalization conditions. The final energy
satisfies the virial theorem.

The corresponding modified" models, MTF,
MTFD, etc., are the models of paper I, in which
numbers of electrons in different shells are treated
as variational parameters.

For first-row atoms, our model is a two-shell
one with a single R; =R. Given the total number
of electrons N, the spatial distinction between K
and L shells allows us to write the normalization
condition as

Jp(r)dv =N =N~+N2,

in which
R

2
N& —— p(r)4mr dr=2

0

TABLE I. Fixed-shell (FTF) and modified (MTF) Thomas-Fermi models' for first-row atoms: energies and energy

components.

Atom EHF
~ne

J E~F(% error)' error ETF (% error)'

Li
Be
C
0
Ne

—7.433
—14.57
—37.69
—74.81

—128.5

—16.38
—33.48
—90.94

—183.5
—315.2

3.889
7.233

18.44
36.57
62.58

4.213
4.628
4.932
5.020
5.037

—6.248(15.9)
—13.12(9.95)
—36.25(3.82)
—73.49(1.76)

—126.3(1.71)

—7.926(—6.63)
—15.51(—6.45)
—39.94(—5.97)
—78.16(—4.48)

—131.5(—2.33)

—9.978(—34.2)
—19.52( —34.0)
—50.29(—33.4)
—98.39(—31.5)

—165.6(—28.9)

'Models defined in Sec. II of text.
Energy components defined in Sec. I of text, T = —E. Energies are in hartrees.

'Errors are deviations relative to EHF, which are from Ref. 17(a).
ETF is calculated from ETF———0.7687Z', Ref. 18.
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TABLE II. Fixed-shell (FTF) and modified (MTF) Thomas-Fermi models for first-rom

atoms: electron densities. 'b

Model Atom Ni

FTF

MTF

Li
Be
C
o
Ne

Li
Be
C
0
Ne

2.570
3.611
5.675
7.748
9.836

14.22
15.65
17.91
19.72
21.24

0.3215
0.5735
0.9518
1.241
1.481

1.341
1.476
1.689
1.859
2.003

1.527
0.9009
0.4950
0.3417
0.2614

0.1782
0.1619
0.1414
0.1285
0.1193

0.2056
0.2741
0.4111
0.5482
0.6852

10.98
31.32

126.7
329.7
683.1

213.5
379.6
854.1

1518.0
2372.0

'See text for definitions of models and parameters, especially Eq. (7).
For corresponding parameters for the HF electron density, see paper I.

the corrected MTF energies are lower than the cor-
responding HF energies. For the MTF model, the
revised values for the energy and the scaled density
parameters defined in the Appendix of paper I, are

EMTF ———0.6106Z

gt ——9.858,

g2
——0.9295,

M) ——0.0685,

M2 ——0.9315,

S=0.2570 . (12)

Both FTF and MTF energies are definite improve-
ments (vis-a-vis Hartree-Fock) over the original TF
values.

Comparing the exponential parameters and radii

in Table II with the HF results in Table II of pa-
per I, we see that the FTF densities are improve-
ments over the MTF model of paper I.

No general solution valid for all atomic numbers
can be found for the FTF model. Each atomic
problem has to be solved separately. Consequently,
the ratio

~
V„,/J

~

is no longer atom independent,
as it was in thc MTF and original TF models.

2. Thomas-Fermi-Dirac models

The energies of the FTFD model, as sho~n in
Table III, are within 9% of the HF values and are
remarkable improvements over the original TFD
model. These EFTFD values are also improvements
over the corrected EMTFD values, which exhibit de-
viations of up to 28.7%. A good approximation
for the EMTFD values of first-row atoms is

EMTFD Oe 606Z Oo 273Z r

TABLE III. Fixed-shell Thomas-Fermi-Dirac model' for first-row atoms: energies and energy components.

Atom EpTpo(% error) EMTpD(% error)' ETpo (% error)'

Li
Be
C
0

Ne

—18.57
—36.97
—97.78

—194.6
—331.3

4.604
8.406

20.72
40.22
67.82

—1.680
—2.609
—4.991
—8.002

—11.59

—7.821(—5.22)
—15.59(—7.00)
—41.03(—8.86)
—81.20(—8.54)

—137.S(—7.00)

—9.569(—28.7)
—18.13(—24.4)
—45.03(—19.S)
—86.31(—15.4)

—143.3(—11.5)

—11.64(—56.6)
—22.20(—52.4)
—55.56(—47.4)

—106.9(—42.9)
—177.9(—38.4)

'Model defined in Sec. II of text.
Energy components defined in Sec. I of text, T= —E. Energies are in hartrees.

'Errors are relative to EHp, vrhich are given in Table I.
'ETpo is calculated from ETpD= —0.7687Z'" —0.266Z'", Ref. 19.
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TABLE IV. Fixed-shell and modified Thomas-Fermi-Dirac models for first-row atoms:
electron densities. '
Model Atom At

FTFD Li
Be
C
0
Ne

2.830
3.843
5.879
7.939

10.02

0.5293
0.7792
1 ~ 135
1.408
1.636

1.218
0.7713
0.4492
0.3180
0.2468

14.90
38.65

144.2
362.2
735.8

MTFD Li
Be
C
0
Ne

15.95
17.21
19.27
20.94
22.37

1.609
1.719
1.901
2.052
2.181

0.1493
0.1397
0.1263
0.1170
0.1100

0.1811
0.2470
0.3798
0.5136
0.6478

274. 1

466.9
1001.0
1732.0
2658.0

'See text for definitions of models and parameters.
For corresponding parameters for the HF electron density, see paper I.

Densities of the FTFD model and the revised re-
sults for the MTFD model are given in Table IV.

9. Thomas-Fermi-Dirae- ~ Feizsaeker models

The results for the FTFD—W model and the9

corrected results for the MTFD —,W model are

given in Tables V and VI. All energies agree well

with HF energies and the FTFD —,W model gives

much better densities, especially for light atoms.

i
4. Thomas-Fermi-Dirac- 9 Singular- Feizsacker models

As shown in Tables VII and VIII, the results for
1

the FTFD —,SW model and the revised results for
the MTFD —,SW model are similar to their cor-
responding TFD —,W models.

B. Second-row atoms

For the "three-shell" atoms Na through Ar,
agreement between the FTF energies and HF ener-

TABLE V. Fixed-shell and modified Thomas-Fermi-Dirac- —%eizsacker models for first-roe atoms: energies and

energy components.

Model Tp T2 Xp E(%%ui error)'

FTFD—%'

MTFD-%

Li

Be
C
0
Ne

Li

Be
C
0
Ne

6.300

12.72
34.07
68.25

116.6

6.618
13.11
34.43
68.36

116.4

0.7155

1.352
3.280
6.112
9.871

1.193

2.075
4.505
7.772

11.83

—16.78
—33.68
—89.77

—180.2
—308.1

—18.44
—36.29
—94.34

—185.8
—314.4

4.277

7.955
19.95
39.03
66.13

4.352

8.393
21.30
41.36
69.31

—2.409
—4.679
—7.567

—11.02

—2.468
—4.822
—7.770

—11.26

—7.016(5.61)
—14.07(3.43)
—37.35(0.90)
—74.36(0.60)

—126.5(1.56)

—7.811(—5.09)
—15.18(—4.19)
—38.93(—3.29)
—76.13(—1.76)

—128.2( + 0.23)

'Models defined in Sec. II of text.
"Energy components defined in Sec. I of text, T = —E. Energies are in hartrees.
'Errors are relative to EHq, which are given in Table I.
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TABLE VI. Fixed-shell and modified Thomas-Fermi-Dirac- —Weizsacker models for

first-row atoms: electron densities. '
Model Atom Ni Ai

FTFD—W Li

Be
C
0
Ne

2.504

3.391
5.180
6.996
8.834

0.5856

0.8200
1.159
1.422
1.643

1.275

0.8142
0.4766
0.3379
0.2624

10.48

27.18
101.7
256.3
521.8

MTFD —W Li

Be
C
0
Ne

6.245

7.426
9.423

11.10
12.57

1.343

1.455
1.643
1.800
1.935

0.3126

0.2727
0.2244
0.1953
0.1754

0.4319
0.5447
0.7538
0.9494
1.137

44.80

92.32
253.0
512.6
881.4

'See text for definitions of models and parameters.
For corresponding parameters for the HF electron density, see paper I.

gies is very good, ranging from 1.17% for sodium
to —0.76%%uo for argon. These are great improve-
ments over the original TF values, which show de-
viations of up to —27.8%, and over the corrected
MTF energies, which are given by

EM~p ———0.6866Z (14)

For the FTFD model the energies (Table IX) are
lower than the corresponding HF values although
the agreements are better than for the first-row
atoms. The deviations are within —6.8%%uo as com-
pared with —36.7% for some original TFD values.

The densities for the FTFD model are given in
Table X.

The results for the FTFD—SW model and the9

corrected results for the MTFD —,SW model are
given in Tables XI and XII. We notice significant
differences between the energy components T, of
these two models.

C. Third-row atoms

For the "four-shell" atoms K through Kr, the
results for the FTFD—,SW model are given in

TABLE VII. Fixed-shell and modified Thomas-Fermi-Dirac —Singular-Weizsacker models for first-row atoms: en-
9

ergies and energy components.

Model Atom TQ T2 Ep E(%%uo error)'

FTFD 9 SW

MTFD —SW

Li

Be
C
0

Ne

Li

Be
C
0
Ne

6.232

12.48
33.21
66.38

113.4

6.214
12.40
32.90
65.74

112.4

0.7180
1.351
3.257
6.053
9.763

1.086

1.915
4.223
7.355

11.27

0.0311
0.1145
0.4309
0.9465
1.656

0.2403

0.4116
0.8698
1.469
2.200

—16.60
—33.22
—88.51

—177.2
—303.0

—17.67
—34.98
—91.54

—181.1
—307.3

4.147

7.678
19.27
37.80
64.19

4.051

7.871
20.19
39.49
66.51

—1.505
—2.357
—4.567
—7.388

—10.77

—1.457
—2.352
—4.632
—7.505

—10.92

—6.981(6.08)
—13.95(4.26)
—36.90(2.10)
—73.38(1.91)

—124.8(2.88)

—7.540(—1.44)
—14.73(—1.10)
—38.00(—0.82)
—74.56( + 0.33)

—125.9(+ 2.02)

'Models defined in Sec. II of text.
Energy components defined in Sec. I of text, T = —E. Energies are in hartrees.

'Errors are relative to EHq, which are given in Table I.
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TABLE VIII. Fixed-shell and modified Thomas-Fermi-Dirac- —Singular-Weizsacker

models for first-row atoms: electron densities. '
Atom

FTFD—SW Li 2.517

3.406
5.189
6.995
8.824

0.5002

0.7461
1.093
1.374
1.582

1.341

0.8439
0.4891
0.3455
0.2677

10.53

27.17
100.9
253.2
514.5

MTFD —SW Li

Be
C
Q
Ne

5.360

6.537
8.534

10.22
11.70

1.180

1.304
1.507
1.674
1.817

0.3885

0.3259
0.2568
0.2182
0.1929

0.5624

0.6745
0.8843
1.082
1.271

35.12

75.18
215.2
447.3
782.3

'See text for definitions of models and parameters.
For corresponding parameters for the HF electron density, see paper I.

Tables XIII and XIV. As with the first- and
second-row atoms, all these energies are higher
than the HF energies. A minimum in the percen-
tage error of the total energy occurs for Ni.

IV. DISCUSSION

A. The effects of the fixed-sheH postulate
on energies and densities

In paper I we did not constrain the maximum
number of electrons in each shell and the electronic
distributions obtained were, in general, in only fair

agreement with the Hartree-Fock results, though
the agreements in energies are good. On the other
hand, all the present fixed-shell models give good
densities though the agreements in energies may
not be as good as modified models in some cases,

notably for light atoms such as Li.
The exchange energy E of lithium in the HF-

I 1

density TFD —,W-energy-functional (HF-TFD —,%')

calculation is —1.S12 a.u., while the inhomogene-
ity contribution kinetic energy is 0.753.+ ' The er-
ror caused by neglecting both of these energy com-
ponents is 0.759, which is about 10% of the HF Li
energy. The Dirac exchange formula always gives
an exchange energy less than the HF exchange en-

ergy when the HF or near-HF density is used. If
we use the actual HF exchange energy —1.851,2

the error caused by neglecting both exchange and
inhornogeneity kinetic energies is 1.098, which is
about 15% of the HF Li energy. This makes up
most of the 16% discrepancy between FTF energy
and HF energy of the Li atom. For neon, the er-
ror caused by neglecting both energies is less than
2%. The density deviations between FTF densities
and HF densities for first-row atoms are around 2%.

TABLE IX. Fixed-shell Thomas-Fermi-Dirac model' for second-row atoms: energies and energy components. b

Atom EHF E „(%error)' ET„D~(% error}'

Na
Mg
Si
S

Al

—161.9
—199.6
—288.9
—397.5
—526.8

—413.4
—507.7
—731.9

—1006.0
—1331.0

80.94
97.04

136.2
184.3
241.6

—13.30
—15.19
—19.38
—24.05
-29.16

—172.9(—6.79)
—212.9(—6.66)
—307.6(—6.47)
—422.7(—6.34)
—559.3(—6.17)

—221.3(—36.7}
—270.1(—35.3)
—384.7(—33.2)
—522.9(—31.5)
—685.5(—30.1)

'See text for definition of this three-shell model.
Energy components are defined in Sec. I of text, T= —E. Energies are in hartrees.

'Errors are relative to EHF, which are from Ref. 17(a).
ETFD is calculated from ETFD ———0.7687Z~~3 —0.266Z~, Ref. 19.
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TABLE X. Fixed-shell Thomas-Fermi-Dirac model for second-row atoms: electron densities. '

Atom Rl R2 D b Db

Na

Mg
Si
S

Ar

11.00
11.98
13.95
15.91
17.87

1.906
2.159
2.644
3.121
3.597

0.3345
0.5313
0.8065
1.010
1.179

0.2180
0.1953
0.1618
0.1380
0.1203

2.273
1.652
1.109
0.8448
0.6839

989.0
1295.0
2087.0
3151.0
4529.0

9.174
12.00
22.84
38.94
61.50

0.0032
0.0222
0.1521
0.4726
1.066

'Model and parameters are defined in text. This is a three-shell model.
bThe quantities Dl ——R &p& and D2 ——R2p& are the electron densities at the radii which separate the shells.

1 2

For the other fixed-shell models for first-row
atoms as well as for all fixed-shell models for
second- and third-row atoms, similar arguments
can be applied to explain most of the deviations
from the HF results. A minimum exists in the de-

viation curve of each fixed-shell model for first-
and third-row atoms and is always located at an
atom with incomplete p- and d-subshell electrons. '

The plots in Figs. 1 and 2 show the FTFD,
FTFD —,W, and HF densities for Ne and Be. In

Fig. 3, the plots of the Kr atom show that the
1

agreements between the FTFD —,W and HF densi-

ties are very good only in the regions near the nu-

cleus.
The fixed-shell models not only have fewer vari-

ational parameters (which reduces calculational ef-
fort) than the corresponding modified models
developed in paper I, they also yield very good
densities near the nuclei. They give total energies

in reasonable agreement with HF results and the
discrepancies that remain can be explained in a
systematic way.

B. Relative importance of the inhomogeneity
correction to kinetic energy

and the exchange energy

Define the quantities

a= T2/Tp, (isa)

(15b)

etc., where Tp, Tp, Tp, . . .are the Fermi kinetic en-

ergies in K,L,M, . . . shells, respectively, while

where T2 and Tp are the total inhomogeneity ener-

gy and total Fermi kinetic energy, respectively, and

T T T
Q) = ), Qp= 2, CX3=

TQ TQ TQ

TABLE XI. Fixed-shell and modified Thomas-Fermi-Dirac- —,Singular-Weizsacker models for second-row atoms:

energies and energy components. '
Model Atom T2 Ko E(% error)'

FTFD—SW Na

Mg
Si

S
Ar

143.1

r76.7
256.8
386.9
471.4

11.97

14.27
19.64
25.90
33.04

2.202

2.841
4.388
6.298
8.578

—378.6
—465.6
—673.3
—927.5

—1230

76.7
92.1

129.9
176.4
232.0

—12.39
—14.17
—18.16
—22.61
—27.50

—157.2(2.90)
—193.8(2.91)
—280.8(2.80)
—386.9(2.67)
—513.0(2.62)

MTFD —SW Na

Mg
Si
S

Ar

141.4
174.6
288.3
395.8
465.6

15.55

18.56
25.36
33.21
42.11

5.787

6.907
9.434

12.33
15.60

—389.3
—479.0
—691.5
—950.4

—1258

75.9
92.9

133.0
181.6
239.0

—12.12
—14.03
—18.16
—22.73
—27.70

—162.7(—0.49)
—200.0(—0.20)
—288.3(0.21)
—395.8(0.43)
—523.3(0.66)

'Models and energy components defined in text. These are three-shell models.

T = —E. Energies are in hartrees.
'Errors are relative to EHF, which are given in Table IX.
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TABLE XII. Fixed-shell and modified Thomas-Fermi-Dirac- —Singular-Weizsacker models for second-row atoms:

electron densities. '

Model Atom A3 N2 Db

FTFD—SW Na

Mg
Si
S

Ar

9.668

10.52
12.21
13.91
15.69

1.847 0.3090 0.236 2.376 2

2.09S 0.503S 0.212 1.717 2
2.569 0.7790 0.175 1.146 2
3.033 0.9819 0.149 0.871 2
3.602 1.176 0.128 0.686 2

690

902
1450
2186
3229

7.18 0.0026

10.57 0.0192
20.19 0.1374
34.49 0.4334
59.08 1.059

MTFD —SW 18.89

20.31
23.07
25.73
28.29

4.673 1.348

4.925 1.394
5.399 1.479
5.841 1.558
6.256 1.631

3.302 1791

3.54S 2294
4.018 3549
4.480 5170
4.931 7192

0.089 0.465 0.546 61.6
0.083 0.442 O.S64 78.2
0.074 0.405 0.599 118.8
0.066 0.376 0.632 170.1
0.061 0.352 0.664 232.9

1.835

2.272
3.314
4.589
6.110

'See text for definitions of models and parameters. These are three-shell models.
The quantities D& ——8 &p& and D2 ——R2pz are the electron densities at the radii which separate the shells.

T2, T2, T2, . . .are the corresponding inhomogeneity
energies. These ratios are good measurements of
the relative importance of T2 in each she11. As
shown in Table XV, the ratios a~ and a~ decrease
monotonically from Li to Kr. Similar trends ex-
ist for the ratios a3, a4, and the total ratio a. This
indicates that the relative importance of T2, as
compared with To, dccrcascs as Z incicascs.

For first-row atoms, the ratio a2/a& decreases
from about two for lithium to about one-half for
neon. For second-row atoms, the ratio for the "in-
termediate" shell a2 is smaller than either a~ or a3.
For third-row atoms, we have two intermediate
shells. The quantity a2 is the lowest while a3 is
the second lowest among four shells. Looking at
the trend for the alkali atoms Li, Na, and K, the

ratios in the outmost shells increase from 0.2476 to
0.3623. A similar trend exists for alkali-earth
atoms. For other columns, no significant trends
are found.

A comparison of the ratio
~
ECO/To ~, which also

decreases monotonically, with the ratio a reveals
that T2 and Eo may have different Z dependence,
with T2 higher than Eo. The calculations by Kim
and Gordon and by Shih ' ' support this argu-
ment. The discrepancies between the predictions
of some authors' "' "' and the actual calculations
may be due to their failure to take the cusp condi-
tion into consideration. The exponential parameter
in the innermost region of an atom is quite Z
dependent. Failure to recognize this can lead to
very poor predictions.

TABLE XIII. Fixed-shell Thomas-Fermi-Dirac- —Singular-Weizsacker model for third-rom atoms: energies and en-
9

ergy components. '"

T2

K(19)
Ca(20)
Cr(24)
Ni(28)
Ge(32)
Se(34)
Kr(36)

—599.2
—676.8

—1043.3
—1506.9
—2075.4
—2399.9
—2752. 1

533.8
604.4
939.5

1363.2
1881.0
2176.6
2497.5

36.89
41.02
59.79
82.18

108.2
122.7
138.0

9.78
11.18
17.77
25.99
35.87
41.43
47.41

—1394.2
—1S76.1
—2439.1

—3528.9
—4858.9
—5617.7
—6441.2

263.1

29S.3
448.9
642.9
869.9

1015.2
1162.3

—29.85
—32.46
—43.92
—56.86
—71.20
—78.88
—86.89

—580.5(3.12)
—656.6(2.98)

—1017.1(2.51)
—1471.4(2.36)
—2025.1(2.42)
—2340.7(2.47)
—2682.9(2.51)

'See text for definitions of model and energy components. This is a four-shell model.
T = —E. Energies are in hartrees.

'Errors are relative to EHq, which are from Ref. 17(b).
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TABLE XIV. Fixed-shell Thomas-Fermi-Dirac- —Singular-Weizsacker model for third-row atoms: electron

densities. '

Atom(Z) R) Rp R3 D D b g) b

K(19)
Ca(20)
Cr(24)
Ni(28)
Ge(32)
Se(34)
Kr(36)

16.46 3.671 1.327 0.4736 0.6384 2.806 3701 65.37
17.31 3.884 1.477 0.6476 0.5831 2.108 4334 79.23
20.71 4.724 2.054 0.9964 0.4327 1.162 7586 154.8
24.11 5.548 2.640 1.232 0.3428 0.8166 12165 268.9
27.50 6.358 3.242 1.432 0.2831 0.6299 18301 429.9
29.19 6.759 3.550 1.523 0.2602 0.5651 22026 530.5
30.89 7.158 3.862 1.611 0.2407 0.5122 26225 646.0

1.482
2.097
6.307

14.41
27.96
37.29
48.61

0.0047
0.0232
0.3150
1.181
2.951
4.282
5.970

'See text for definitions of model and parameters. This is a four-shell model.
The quantities DI ——R &pz, etc., are the electron densities at the radii which separate the shells.

I

C. Stability of neutral atoms

For the modified statistical models developed in

paper I, the revised results still show that all neu-
tral atoms are unstable with respect to the corre-
sponding positive ions with the same number of
shells. For the present fixed-shell models, we find
similar but improved results, as shown in Table
XVI. This is undesirable; nevertheless, we note
two favorable trends: (1) The better the energy
functional used, the better the ionization potential
obtained; and (2) for the same energy functional
the better the density used, the better the ionization
potential obtained. In the revised MTFD —,SW

model for the Ne atoms and ions, Ne+ is still un-

stable with respect to the ionization process. In
the FTFD —,SW model, which gives a much better

density, Ne+ is stable.

2KT=E=
R

(15c)

D. Energy functional for particles
in a spherical box energy

One may inquire whether the energy formula de-
rived from free particles in a spherical box with ra-
dius R, which can be written in the following form
for its lowest energy orbital

12.0 6.0

9.0- t. 0—

~ 6. 0

D L, rr)

0 3 0

D

0 2. 0

I

0 0

—2. 0-

-3.0 -'f. 0—

-6. 0

FIG. 1. Electron densities of neon atom: (a) Dashed
line is the HF density; (b) solid line (I) is the FTFD den-

sity; solid line (II) is the FTFD—W density.

-6. 0

FIG. 2. The electron densities of beryllium atom: (a)
Dashed line is the HF density; (b) Solid line (I) is the
FTFD density; solid line (II) is the FTFD—W density.
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bit the best agreement: —0.77% and +0.85%,
respectively.

6.0

O

O 3. O

E. Limitations on the gradient expansion
in atomic systems

Most extant energy-functional theories assume
that the electronic density is homogeneous or only
slowly varying in space, i.e.,

FIG. 3. Electron densities of krypton atom: (a)
Dashed line is the HF density; (b) solid line is the
FTFD —% density.

can give good kinetic energy values for the E-shell
electrons of fixed-shell models. %e use the
FTFD —,% model and its E-shell kinetic energy

(To+ T2) as the reference. The deviations increase
monotonically from —44.3% for Li atom to
+13.7% for Kr atom. The Si and P atoms exhi-

Vp V .V(~1 and ~~1.
P Vp

Only the "intermediate regions, " such as the L and
M shells in fixed-shell models for third-row atoms,
can satisfy the assumptions underlying the deriva-
tions of a gradient expansion. In the work of
Kompaneets and Pavlovskii' "and of
Kirzhnits, ' it was thought that the inhomo-
geneity corrections to the Fermi kinetic energy To
were not applicable in the region near the nucleus
because the semiclassical approximations made
were not valid there. On the other hand, Kohn
and Sham""' have suggested that the inhomogene-
ous corrections to the kinetic energy are needed
and should not be truncated because, without these
corrections, the electron density and its gradient

TABLE XV. Ratios of local energies for fixed-shell Thomas-Fermi-Dirac- —%eizsacker

model of atoms. '

a4

Li
Be
C
0
Ne
Na

Mg
Si
S

Ar
K
Ca
Cr
Ni
Ge
Se
Kr

0.1119
0.1045
0.0971
0.0938
0.0923
0.0897
0.0876
0.0844
0.0820
0.0800
0.0797
0.0789
0.0765
0.0747
0.0733
0.0727
0.0722

0.2476
0.1496
0.0888
0.0655
0.0529
0.0523
0.0508
0.0473
0.0445
0.0423
0.0407
0.0395
0.0357
0.0329
0.0308
0.0300
0.0292

0.2524
0.1685
0.1067
0.0795
0.0640
0.0615
O.OS76
0.0470
0.0415
0.0384
0.0373
0.0364

0.3623
0.2234
0.0944
0.0618
0.0466
0.0417
0.0378

0.1136
0.1063
0.0963
0.0896
0.0846
0.0819
0.0794
0.0753
0.0720
0.0692
0.0682
0.0670
0.0629
0.0597
0.0570
0.0558
0.0548

0.2428
0.1894
0.1373
0.1109
0.0945
0.0860
0.0796
0.0700
0.0630
0.0576
0.05S2
0.0530
0.0460
0.0410
0.0372
0.0356
0.0342

'See text for definitions of model and ratios.
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TABLE XVI. Energies of modified and fixed-shell statistical models for Ne and its ions.

Atom or ion HF MTF MTFD MTFD —W MTFD —SW FTF FTFD FTFD—W FTFD—SW

Ne
Ne+
Ne'+
Ne+

—128.5 —131.5 —143.3
—127.8 —133.9 —145.3
—126.4 —135.7 —146.8
—120.5 —137.0 —146.9

—128.2
—129.4
—130.0
—128.3

—125.9
—126.8
—127.1
—124.7

—126.3 —137.5
—127.03 —137.9
—127.05 —137.5
—124.2 —133.6

—126.5
—126.9
—126.6
—122.6

—124.8
—125.1

—124.7
—120.9

'See text for definitions of models, which are two-zone ones.
Hartree-Fock energies are from Ref. 17(d).

are divergent at the nucleus in the original TF and
TFD models. We know that the gradient expan-
sion of the kinetic energy can be obtained without
making the semiclassical approximation. However,
the gradient expansion has to be truncated because
of the cusp condition at the nucleus. The form
and the number of expansion terms may depend on
the number of electrons of the system as well as on
external potentials, such as that set up by the nu-

clear charge.

F. Other statistical models with shell structures

classical approximations and obtained a density ex-
pression exhibiting shell structure. Light and
Yuan started from an accurate solution of the
Milne equation and made a semiclassical approxi-
mation to the density near the nucleus and derived
a closed formula for the reduced density matrix.
They obtained electron densities with shell struc-
ture through a SCF procedure.

Green and his co-workers have developed an
analytic semiempirical model which is similar in
spirit to the present model. They also obtained a
formula for the one-electron potential.

Statistical atomic models exhibiting shell struc-
ture have previously been obtained by several au-
thors. Gombas and co-workers utilized a
"shell" concept, which is similar to the HF model,
to accommodate electrons and introduced a sophis-
ticated pseudopotential to achieve the proper spa-
tial exclusion between shells. The nuclear cusp
condition was maintained since the full Weizsacker
correction T~ was used. Their model exhibits
shell structure because the resulting exponential
parameters differ drastically from each other. Kir-
zhnits and Shpatakovskaya started with the semi-
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