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Alfven-wave generation in a beam-plasma system
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This paper considers nonlinear decay of a beam-driven plasma mode into an Alfven
wave plus a circularly polarized electromagnetic wave near the electron-plasma frequency.
Explicit expressions for the growth rate and threshold are obtained analytically.
Relevance of our work to space as well as laboratory plasmas is discussed.

It is well known that the two-stream instability'
in a beam-plasma system creates an unstable beam
mode. The maximum growth rate yl occurs for
Uy =6)pfkp, and is given by
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where ns(no) is the beam (average plasma) density,

Ub is the beam velocity, kp is the wave vector of
the most unstable mode, and co~ is the electron-
plasma frequency.

Such nonlinear processes as the particle trapping
halts the growth of the beam mode. At saturation,
the wave electric field is found to be'
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where e and m, are the charge and mass of the
electron, respectively. A coherent plasma mode is
subjected to numerous kinds of parametric instabil-
ities in an unmagnetized plasma. The presence of
a guide magnetic field B,z allows one to investigate
a great variety of nonlinear interactions. For ex-

ample, recent laboratory and computer experi-
ments have conclusively shown that an electron-
plasma mode can decay into an ordinary elec-
tromagnetic wave near a~, and into an ion wave.
This process, which occurs in a multidimensional
situation, has theoretically been analyzed by us.
Our findings are in agreement with the experimen-
tal observations.

In his original paper, Hasegawa pointed out the
possibility of a new kind of decay interaction. In
this novel process, a large-amplitude beam mode
can nonlinearly decay into a high-frequency left-
handed circularly polarized electromagnetic wave
and a low-frequency right-handed electron
whistler. All the waves are assumed to propagate

along Bpz. This can be viewed as Raman interac-
tion in a magnetoplasma. A general formulation
of coupling coefficients is contained in Ref. 7.
However, the latter work does not give explicit re-
sults for the growth rate and threshold.

Here, we extend the work of Hasegawa by in-

cluding ion motion. Thus, our low-frequency de-

cay channels consist of Alfven or ion-cyclotron
modes. Using a very simple approach, we derive a
general dispersion relation including proper damp-
ings. Explicit expressions for the growth rate and
threshold are derived.

Consider a cold plasma embedded in an external
magnetic field in the presence of a beam mode
whose properties follow (1) and (2). Nonlinear in-
teraction of a finite-amplitude plasma wave with
high- and low-frequency circularly polarized waves
is governed by
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where nj. , mj, vj are the partide density, the mass„
and the fluid velocity of species j =e, i; E and B
are the self-consistent electric and magnetic fields
associated with the wave, and v is the electron-ion
collision frequency.

Like Hasegawa, we are interested in a one-
dimensional problem in which all the waves are
collinear with Spz. In the field of the pump wave
(cop, kp) with the electric field

Eo zEo exp(ik——oz itoot) +H, —
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the electron quiver velocity U~, and the electron
density perturbation np are related by

np ko
Up =P,

no p

where H stands for the complex conjugate, and
UP =PEP/lmeCOP.

Nonlinear interaction of an electron-plasma
mode with a low-frequency circularly polarized
electromagnetic wave {u2,k2) gives rise to a high-
frequency circularly polarized wave {u1,k1). The
helicity is thus conserved. On the other hand, the
momentum and energy conservations require that
co1——cup —co2 and k1 ——ko —k2.

For circularly polarized waves, we introduce the
following complex representation for the electric
field:

E,=rZ, exp(lk 1z —im1t)+a,

where for the left-(right-} handed wave we have
r =x+iy(r =x i'y ), wit—h x and y being the unit
vectors along the x and y directions, respectively.

Writing

ne =no+np ~ n» =no s
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and noting the fact that density perturbations asso-
ciated with the electromagnetic waves under con-
sideration are zero, we obtain from (5) after
Fourier transformation
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where
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In deriving (9), which is the nonlinear wave
equation for the high-frequency left-handed circu-
larly polarized wave, we have used the linear velo-

city
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a solution of {4). Furthermore, v,l' is the linear
electron velocity in the electric field E2 of the low-

frequency wave, and is given by
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where the angular brackets denote averaging over
the high-frequency oscillations. %e have defined
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where plus (minus) sign in front of 0, corresponds
to left (right} circularly polarized wave.

The nonlinear velocity perturbations vj
' are

produced by beating the electron-induced velocity
in the beam mode with the v,'I', and the
corresponding low-frequency magnetic field

BI——(ck2/A@2)z g E2. In particular, v,' ' is obtained
by solving the equation
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If we let v, =U,' '(x —iy), Fourier transformation
of {12)then yields
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where the low-frequency wave is taken to be a
right-handed polarized. As a matter of fact, for
the Stokes component of the satellite, the helicity
conservation requires that the low-frequency wave
to be of opposite polarization. Combining (7), (9),
(11),and (13), we readily obtain after matching
phasor

2
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DiEi= 1— pE2 . (14)
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In the above, contribution of the ion term to the
nonlinear coupling coefficient is small and is,
therefore, neglected.

Next, we obtain a wave equation for E2 in terms
of the electric fields of the pump and E1. Here, we
include ion dynamics because 0, ~ m2-0; or
m2 «0„0;. It is easy to show that
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and the superscript asterisk denotes the complex
conjugate.

For a problem involving an Alfven wave as the
low-frequency decay branch, (18) becomes for
lk) I
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Letting N1=N1+lpp, N2=N2+i'Q, we use the
Taylor expansion (17) around DI =0, and Dq =0.
Thus, we have
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where yp is the growth rate. For N2»» Q„Q;, it
can be verified that

aD, = —2N1 1—
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The damping rates for our purposes are

VNp N1
V1= )
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where N2
——N2+i v and +N~Q;+Q, N&,

——0 by vir-
tue of equilibrium charge neutrality. If we com-
bine (14) and (15), we obtain a nonlinear dispersion
equation

DiDz =~
I v I
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where N2 ——k2uz, vq»» c, and
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is the growth rate of Hasegawa for a problem in-

volving electron whistler. Threshold is given by
' 1/2
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threshold for Hasegawa's problem.
Equations (23) and (24) show that, for a given

pump, the Alfven waves grow with a faster rate at
low pump power. Note that our growth rate also
competes with that of Nishikawa's oscillating two-

stream instability.
As an illustration, we apply our results to a

man-made laboratory plasma. Accordingly, we

take the following parameters: np ——S)& 10" cm

Bp ——20 0, n~/np ——1%, u~ -10 cm/sec,
T, =10T;=3 eV. For these values, we have

Ep/16mnpT» ——4/10, and the maximum growth
rate is found to be 10 sec

In the magnetosphere, there exist numerous data
showing the presence of an electron-beam and
beam-driven plasma mode. The phenomena of mi-

cropulsations, which involve ultra-low-frequency
magnetic pulsation, can be attributed to the non-

linear decay interaction described here. Unfor-
tunately, at present we do not have any direct ex-

perimental data which show simultaneous existence
of waves near N~, and the Alfven waves. Howev-

er, on-going beam experiments in space have

promised more results. A meaningful comparison
can be made at a later stage. The idea of this brief
report, however, was to call attention of the fact
that electromagnetic waves near N~ and the
Alfven waves may indeed originate in a beam-

plasma system even in a one-dimensional simple
model. Further, we note that decay into a low-

frequency electrostatic ion wave is prohibited
within the framework of the present model.

We have also considered decay into an ion-

cyclotron wave. The growth rate
v

V2 = k2ug
e

{22b)
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where vz is the Alfven speed.
Introducing (20) into (17), and making use of

(19) and (21), we obtain the growth rate much
above threshold

' 1/2
l
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is generally smaller in comparison to that found
earlier. Threshold for this case is found to be

' 1/2

lvH I
.

Here, vq, is the damping rate of the ion-cyclotron
mode.
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On the other hand, the pump can also decay into
a high-frequency right-handed circularly polarized
wave, plus a left-handed Alfven. The order of
magnitude of that growth rate and threshold is
about the same as given by (23) and (24).

It is of interest to note that when the anti-Stokes
satellites are involved in a specific problem, it can
then be possible to allow the low-frequency wave
to be of the same polarization. This problem,
which is rather basic from the three-wave interac-
tion point of view, has been formulated elsewhere.
Explicit results can, however, be obtained after
choosing particular modes and performing some
algebra so that the coupling coefficients are simpli-
fied. If both the satellites are treated on the same
footing, and the low-frequency wave is nonreso-
nant, one encounters then the problem of wave fi-
lamentation. This deserves further investigation.

In conclusion, we have shown that even in a

one-dimensional situation, there exists the possibili-

ty of nonlinear decay phenomena in a beam-plasma
system. Here, the beam mode is found to decay
into an electromagnetic wave near co~, an Alfven,
or an ion-cyclotron wave. If the latter is left-
handed polarized, there might result strong ion
heating owing to cyclotron interaction. Alterna-
tively, low-frequency waves can be correlated with
the magnetic pulsations.
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