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Lagrange functions of a class of dynatnical systems
with limit-cycle and chaotic behavior
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It is shown that a class of dissipative dynamical systems with limit-cycle and chaotic
behavior can be derived from a Lagrange function. A particular system is investigated
numerically.

«+ax+ px —yx'= f cos(Qt), (3)

where a, P, y, f& 0. For fixed a, y, and f the au-
thors found limit-cycle behavior or chaotic
behavior according to the ratio Q/P . But in the
present equation of motion there is no global sta-
bility, i.e., when we use sufficiently large initial
values the solution has an exploding amplitude.
This is due to the fact that the potential V is given

by

V(x) =—yx /4+Pxi/2,

and therefore V(x)~ —oo as
~

x
~

~ oo.
Using the Poincare mapping, Hayashi discussed

a special case of the equations of motion given
above, namely, x+ax+x =f cost. Holmes and
Marsden extended the work of Holmes' and stud-

Recently several authors have studied chaotic
states of nonlinear oscillators in an external period-
ic field. ' Holmes' investigated the forced Duff-
ing equation with damping

x+ax —Px+yxi=f cos(Qt),

where a, p, y& 0. Q is the frequency of the exter-
nal periodic field and a is the damping coefficient.
For fixed a, p, y, Q, he showed that in the phase
plane (x,y) (where x =y), an extremely complicated
nonperiodic motion arises for a wide range of
moderate f. Equation (l) can also be written as

x+ax+ =fcos(Qt),
dV
dx

where the potential V is given by
V(x)=yx /r —Px /2. Thus we find global stabil-
ity, since V(x)~oo as ~x

~

~oo. Huberman and

Crutchfield considered the system

ied a class of time-periodically perturbed evolution

equations whose associated Poincare map contains
a Smale horseshoe.

In the present paper we show that the present
evolution equations and extensions, which also
show chaotic behavior, can be derived from a
Lagrangian. Since we consider dissipative systems,
the Lagrangian depends explicitly on time. From
the Lagrangian we can calculate a Hamiltonian.
Moreover, we study briefly an equation of motion
which can be derived from a Lagrangian and
which is an extension of the models given above.

Before considering dynamical systems with
limit-cycle and chaotic behavior which can be de-

rived from a Lagrangian, we recall a dissipative
system without limit-cycle and chaotic behavior
which can be derived from a Lagrangian. Later on
we extend this dynamical system and include
limit-cycle behavior and chaotic behavior.

The equation of motion

x+ax+ px =0

can be derived from the Lagrangian

L= —,e '(x —px ) .

(4)

H= —,(pie '+px e ') . (7)

It is worthwhile mentioning that the equation of
motion can be derived from a Lagrangian which is
independent of time, but this Lagrangian is not

When P & 0 we describe a damped harmonic oscil-
lator. A constant of motion is given by

f(x,x, t)=en'(x +P«2+a«x) .

The corresponding Hamiltonian is given by
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globally defined. The more general equation of
motion

x+ax+f(x)=0 (8)

limit-cycle behavior.
Let us give a further interesting equation of

motion which can be derived from the Lagrangian
given above. Consider

can be derived from Lagrangian

L = —,e '[x —V(x)j,

where

V(x)= f f(g)dg .

(9)

(10)

L = —,e '[x —V(x, t)] .

The equation of motion is given by

BV(x,t)x+ax+ ' =0 .
Bx

If we choose

(12)

(13)

Thus we are able to derive a class of nonlinear
damped harmonic oscillators from a Lagrangian.
The Lagrangian given by Eq. (9) can be found in

the literature. The corresponding Hamiltonian is
given by

H= —,p e '+e 'V(x) .

Consider now the case where the Lagrangian
leads to an equation of motion which shows chaot-
ic behavior and limit-cycle behavior. For this pur-

pose we consider the following Lagrangian:

V(x, t) = —pcosx fx—cos(Qt) .

Then we find the equation of motion

x+ax+psinx =f cos(Qt) .

(15)

(16)

x=y,

Similar to Huberman and Crutchfield we can in-

terpret Eq. (16) as follows: Consider a particle of
mass ni and charge Q moving in a one-dimensional
potential V given by V(x)= —Pcosx, where x
denotes the particle displacement (with respect to a
typical length of the system). The particle is sub-

jected to a periodic electric field of frequency Q.
Since the model should describe conduction in a
solid, we introduce a phenomenological damping
coefficient a. Utilizing these assumptions we find
the equation of motion given by Eq. (16), where
the mass I is included in the parameters a, P, and

f. The parameter f is given by f =EQ/ma, where

Q is the charge, E the electric field, and a the lat-
tice constant. We have studied Eq. (16) numerical-

ly in the phase plane (x,y) where y =x. This
means we have considered the system of differen-
tial equations

px' u4
V(x, t) = — + fx cos(Qt),—

2 4 y= —ay —Psinx —f cos(Qt) .
(17)

then we obtain the equation of motion studied by
Holmes. On the other hand, if we choose

px' )(x4
V(x, t) = — fx cos(Qt), —

2 4

then we obtain the equation of motion studied by
Huberman and Crutchfield. The corresponding
Hamiltonian is given by

H = —,p'e '+ —, V(x, t)e '. (14)

Since H depends explicitly on t it is obvious that H
is not a constant of the motion. In general, the
dynamical system described by Eqs. (12) or (14)
does not possess global constants of motion. This
due to the fact that chaotic behavior occurs. How-
ever, for the well-known special case with

2

V(x, t) = fx cos(Qt)—x
2

we find a global constant of motion. This system,
however, does not show chaotic behavior, but only

The points (nn. ,0) (n EZ) are critical points of the
system (17) when we put f =0.

We mention that Huberman et al. have solved

Eq. (16) using a hybrid digital-analog computer
system. They have characterized the chaotic
behavior with the help of the power spectrum
which is the Fourier transform of the autocorrela-
tion function. We have characterized the chaotic
behavior with the help of the Lyapunov exponent.
We can see that for the present model both con-
cepts coincide (positive Lyapunov exponent, auto-
correlation function decays).

For fixed values of a, P, and Q we have calcu-
lated the trajectories in the phase plane. We have
put a=0.2, P= 1, and Q=0.8. For f=0.5, 1, and
1.5 we have plotted the phase portraits in Figs.
1 —3. For f=0.5 (Fig. 1) we find that the trajec-
tories surround the origin (0,0). The system shows
limit-cycle behavior. Within the numerical accura-
cy the Lyapunov exponents X is given by X=O.
When we increase the amplitude f of the external
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FIG. 1. Trajectories in the phase plane for f =0.5 (limit-cycle behavior).

perturbation, we find for f=1 that the trajectories
surround the points (0,0), (ir, 0), and {—ir,0).
Again we find limit-cycle behavior (Fig. 2). There-
fore, the Lyapunov exponent X is given by X=O.

When we increase f further we see that the trajec-
tories surround further points of the type (nm, O),
where n CZ. For f= 1.5 we find chaotic behavior
(Fig. 3). The Lyapunov exponent X is positive
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FIG. 2. Trajectories in the phase plane for f=1 (limitwycle behavior).
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= 1.5 (chaotic behavior).
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