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We discuss the introduction of constraints in a system of n noninteracting particles
which obey the laws of nonrelativistic quantum mechanics. In this paper the particles are
first thought of as being unconstrained (described by the 3n Cartesian coordinates of a
flat space R), but subject to an external potential V which, in a certian suitable limit,
forces the system to remain in a curved subspace V of R. This idea was already em-

ployed in a previous work where we have discussed the motion of one constrained parti-
cle. It was then shown that in order to obtain a meaningful result the particle wave func-
tion should be "uniformly compressed" into a surface (or curve), avoiding, in this way,
the tangential forces which correspond to the dissipative constraints of classical mechan-

ics. The resulting Schrodinger equation could then be separated in such a way that the

part which contained the surface (or curve) variables was independent of the potential V

employed in the constraining process. In the present paper we show that this procedure

cannot be carried out for all subspaces V of R in the case of a many-particle system, un-

less V satisfies a certain geometrical condition. The many-particle Schrodinger equation

(as was already the case of the one-particle systems) contains, besides the kinetic energy

term, potentials which are not bending invariants, that is, cannot be obtained from the

metric tensor g;~ of V or its derivatives. This gives rise to different Schrodinger equations

for isometric subspaces, in striking contrast with the usual quantization procedures which

start from the classical Lagrangian of the constrained system.

I. INTRODUCTION

In a previous paper' we have discussed the
description provided by quantum mechanics for
the motion of a particle subject to one or two in-

dependent constraints (motion over a surface or
curve). The basic idea was to first consider the
particle as freely moving in our ordinary three-
dimensional space, but subject to external forces, of
increasing intensity, in order to effectively bind the
particle to the desired surface or curve. It was
then shown that this procedure gives a perfectly
well-defined result, provided that some precautions
(discussed below) are taken in the definition of the
potentials and wave functions. The more interest-

ing feature of the results obtained in this way is
the presence, in the resulting Schrodinger equation,
of a potential (of geometrical origin) that is not a
bending invariant, since it cannot be derived from
the intrinsic properties of the surface or curve to
which the particles are supposed to be attached.
This situation can be illustrated by the following
example': Let us consider a particle moving on a
plane surface which is continuously folded
(without stretching) around a straight line. Ac-

cording to our results, there will appear during the
folding process an attractive potential, of increas-
ing intensity, around the edge of the folded plane
which will be responsible, when the plane is corn-

pletely folded over itself, for the boundary condi-
tion associated to the motion of a particle over a
half plane. This potential will never be obtained in
a usual quantization procedure starting from the
classical Lagrangian of the (already) constrained
particle, L = —,mg, zq'q, because L only depends on

the metric properties of the plane surface, which
are not affected by the folding process. We can
easily see from this example that the treatment of
the constraint discussed in Ref. 1 is the most ade-
quate to describe a real-world situation, in which
every attempt to reduce the dimension of the sys-
tem is strongly opposed by the uncertainty rela-
tions. This effect, of course, has no counterpart in
the classical description of the same problem.

The aim of this paper is to investigate how far
we can extend the formalism developed in Ref. 1

for a system containing an arbitrary number of
particles. In order to better develop our reasoning
let us consider a classical system described by the
N generalized coordinates q ', ...,q obtained from
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a system of independent particles, of N+@ dimen-

sions, through the use of p-independent spatial con-
straints. If we caH R~+& the Cartesian space of
N +p dimensions, described by the coordinates x,
e=1,2,...,N+p, we can imagine any configuration
of the constrained system as corresponding to a
point in a curved subspace V~ of R~+z, defined

by the parametric equations:

x =x (q', q, . . . , q+} a=1, 2, . . . , N~p . (1)

Let us assume, for the time being, that we can as-
cribe to all points of a suitable neighborhood

MCR~+& of V~ the set of coordinates
(q', . . . , q",u', . . . , u ), where

Q =Q s. . . , =Q =0 gives the equation for an ar-

bitrary point of V~ (from now on the q's and u's

will be, respectively, referred to as internal and

external coordinates). In order to compress the
system from R~+& into an increasingly smaller

neighborhood M (i.e., limiting the range of varia-
tion of the u's around a =0, += 1,2, . . . , p) we

can imagine a family of potentials

Vg( 9,Q, . . . , Q ), where )(, ls an appropriate
"squeezing parameter" which determines the
strength of the constraint:

We cannot, however, choose the external coordi-

nates and consequently the potentials V~ in a com-

pletely arbitrary way, since otherwise we could ob-

tain a constrained motion depending on the choice
of V~, which, naturally, is an unacceptable result.

In order to select an appropriate family of poten-
tials V~ we shall use, as a guiding principle, a
property deri~ed from dassical mechanics which

says that the constrained motion can be uniquely
dete~~~ined only when the constraint forces have a
normal direction for all points of Vz (frictionless
constraint}. Well, since in quantum mechanics we
can no longer predict the position of the particles
with pointhke accuracy, it is perfectly natural to
select only constraint forces which have normal
directions in aH points of the space R~+z where
the system can possibly be found. 3 This idea can
be put into practice by selecting V~ such that

V[Vq(u ', . . . , u )] intersects orthogonally the sub-

space V~ for all points of the neighborhood M.
This condition can be satisfied (as we shall see in
Sec. II) by requiring the orthogonality between
internal and external coordinates, that is,

BR BR
, =0, a=1,2, . . . ,p, j=l,2, . . . , N

BQ Bf

(3)

where R{q', . . . , q",u', . . . , u6 is the position
vector of an arbitrary point in ~. The problem of

representing the constraint by means of the poten-
tial Vg(Q, . . . , Q ), taken 1n the lllIBt (2},will

then be reduced to the question of knowing wheth-

er, given a subspace V~, such a system of coordi-
nates can actually be constructed. This question
wi11 be discussed in Sec. II of this paper where we
obtain a necessary and sufficient condition for the
construction of a coordinate system satisfying the
orthogonality condition (3}. We note that this con-
dition is identically satisfied for p= 1 (one con-
straint: V~ is a hypersurface of R~+~) or N= 1

(N+p —1 constraints: V~ is a curve of R~+~),
which explains why our problem can always be
solved for a one-particle system {the case con-
sidered in Ref. 1), since in this case we have

N+p=3, which implies in N= 1,+=2 (curve) or
N=2, p= 1 (surface}.

We obtain in Sec. III the Schrodinger equation
for a subspace V~ ~here (3) can be satisfied. As
already stressed in Ref. 1 this construction gives
rise to "subspace potentials" U(q', . . . , q ) which
depend on both mean and total curvatures and
therefore cannot be obtained from the metric pro-
perties of V~ alone. The question of what happens
to the V~'s where condition (3) cannot be satisfied
is also considered. The answer, within the frsune-
work of the present ideas, is that every attempt to
reduce the system from R~+~ to V~ wiH give a re-
sult which depends on the type of external poten-
tial V~ employed during the constraining process.
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II. GEOMETRICAL CONSIDERATIONS

2895

Let us consider the possibility of constructing a coordinate system in Rz+~ such that the internal

(q', . . . , q+) and external (u ', . . . , u ) variables are mutually orthogonal. Since the internal coordinates are

supposed to be a parametrization r =r(q', . . . , q ) of the curved subspace VN, we can write for all points

of the neighborhood M

with

1 N 1 P ~ 1 N P 1 N 1 P ~ 1 NR(q, . . . , q, u, . . . , u )=r(q, . . . , q )+ f (q, . . . , q, u, . . . , u )n&(q, . . . , q ),
P=1

I

where

(4)

det
a
BQ

(5)
Bnp

Bqj

where we have introduced an arbitrary nonsingular
coordinate system, u ', . . . , u~, in the subspace
spanned by the system of normals

n~((n)r n ) =5 ~) at every point of V~. From (4)

we have

Since the quantity between parentheses in (9) does
not contain the index a we can write from (5)

df 1'

+
BqJ p

and

BR g Bf»
QgCX QgC

aR ar af~
„

. n+ &

(6)

(7) ayP. jk
—0 (12)

for all values of y and j. According to the well-

known theory of partial differential equations, the
integrability condition for the system (11) is given

by

Assuming, for a moment, that the u 's andy j's are
orthogonal we can write the classical force F due
to the potential V~(u ', . . . , u~), in terms of the
variables QJ, Qj=qj, j=1,2, . . . , N, Q~+ =u,
Q 1&2' ~ ~ ~ s ps as

&+~ . BV& ggr=vv = g G"
aQ' aQ'

where

a a
gyp, Jk

——. kpJ;;yp
—„Jpk., yp

oq
' oqJ

+ (P,;.yak;~P —VJ;~Pek;~y) . (13)

pf+ pf+p A, BR

au aup
' (8)

Condition (12) can be written in a simpler form in

terms of the components of the symmetric tensor

where

BR BR
aQ' aQ'

Gil (6—1)

It is now easy to see from (8) and (6) that F is

everywhere contained in the normal hyperplanes of
VN as we intuitively aniticipated.

Returning to the main object of our calculations

we can, from (6) and (7), write condition (3) as

(9)

}r BnQ,J
——— . ~ . ——Q.j;,

Bq' BqJ
(14)

bn
~yP jk g (y lkPmj ~y lJ'~Pmk ) s (15)

where summations were carried out over repeated
coordinate indexes. The integrability condition for
our system (11) can then also be obtained by set-

ting the right-hand side of (15) equal to zero. The
fact that this condition enables us to integrate the

which appear in the coefficients of the second fun-

damental form of the subspace Vz embedded in

Rz+&. In fact, we know from the results of dif-
ferential geometry, that the components pj.yp are
not completely independent, but must satisfy the
condition
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system (11) leads to a simple geometrical interpre-
tation. Really, since (11) do not contain explicitly
the external variables u ',u, ...uP we can get, from
a particular solution f»(q', . . . , q",u', . . . , ui'),

y=1,2, . . . ,p, p independent solutions by taking
the derivative of f» with respect to each of the
u 's [remember condition (5)]. Calling
Bf»/Bu =h we have from (11)

a g h"h" = —$ pry@(h "hf+h ih 1=(0,
y=& yP=i

(16)

because pj.»p is antisymmetric in the indexes y and P [see (10)]. On the other hand, assuming the integrabil-

ity of (11), we can arbitrarily choose the values taken by f» at a fixed point (qo, . . . , qo) of VN. Let us

then select

f»(qo . . qo )=u» y= 1 2. .p . (17)

[As a matter of fact, since (uz. »p contains only the variables q, the external variables will appear as constants
of integration in the solution of (11). What we have done in (17) was to choose a Cartesian coordinate sys-

tem for the normal subspace at the point (qo, . . . , qo).] If we now consider the behavior of the Jacobian
matrix h», it is obvious from (16) and (17) that we begin with the identity matrix h»=5" at (qo, . . . , qo},
and, although h~ changes from one to another point of V~, it will always remain an orthogonal matrix. We
will profit from this circumstance by introducing the change of normals

P

g )i vn(7
cr= 1

(18)

where, due to the orthogonal character of h„,the new normals still form an orthogonal basis in every nor-

mal subspace of V~. The tensors pj p
relative to this new choice of normals are given by

, Bnp Bhp
I Jvp=nv J

= hv J + I jozhp =0,
BqJ ) BqJ

since the hz~'s satisfy the same systein (11) for all values of p. In Eq. (19) we have a necessary condition for
the orthogonality relation (3): We must have a choice of normals for which pj. , vanishes identically; or in

other words, the derivative of every normal n,' must be contained in the tangent subspace for all points of
V~. In this case, as (11) clearly shows, we have the same f~'s for all points in V~.

a.~~
f~=f~(u', . . . , u~), det ' @0.

Bu

Equation (19) is also a sufficient condition, as can be seen by writing (4} in terms of the normals n „':

R(q', . . . , q u', . . . , u (=r(q', . . . , q (+ gf~(u', . . . , u (nj(q', . . . , q"(, (20)
I)t= 1

and obtaining

BR Br &Bnp

which, by hypothesis, is orthogonal to all normals n' and, therefore, to the derivatives BR/Bu as given in (6).
As a last remark we observe that (12) is always satisfied when V~ is either a curue or a hype»surface of

Rz+p. This can be seen from (15), where the first case corresponds to j =k (one internal variable only) and
the second to P=y (with only one normal, its derviatives must necessarily lie on the tangent subspace).

III. SCHRODINGER EQUATION
FOR THE CONSTRAINED SYSTEM

In order to write the Schrodinger equation obeyed by our system during the constraining process we shall

assume that we can find, in the subspace V~ (to which the coordinates of our system will ultimately belong),



CONSTRAINTS IN QUANTUM MECHANICS

a set of normals

&jan

satisfying condition (19). The parametrization of RN+z which holds in a neighborhood
M of Vz will then be written in the form (20)

Rtq', . . . , Suu', . . . , ur)=HS', . . . , qu)+ $ uuq'q(q'. , qu),
P=1

where we have, for the sake of simphcity, selected Cartesian coordinates for all normal subspaces of V~.
From (21) we obtain

(21)

BR
qua =)la, Q 1s2s ~ ~ sp {22)

with

BR Br p g Br
fop;I'ig k I J =1)2

Bqj Bqj p

sk
)~k gI =

Bq Bq

From (22) and {23)the components of the metric tensor G~ are

6;k ——gjk —2 u Qp.jk+ u u O,p. ,&Q„~kgp p y lNt

P=1 P,y= 1

GjN+a ON+a j 0s GN+aN+p sap s

{27)

dP=
f @ f

~dV =
f @ /

2V Gdq'. . . dq da' du~

'1/4 2

v g dq ' dq du' du&= ~X
~

~vg dq' dq~du'. da&, (

provided that X can be separated as XI(qj,t)X,(u, t) (the subscripts i and e stand, respectively, for internal

with j,k= 1,2, . . . , N; a,P=1,2, . . . ,p. The Schrodinger equation in R~+~ will then be written as

1 8 IJ. BfP ) P . Bf
2m 6 QQ' j)Q& dt

VGG'J . + Vq(u', . . . , u~)/=i' (26)

where 6'1={6 '),&, G=det(6;~), and m is the mass of the particles. Notice that, since the constraining po-
tential depends only on the external variables, the values of V~ are determined for all points of the neighbor-

hood M once they are known in one normal subspace chosen at an arbitrary point of Vz. In other words,
we have the liberty to choose arbitrarily [as far as (2) is satisfied] the values taken by V~ in but one normal

subspace of V~, the value in the other subspaces being automatically defined by the change in the normals

n'it(q, . . . , q ). As a matter of fact, this is not an unexpected result, since it agrees with the intuitive idea
of tangential forces.

Now we can turn our attention to the solution of {26). Owing to the particular structure of (24) (orthogo-
nal coordinates) we can break up the summation in (26) into two parts: one containing only derivatives with
respect to internal variables, and other derivatives with respect to external variables:

'r r

) S ~OS Sq 8 g Sr)I S () ~O)~ q ~
.SB()

2m," ) vg Qq' Qq J 2' Q(u )2

where we also have used the fact that 6 +I +~=0 for a+P. The next step is to redefine the wave func-
tion g in a way that is more adequate to describe the physical meaning of the compression process. The
first thing we must bear in mind is that we are interested in the probability of finding the internal coordi-
nates of our system within a certain volume element of V~, independent of the values taken by the external

variables u . Moreover, we are especially interested in the possibility of writing this same probability as

~X; ~
~g dq' dq, where P; is an internal wave function. This goal can be accomplished by writing the

elementary probability dP for the volume element d V in R)v+z as
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and external). The Schrodinger equation (27) can now be written in terms of the new wave function X.
After performing elementary calculations we have

fi ~ l 8 ~GG~J 8 X
2m, , , vG aq' aq' vt

fP l (PX
2m v h tt ) B(u~) 4A

ah
'

2h
a'h

au p e(u p)'

Vg(u, . . . , u~)X=iA, (29)
. aXrat

where h =(G/g)' . We are now ready to take into account the effect of the constraining potential
V~(u ', . . . , u ). Since in the limit when A,~ ao [see (2)] the wave function "sees" steep potential barriers in
all directions orthogonal to V~, its value will be significantly different from zero only for a very small range
of values of u around u =0, a=1,2, . . . ,p. In this case we can safely take u ~0 in all coefficients of
Eq. (29), except, of course, in the term V~(u', . . . , u~). The result from (25) and (29) is

am, .),vg aa' aq) am a, all& a(ua) a'X, , aX
p 2+ Vk(u u p)X=lA' (30)

2m
& ~

B(ut')~ dt

since, obviously, h=1 in all points of Vz. Setting X=X;(qj,t)X,(u, t) we get the separate equations

p 2 + V~(u ', . . . , u~)X, =i A
2m p, B(uP)

a ., aa,
~ ~gg

2m J.k, Bqj Bq" 8m
&

X; =i'
Qg p Q(~ p)2

(31)

(32)

Expression (31) is just the Schrodinger equation in a p-dimensional Cartesian space in the presence of the
potential V~, and can be ignored in all future calculations. Expression (32), however, is much more interest-
ing, due to the presence of the internal potential

Bh 8'h
Uj(q p ~ ~ ~ p q )

p
2

p 28mP 1 Bu B(u )
(33)

' 1/2

which depend on the geometrical properties (not necessarily intrinsic) of the subspace Vz embedded in
R~+z. The first thing we must take into account in the calculation of U; is that since only first- and
second-order derivatives appear in (33), we do not need an exact expression for h, but only a series expansion
up to the second order in the u 's. Using (25) we obtain, after some lengthy but not too difficult calcula-
tions,

6h= =1— Qp.juP+ —, (Qpj. jQ~k —Qp. ;Q~k)uPu + . .
P=1

" 'P, y=1
(34)

where Qp. ; is the mixed tensor gj Qp. ;I. From (34)
it follows that

U;(q~, . . . , q )= — (M +2R),
m

where

(36)

Bh = —Q~p.,aup „.,
(35)

M = (QJ~.J )

1/2

(37)Bh; k k
2

—Qp. , Qp. k —Qp. jQp. k .
B(u) „ao

Substituting (35) into (33) we obtain at last

and

R = (Qo;kQcr;l Qo;IQcr;k) ~ (38)
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are, respectively, the mean and total curvatures of
VN as embedded in RN+p. For the particular case
of a single-particle subject to one constraint (that
is, moving on a surface) we can, using appropriate
coordinates, write Q~.k ——k 5k, where kl and k2
are the principal curvatures of the surface Vz in
our ordinary space R3. From (37) and (38) we
have R= —2klk2, M =(kl+k2), and from {36)

the coordinates (21) is written as

N+p
E=

z m g (x ) + V~ ——i mG, J.q'q~
a=1

+-,'m (u )'+V, ,
a=l

(40)

U;(q', q )=— (kl —k2)
8m

(39)

which agrees with previous results. ' Although R
depends only on the intrinsic properties of VN this
is not the case of the mean curvature M, so that
two isometric subspaces V~ and V~ of R~+~ {for
which correspondent points can be found with the
same g,&'s) will have different internal potentials,
and, therefore, different quantum mechanics. As
already mentioned in the introduction this result is
in strong disagreement with the usual quantization
procedures which start from the Lagrangian of the
classical motion.

One last remark that must be made about Eq.
(3) is as follows: As we have just proved it pro-
vides a sufficient condition, in the sense that when-

ever it holds we can, using a relatively ample class
of potentials V~(u', . . . , up), obtain a unique
Schrodinger equation for the constrained system.
Nothing was said, however, on whether (3) was or
was not necessary, that is, if a Schrodinger equa-
tion can still be obtained even when (3) is not satis-
fied. Although we do not have a full analytic
demonstration there are good reasons to believe
that {3)[or (12)] is both necessary and sufficient to
obtain a unique Schrodinger equation (at least
within the context of the present work). The first
reason is based on the fact that if (3) is not satis-
fied there will appear in (27) crossed terms of the
type 8 1{I/Bq'E)u preventing the separation of the
wave function, which seems to be essential in order
to have a meaningful limit process. We must also
remember that even when the coefficients of the
crossed terms vanish in the limit u ~0 [as is the
case with the coordinates (21)], the derivatives with
respect to external variables go to infinity so that
we cannot show, a priori, that those terms can be
disregarded (as a matter of fact, elementary calcu-
lations based on harmonic constraining potentials
V~ predict a finite limit). This same problem can
also be seen from the point of view of classical
mechanics. In fact, the total energy in terms of

——,m (u ) +V~(u', . . . , uP) . (41)

Equation (41) is readily separated as

E;=—,mgkI(q', . . . , q )q ql,

E,= —,m (u ) + V~(u ', . . . , u ),
a=1

(42)

where each of the equations (42) contain only one
kind of coordinate (internal or external). Let us
consider what happens when the u~'s and g"s are
no longer orthogonal. The result will be the same
as in (40) with the term

m+G ~+Mqtl
i,a

added to its last member. The same separation ob-
tained in {41)is still feasible in classical mechanics
where we can take u ~0 irrespective of the value
taken by u (or take both of them going to zero if
we so desire). However, as is well known, this is
no longer possible in quantum mechanics because
of the uncertainty relations, and, therefore, we can-
not associate separation energies to the internal and
external motions.
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where the G,J's given in (24) depend on both q "s
and u~'s. Taking u~~0 in the coefficients of the
kinetic energy, as required by the constraining pro-
cess, transforms (40) into

1 N .i.jE = —,mgj(q, . . . , q )q q
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