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An exact solution is found for the functional renormalization-group equations describ-
ing intermittency in area-preserving mappings of the plane. Analysis of the solution
yields two scaling laws for the duration of laminar flow in between chaotic bursts.

Many authors have discussed a behavior resem-
bling experimentally observed intermittency which
arises in one-dimensional maps or recursion rela-
tions.! =3 In this scheme a recursion relation pro-
duces long strings of nearly periodic iterations,
corresponding to laminar flow, interrupted by
bursts of chaotic iterations. The maximum length
of the nearly periodic sequences is found to diverge
as a power law when a parameter approaches a
critical value, at which a pair of cycles form via a
tangent bifurcation.'~ Recently, Hirsch, Nauen-
berg, and Scalapino have explained the scaling
behavior with an exact, analytic renormalization
group.* The functional equation used is the same
one used to describe period doubling in one- and
two-dimensional maps.’—8

In another recent paper, a similar intermittent
behavior in area-preserving maps is described.’
The tangent bifurcations in these maps lie in
another universality class and have different scal-
ing properties than the one-dimensional ones. In
this paper, a renormalization group is used to
describe these scaling behaviors.!®

The treatment begins with the same functional
equation used to describe intermittency in one-
dimensional maps*:

d(x,y)=L "¢ ¢L (x,y) . (1)

Here ¢(x,y) is an area-preserving map of the plane
and L is a constant 2 X2 matrix. The strategy is
to expand around the trivial solution ¢ =identity.
In order to find the matrix L, we demand that the
operators 8¢(x,y)=(y,0) and 8¢(x,y)=(0,x2) be
marginal (are perturbations of the fixed point with
eigenvalue one).!! These operators are being sin-
gled out as the physically important ones because
they are the leading terms in the generic area-
preserving map at a tangent bifurcation.'” This
marginality requirement uniquely specified L
(which may be assumed to be diagonal), which
must have eigenvalues % and % Table I contains
a listing of all the relevant and marginal eigen-
values and eigenvectors around the trivial solution
¢ =identity.

To obtain the interesting nontrivial solution, one
perturbs the trivial solution in the marginal direc-
tion. Beginning with the trial solution

(A, x,p)=(x +Ap,y +Ax?)
one can compute ¢(A,x,y) self-consistently, order
by order. The result, up to third order in A, is

d(A,x,y)=(f(A,x,9),8 (A,x,p)) ,
where
2.2 3
fox,p)=x +Ay + )”—zx— + }”—3’9)— ,

TABLE I. Relevant and marginal perturbations around the trivial solution.

Eigenvalue A Eigenvector 8¢(x,y)

Significance

16 0,1)
8 (1,0)
4 (0,x)
2 (x,0)
2 0,)
1 »,0)
1 (0,x?)

Produces (R —R.)~!/* singularity
Produces |4 —A. | ~'/¢ singularity
Equivalent to (0,1) (Ref. 13)
Violates area preservation
Violates area preservation
Marginal

Marginal
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3.2 3.2
g(A,x,y)=y +}\x2+k2xy+k—3x—+&§y__ .

One notices a perhaps unexpected symmetry
built into the solution. That is,

f(k,x,}’)=12f(lk,XI_2,yl_3) ’ (3)
g (Ax,p)=1g(IA,xI =2yl 73) .

(2)

This scaling behavior has strong consequences.
When applied with (/=2) to the original functional
equation (1), one obtains the remarkable result that:

d(A,x,p) d(A,x,y)=¢(24,x,) . (4)

In addition, one sees that any function ¢(A,x,y)
which satisfies both Egs. (3) and (4) must in fact
be a solution of Eq. (1).

Now the solution to the functional equation can
be given explicitly. Define ¢(A,x,y) as the point
obtained by starting at the initial condition (x,y)
and integrating the flow

i)f'_y

=7 (5)
dy_

dt

for At=A units of time. Equation (4) now states
the simple fact that to follow a trajectory for A
seconds twice, is the same as following a trajectory
for 2\ seconds. Equation (3) also follows readily
as the substitutions t—It, x —xI/ =2, and y —yl ~>
leave the differential equation (5) invariant. Since
(A, x,y) so defined obeys Eqs. (3) and (4), it is the
solution of interest to Eq. (1). In fact this solution
&(A,x,y) obeys a stronger law than Eq. (4):

¢'(A,x,9) =N, x,) . (6)

In combination with the scaling property (3), this
implies ¢(A,x,y) obeys the functional equation

(L)~ '¢'Li=9, (7
where
=2 0
L[= O 1_3 (8)

One should have expected intermittency to be
described by this more general equation (7), as the

phenomenon is not associated with any fixed-
length period, as in the case of period doubling.

One may use the linearization around the trivial
fixed point to explain the scaling behaviors associ-
ated with relevant perturbations. The linearization
around the nontrivial solution has the same eigen-
values, and hence the same scaling behavior. The
eigenvector with the largest eigenvalue, A=16, will
correspond to the difference (R —R,), where R is
the control parameter and R, is the value for
which the tangent bifurcation takes place. If one
defines n (R —R_) as the number of iterations re-
quired to bring the origin out to some large fixed
distance, the renormalization group says

2n[16(R —R.)]=n(R —R,) . )

In other words, it takes twice as many iterations
with (R —R,) one-sixteenth as small. The scaling
solution is

n(R —R,)=(R —R,)~"*const .

In the exceptional case that no A=16 eigenvector
is present, the A =8 eigenvector will control the
behavior. This A =8 eigenvector is related to the
choice of initial conditions when R =R,. The
solution curves of Eq. (5) have the form

y=+( %x3 + A)!?, where A corresponds to the
choice of initial conditions. Changing A from zero
is equivalent to adding the perturbation with eigen-
value A=8 and amplitude 4'/%. So one must

have

2n(8|4 |V)=n(14|'?. (10)

And hence n( |4 |?)=|4 |3 or
n(d)=|A | ~1/%. These scaling results are the
same as reported earlier.’
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