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We have developed a technique to produce stationary nonequilibrium states in a
molecular-dynamics system; this method is based on the introduction of stochastic boun-

dary conditions to simulate the contact with a thermal wall. The relaxation times in-

volved in such contact are short enough (-10 " sec} to make the technique suitable for
computer experiments. The method allows the simulation of bulk properties in a system

coupled with a heat reservoir and the study of the local thermodynamical equilibrium.

Furthermore, it gives a physical description of the heat transfer near a thermal wall. The
method has been applied to simulate high thermal gradients in a region of dense fluids

ranging from the gas-liquid coexistence line to the freezing line, to check the validity of
the linear thermal response (Fourier's law). We have found that the linear region extends

at least up to gradients of the order of 1.8X 10~ K/cm for argon. In the bulk region

where boundary effects are negligible we have verified the validity of the local equilibri-

um hypothesis for all simulated gradients.

I. INTRODUCTION

In a previous paper we presented some results
obtained by introducing stochastic boundary condi-
tions in molecular-dynamics (MD) computer exper-
iments. %'e were able to simulate the contact of a
MD system with a thermal reservoir in the dense-

fluid region. It has been shown there that this
technique can be used to simulate stationary non-

equilibrium states. In particular a thermal gra-
dient was obtained by placing the system between
two thermal walls at different temperatures. This
permitted the study of thermal-transport phenome-
na. The technique implied the simulation of ther-
mal gradients which are much higher than the ex-

perimental ones, to obtain a satisfactory signal-to-
noise ratio. However, the computed values of the
thermal conductivity were in good agreement with
experimental data and consistent with the ones ob-
tained by Ashurst via a different nonequilibrium
simulation technique and by Levesque via equili-
brium Kubo formulas. This result showed the va-

lidity of the Fourier*s law in the region of the
smallest gradients needed for nonequilibrium MD
experiments.

It is now interesting to look for the limits of va-

lidity of the Fourier s law, i.e., the possible break-

down in the linearity of the phenomenological law

for thermal transport. This can be done by in-

creasing the thermal gradient applied to the sys-
tern. In this paper we present the results obtained

by studying the region of dense fluids. The main
conclusion we can draw within the precision of our
method is that there is no deviation from linearity
for gradients greater than 5)& 10 K/cm and up to
1.8&10 K/cm.

In Sec. II, we give details of the model with sto-
chastic boundary conditions. In Sec. III we

describe the computer experiments. In Sec. IV we

study in detail the thermalization mechanism and
the phenomenon of thermal transmission through
the thermal wall. In Sec. V we analyze the validity
of the local equilibrium hypothesis and present the
results obtained for the thermal conductivity in
various thermodynamical states. Section VI is de-
voted to some concluding remarks.

II. THE MODEL

As indicated in Ref. 1, we consider a system of
X particles enclosed in a cube A of side I., in-

teracting through a two-body potential of the
Lennard- Jones type:
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As usual, we cut the potential at a distance
R, =3o-, our units are o for length, e for energy,
and r=(mo /48@)'~ for time (o =3.405 k,
a=119.8k', ~——3.112X10 ' sec for argon).

The boundary conditions are periodic in the
directions y,z, while in the x direction A is bound-
ed by thermal walls realized in the way described
below. Thus, the equations of motion to be in-
tegrated are

d r.
m

~
=—QJ V-, u(rj)+7 (r;), i =I,N

dt

{2)

where 7 (F) is an impulsive stochastic force acting
on the particle only when the latter strikes a ther-
mal wall. The effect of this force is such that a
particle arriving at the wa11 is reentered into the
box at the same place, but with a velocity sampled

from the following probability density. In the y
and z directions the velocity components of the
reentering particle are drawn from a Maxwellian
distribution at the wall temperature T; in the x
direction the velocity component is sampled from
the probability density

2

P(u, )= u~ exp

where u„must have the same sign as the x com-
ponent of the inward normal at the stochastic wall,
i.e., u„&0at the left wall and u„(0at the right
wall.

Such a simple surface mechanism to realize the
contact between a fluid and a heat reservoir has
been proposed by Lebowitz and Spohn and used
to demonstrate the existence of the Fourier's law in
a I.orentz gas. Furthermore, Goldstein et a/. have
established the efficiency of this mechanism to
thermalize a model system. In this way a dynami-
cal realization of a canonical ensemble can be ob-
tained. In Ref, 1 it was shown how to implement
this mechanism in computer experiments. There
we obtained, for systems of some hundred particles
in the region of dense fluids, satisfactory results
for the thermalization and the energy fluctuations.

The results on the validity of the thermal-
contact mechanism have been confirmed for the
new thermodynamical states studied in the paper at
hand. In particular at the highest density
(p= 1.113) the canonical equilibrium temperature

in a run of 2000 time steps does not differ by more
than 1.3' from the wall temperature. Moreover,
the specific hest at constant volume is 2.37 in the
canonical case, to be compared with the micro-
canonical value 2.39. No experimental data are
available for this thermodynamical state; however,
I.evesque has found the value 2.74 for a micro-
canonical simulation at the same density and tem-
perature. We believe that this discrepancy may be
attributed to the poorer statistics of our runs.

The simulation of a thermal wall in our MD ex-
periments has been realized in the following way.
The set of coupled differential equations {2) is in-
tegrated with the central difference algorithm:

f;(t)
r;(t+h) =2rI(t) —r;(t —h)+ h

Nl {4)

where r;(t) is the position of the ith particle at
time t, and f;(t) is the first term of the right-hand
side in formula (2). The value of the time step in
our computations is always h =0.032.

The new feature in set (2) is the presence of the
stochastic impulsive force f~. When a particle j
at time t has just crossed a stochastic wall passing
during a time step from rj(t —h ) to a position R
at time t, the following procedure is started.

(i) A new velocity v is sampled from the
described probability density.

(ii) The colliding particle is moved to a new po-
sition according to rj(r) =R+ vh. [see Fig. 1(a).]

(iii) To use algorithm {4) one updates the posi-
tion at time t has rJ(t —h)=R—

(iv) If rj(t) is still beyond the thermal wall, one
substitutes r (t)+ a for r (t) and rj(t —h) + a for
rj(t —h), where a is the difference between rj(t)
and its projection on the wall. [Fig. 1(b).]

(v) The positions of the particles which have not
crossed a thermal wall are not affected.

(vi) Algorithm (4) is used again for all particles.

We have checked that the slight difference be-
tween the ideal mechanism and the numerical im-
plementation does not affect in any appreciable
way the final potential energy of the particle, thus
preserving the purely kinetic character of the ther-
malization mechanism.

III. THE COMPUTER EXPERIMENT

The first part of the computer experiment con-
sists in the realization of a chosen thermodynamic
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FIG. 1. Reentry mechanism at the thermal wall. (a)
A particle in A at time t —h crosses the wall in 8 in the
time interval (t —h, t). The thermahzation mechanism
would bring it in C at time t. Due to the discreteness of
the integration algorithm the particle will be in 8' at
time t. Therefore the reflection is accomplished by en-

dowing the particle in 8' with the thermal velocity and

moving it to C' while the other particles are kept fixed.
For the numerical algorithm C' is the (new) position at
time t, and 8' is the (new) position at time t —h. (b) If
the particle is still beyond the thermal wall after the
previous step, it is moved to the wall in C", while the
position 8' is moved by the same amount to 8". C" is
the (new) position at time t, and 8" is the (new) position
at time t —h.

equilibrium state at temperature T~. In this stage
the system has the usual periodic boundary condi-
tions and therefore the total energy is conserved.
At a given time t =t' the two boundaries orthogo-
nal to the x axis are transformed into thermal
walls, while the other boundaries remain periodic:
in this way the translational invariance of the sys-
tern is kept along y and z directions. Starting from
the configuration at t' the system enters a tran-
sient stage; putting the two thermal ~alls at tem-
peratures T, (cold wall) and TJ, (hot wall) the sys-
tem relaxes toward a stationary nonequilibrium
state characterized by a thermal gradient. To
fasten the transient stage, T, and Tq are such that
(T.+Ta)~2= T~-

Once the transient, stage is over, thermodynamic
properties can be computed via time averages of
suitable microscopic quantities. Because in this
model the boundary conditions in the x direction
are not periodic, there are no "images" of particles
beyond the stochastic walls. Thus surface effects
affect some "local" thermodynamic properties (like
the density near the wall). Because the size of a
typical MD system is small, these effects can be-
come relevant; however, in the study of thermal-
transport phenomena it is possible to keep such ef-
fects under control, as we shall see later.

The thermodynamic study of the transient and
stationary states must be performed from a local
point of view to monitor the onset of the thermal

gradient. For this purpose the system has been di-
vided into NL layers of equal size parallel to the
stochastic walls, and computing in each layer the
smoothed values of the local density, temperature,
potential energy, pressure, and heat current. The
computation of these values goes as follows. The
local value of an observable A at point r is

A(r)=(A(r
~ [ r;, p; I; I,~)),

where the quantity to be averaged can in general be
written as the sum over the particles of the
corresponding property defined for each particle.
Thus

A(r
~ [ r;, p; I; I ~)

S
= +~A;([ rj, pj I~ l z)5(r —r;), (6)

1

where A; is equal to: (i) 1 for the density p(r); (ii)

[3ksp(r)] '
mv; for the temperature; (iii)

[2p(r)] ' g~ u(rz), where r,l ——r; —rJ, for the
jx&

internal energy. For pressure and energy current
one has, respectively,

2

+ —, gju(rl) I
2 J

u. '(rg) ) p;
2 M J r tJ tJ

j+j tJ

The value of the observables in layer o (o = 1+I,)

1s flinally
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J„,, dr A(r
~ ( r;, p; );,iv), (9)

where VL is the volume of the layer o.. The
smoothed values of the thermodynamic quantities
in each layer are then obtained by averaging in
time the corresponding observables (9). The thick-
ness 1 of the layers is determined by a compromise
between two opposite requests: (i) the local ther-
modynamic analysis suggests to use a small VL,
(ii) the number of particles in each layer should be
high to improve the statistics of the time averages.
In practice a successful compromise has been the
following: a cubic system of 256 particles has been
divided in 8 layers, each containing an average of
32 particles. This corresponded to choosing the
thickness of each layer equal to that of an atomic
layer in the solid at the same density.

The computation of the local thermodynamical
properties permits to test the validity of the local
equilibrium hypothesis. A weak form of the latter
is the following: in a stationary state a thermo-
dynamical property 4 depends on the position only
through the independent thermodynamical vari-
ables X(r), F(r), i.e.,

In the present computer experiments the pressure P
should be constant in the system due to the ab-
sence of mass current, while density p and tem-
perature T vary from layer to layer. Therefore we
compared the density values given by the experi-
mental equation of state p,„~,=p(T( r ),P) with the
values computed for p(r). The results confirm the
validity of the weak local equilibrium hypothesis
and are discussed in Sec. V.

In the transient stage the local values of thermo-
dynamic quantities are time dependent, This time
evolution can be observed by taking averages over
short time intervals (typically 2SO steps). As one
can expect these short averages Auctuate strongly.
Nevertheless, a definite trend can be observed in
the transient stage. For example, looking at the
time evolution of the local temperatures of the
layers near the thermal walls, one observes that
these quantities first drift in opposite directions
and then start Auctuating around a stationary
value after a short time (typically 500—1000 time
steps; see Fig. 2). In our runs we choose to start
the evaluation of the stationary averages after a
time interval of 2000—4000 time steps, to be sure
that the transient stage was over. Furthermore, the
thermal gradient was checked during the stationary
stage and showed Auctuations but no drift, thus in-
dicating that the system had reached a satisfactory
stability.

IV. THERMAL STATIONARY STATES

The procedure for setting up a thermal gradient
initiates from an equilibrium state at given density
and temperature.

The thermodynamical states chosen as starting
points for setting up the thermal gradients, given
in Table I, are in the region of dense Auids.

The systems used for the computer experiments

Lo'-

0 2000

FIG. 2. Time evolution of the local temperature near
the thermal wall during the onset of a thermal gradient.
Each value is a time average over 250 steps. (0) tem-

perature of the layer second nearest to the cold (hot)
wall. The arrow indicates the average initial tempera-
ture. The dashed hnes indicate the final averaged values
of the two local temperatures (the averages initiate after
1500 steps). The density of the system is p=1.113.

0.75
0.85
1.113

0.909—1.296
0.801
2.720

0.5
22

TABLE I. List of initial thermodynamical states. p
is the number density, T is the temperature, and P is the
pressure (reduced units). n is the number of different
gradients realized in the given state.
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were cubic with 256 particles, except one case with
N=864; in that case the system was parallelepiped
and the distance between thermal walls was the
same as in the cases with lower N. The point
p=0.75, T=0.909 lies near the gas-liquid coex-
istence line and the point at p=1.113 is near the
freezing line. Usually different gradients have
been realized starting from the same thermo-
dynamical state; at p=0.75 we started from three
different temperatures.

At the end of the transient stage the system ex-

hibits a thermal gradient, which is generally lower
than the gradient imposed by the boundary condi-
tions. Almost all gradients show the same feature:
the temperature profile in the six internal layers is
fairly linear, but with a slope lower than the one of
the imposed gradient (Fig. 3). Furthermore, the
center of the temperature profile obtained by linear

least-squares fit through the six internal layers is
often at a different temperature than the center of
the imposed gradient, usually lower; let 5T be this
difference. The temperatures of the outermost
layers (Ti, T8) lie usually between the correspond-
ing wall temperature (T„TI,) and the temperatures
obtained at the walls by extrapolating the internal
temperature profile (T,', TI', ). Thus the result of
the simulation is characterized by the parameter
tana which determines the obtained gradient, and

by the temperature differences 5T, hT, =T,' —T„
and hT~ ——TI, —T~ which relate this gradient to
the imposed one.

An insight into this behavior can be gained by
studying the temperature jumps at the walls

(hT„hT~)as a function of the applied gradient at
p=0.75 and 0.85 (Fig. 4). hT, and ET' increase
roughly linearly with the temperature difference
between the thermal walls for gradient up to 0.2;
hT~ is always greater than hT, for a given gra-
dient, and there is no appreciable difference be-
tween the behavior at p=0.75 and that at p=0.85.

For gradients higher than 0.2, hT, continues its
linear increase with V T, while hT~ increases more
rapidly, as stressed by the broken line in Fig. 4.

At the density p=1.113 the temperature jumps
at the walls are much lower (at equal applied gra-
dient) than in the previous cases. The higher effi-
ciency of the thermalization mechanism is clearly
related to the higher density. Indeed the number
of co11isions between particles and thermal walls,
normalized per unit time and unit area of the ther-
mal wall, is about an order of magnitude greater at
this density.

The temperature jump that we observe between
the thermal wall and the adjacent fluid is a phe-
nomenon which is well known as an error source

04-

0.2-

FIG. 3. Imposed and obtained thermal gradient. L is
the distance between thermal walls, I is the thickness of
an atomic layer. T, (TI, ) is the temperature of the cold
(hot) wall; the dots indicate the local temperatures T~

through Ts. —~ ——.applied gradient. —:gradient
obtained by linear least-squares fit through the six inter-
nal layers. . . : local gradients across the outermost
layers. 5T is the difference between the temperatures at
the center of the applied and obtained gradients. The
figure refers to a case at density p=0.75.

0.4

0.0 0.05 0.10 0.15

'VT

0.20 0.25

FIG. 4. Temperature jump LET at the thermal wall as
a function of the applied gradient V'I'. p=0.75: (0)
ETc~ (0) LTD'. p=0.85: (S) ETcs (G) ET'.
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in experiments performed to measure the thermal
conductivity of fluids. The relation between the
temperature jump b T, (a =c,h) and the gradient
at the mall is usually given as

hT =wiVT i/P, (1

where I' is the pressure in the fluid and m is a fac-
tor which depends on the state of the fluid and on
the nature of the thermal wall. The usefulness of
formula (10) is due to the fact that the propor-
tionality factor u should vary slowly with the ther-
modynamical state of the fluid.

Formula (10) applies when the fluid is a gas and
accounts for the temperature jump which extends
over a region comparable with the mean-free path
of the molecules. In our computer experiments the
fluid is dense and the very concept of mean-free

path is of course questionable. Nevertheless it may
be assumed that, for the effect under investigation
here, an effective mean-free path may be defined
which corresponds approximately to the thickness
of an atomic layer. And indeed we find that the
region near the thermal walls, where a temperature

jump exists, has an extension of the order of one of
the layers defined in Sec. III.

The local gradient which appears in formula (10)
has therefore been computed as (T,

" T,)/I near-
the cold wall and (Ts Ts')/I near—the hot wall,

where T," and T~' are the temperatures at the
borders of the region in which the temperature
profile is almost linear (see Fig. 3).

Assuming the validity of formula (10) one can
calculate m in the various simulated states for both
the hot and the cold wall. %%at one finds is that
ur depends very strongly on the pressure; moreover,
in some cases I' is even negative. This is not an in-

consistency of relation (10) because it is usually

employed for diluted gas, while we are in the re-

gion of dense fluids. This fact suggests an alterna-
tive description of the phenomenon of the tempera-
ture jurnp: the latter may be related to the local
gradient V T via the formula

hT =w'~ VT ~/p T, , a=c, h

where p and T~ are the local density and local
temperature in the layer across which the local
gradient V T is measured. If one assumes the va-
lidity of local equilibrium, the substitution of I' by

p~T~ in a diluted gas is permitted, and formula
(11) follows.

In the case of dense fluids relations (10) and (11)
are of course not equivalent, but the latter is well

defined for all thermodynamical states. Therefore

we chose relation (11) in which w' is assumed to
vary slowly with the state of the fluid.

In Fig. 5 the values of h, T are reported as a
function of

~
VT ~/p T for all gradients. As ex-

pected the pattern of the reported points gives for
m' definite values, varying from about 0.75 near
the origin to about 0.30 when

~
V T

~ /p T
exceeds 3. In the figure the two points marked by
an arrow are clearly outside the linear pattern.
These points correspond to the hot wall of the two
highest gradients simulated and seem to indicate
that for very high temperatures and/or gradients
the thermal contact between thermal wall and fluid
partially breaks down. A similar effect has already
been observed in Fig. 4 for the lower densities.

V. RESULTS

A. Local thermodynamical equilibrium

%e have performed a local thermodynamical
analysis of the simulated stationary states to check
the validity of the weak local equilibrium hy-
pothesis mentioned at the end of Sec. III. For this
purpose we have compared the layer density p
(o =1,8) with experimental value p,„~,=p(T,P).

%e report in Table II the results for the most
critical case, that is the highest gradient, at

p =0.85. The value for the pressure has been ob-
tained by averaging the values of the six internal
layers computed by (7) and (9). The local pressure
values of the two outermost layers have been ex-

2.0-

h p
65- v~,

I I l j

0.5 1I) 1.5 29 2.5 3.0 35 5.5 6.0

FIG. 5. Temperature jump hT at the thermal wall
as a function of the variable VT /p T where VT is
the local gradient, p the local density and T the local
temperature near the wall. The slope of the straight
segments is the coefficient m'. Symbols as in Fig. 4.
p=1.113: (V) cold wall, (Q) hot wall. The arrows
refer to the text.
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pexpt

0.514
0.592
0.649
0.706
0.764
0.806
0.819
0.946

0.927
0.915
0.902
0.863
0.845
0.839
0.806
0.704

0.942
0.913
0.891
0.870
0.848
0.832
0.827
0.768

—1.6
0.2
1.2

—0.8
—0.4

0.8
—2.6
—8.3

TABLE II. Local equilibrium test. T and p are,
respectively, the local temperature and density. p,„p,is
the interpolated and/or extrapolated experimental datum
from Ref. 9 corresponding to T, P. 6 is the percental
difference between the computed and the experimental
density. Average density p =0.85. Average temperature
T=0.801. The pressure in the system is P=0.50.

A comparison with experimental data is not pos-
sible in the region p=1.113,P=22 because no such
data arc available. Nevertheless a comparison can
be done with the equation of state obtained with
the perturbation theory of Verlet and %'eis. ' The
result seems to confirm the validity of the weak lo-
cal equilibrium hypothesis only for the central re-

gion of the system, while the surface effect on den-

sity extends herc over at least two layers near each
wall. The fact that the compressibility factor is of
the order of 7 explains the enhancement (up to
20%) of the boundary density. Here too, however,
the kinetic properties do not seem to be affected by
the lack of images.

8. Fourier's law and thermal conductivity

eluded from the average because they lie systemati-
cally outside the range of the internal values. The
reason for this is that forumula (7) is valid in the
bulk and does not apply near the walls, where the
force field on the particles is altered by the absence
of "images" beyond the wall. This effect, however,
affects only the outermost layers; therefore the
bulk value of the prcssure must be computed from
the remaining six internal layers.

The agreement found between the experimental
and computed values of the density is quite satis-
factory and makes one confident in the weak local
equilibrium hypothesis. The only relevant devia-
tion is found for layer 8, the one at the highest
temperature. This deviation must be ascribed to
the lack of images which affects quantities like lo-

cal density, internal energy, and pressure, but is
essentially irrelevant for kinetic quantities. This
can be seen in the canonical equilibrium state,
where the kinetic energy is uniform through the
system while the local values of the other men-

tioned quantities in the boundary layers deviate
from the bulk values. What essentially happens is
that the density of the boundary layers is increased
or decreased with respect to the average value
depending on the compressibility factor P/k&pT
being greater or smaller than 1. Thus st p=0. 85,
T=0.801, and P =0.5 we find that the density of
the outermost layers is lowered at equilibrium. In
the stationary gradient states the sign and the mag-
nitude of this effect msy be different st the two
walls. In particular for the case reported in Table
II we find a significant decrease in p only near the
hot wall.

In Scc. IV it has been shown that all simulated
stationary states exhibit a fairly linear temperature
profile through the six internal layers, while the
temperatures of the two boundary layers lie often
outside that profile due to the thermal transmission
near the thermal walls. It is, therefore, convenient
to define the resulting thermal gradient V T via the
linear regression through the temperature values of
the six inner layers. The corresponding energy
current J parallel to thc gradient has been calcu-
lated by formulas (6), (8), and (9), with the further
average J = —, gz J, J being the local current

in layer o. In the center-of-mass reference frame
the heat current J ~ equals the energy current.
The thermal conductivity A, msy thus be computed
via Fourier's law:

J ~= —aVT.

The values of A, found in this way are affected
by an error which is given by the combined errors
on J~and VT:

~(VT)
JQ VT

M&=g(J )/v 6, where o is the standard deviation
of the layer's current J~ and

' 1/2
4(VT) 1 1 —r2

VT r 4

where r is the correlation coefficient. "
In Fig. 6 arc reported the values of A, computed

at the density p=0.75 with time averages of 5000
steps. The result of one simulation is not reported
because in that case the signal-to-noise ratio was
nearly 1, the signal being the heat current in the
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direction parallel to the thermal gradient and the
noise being the heat current in the directions per-
pendicular to the thermal gradient. The values of
A, reported have been obtained by imposing the gra-
dients to initial states with three different tempera-
tures. The expected variation of A, with the tem-
perature in that range is indicated by the error bar
on the A. axis and is much smaller than the scatter-
ing of the A, values; therefore no dependence of A,

on T could be checked within the precision of our
computations. As for the dependence of A, on V T,
no definite trend may be observed so that it must
be assumed that the highest gradients are still in
the region of linear thermal response.

In Fig. 6 we have also reported the values of A,

obtained by Ashurst by a different nonequilibrium
MD method at a similar density (p=0.761) and
temperature (T =0.872). The comparison with our
fesults and with the experimental data show that
the precision of the two simulations is similar and
confirms that no trend can be detected in the
dependence of A, on VT.

In Fig. 7 we have reported the values of A, com-
puted at the density p=0.85 with time averages
varying between 4000 and 7000 steps. Here all
simulations start from the same initial state and
the final temperatures, that is the central values of
the linear profiles through the six inner layers are
scattered in a narrow range around the initial T.
The experimental value of A. corresponding to this
temperature is indicated by the horizontal dashed
line. The values of A, found by Ashurst at
p=0.853, T=0.701 and p=0. 844, T=0.722 with

1,2-

1,0-

0.8-

0.4-

0.2-

OA) 0.01 002 0.03 0.04 0.05 036 0.07 0.08
VT

FIG. 6. Thermal conductivity A. as a function of the
thermal gradient. p=0.75: () T=0.909, (0) T=1.085
(and %=864), (0) T=1.296. (0) data taken from Ref.
2: p=0.761, T=0.872. The dashed line is drawn in the
center of the range of experimental values.

1.4—
fl

0.8—

0.6-

0.2-

0.01 0.02 0.03 0.04 0.05 0.06

FIG. 7. Thermal conductivity A. as a function of the
thermal gradient. (0) p=0. 85, T=0.801. Data taken
from Ref. 2: (0) p=0. 853, T=0.701; (S) p=0. 844,
T=0.722. (6 ) Datum from Ref. 3 at p=0.844,
T=0.715. The dashed line is drawn at the experimental
value.

low gradients are reported for comparison together
with the value found by Levesque at p=0.844,
T=0.722 via equilibrium Kubo formulas.

The computed values of A, are all scattered
around the experimental value for all gradients and
do not show any systematic deviation, as in the
previous case. Therefore, here too it must be ar-
gued that the higher gradients are still in the re-

gion of linear thermal response.
In Fig. 8 we have reported the values of A, com-

puted at the average density p=1.113 with time
averages varying between 2000 and 3000 time
steps. The points are disposed between 1.5 and 2.0,
and it is not possible to see a definite dependence
of A, on VT.

Here there are no experimental data available for
a comparison. However, at density p=1.113 and
T=2.74 (on the freezing line) Ashurst2 has found
a value of 2.68+0.20, simulating a gradient
T=0.047. Similar values for A, have been found
by Levesque at the same density: for T=2.736,
A. =2.60+0.15; for T=2.803, A, =2.32+0.08.

The apparent discrepancy between our values
and the others must be ascribed to the observed
lowering of the bulk density with respect to the
average one. It is known that the thermal conduc-
tivity depends strongly on the density, increasing
monotonically at fixed temperature. In our case
the effective bulk density over the six inner layers
is p=1.063 for all gradients simulated at the total
density p=1.113. It is therefore necessary to esti-
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15-
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fective bulk density p=1.063 and T=2.720 the
same formulas give the value A, =1.85. The line
drawn at this value in Fig. 8 crosses at rnid height
the range of our thermal conductivity values; even

supposing that A, =1.85 underestimates the true
value at our bulk density, this result indicates that
within the precision of our simulation our results
are consistent with the expected value. Therefore
we Inay conclude that here too there is no sys-
tematic deviation from the Fourier's law up to a
gradient VT=0.5.

0.0
0.4

FIG. 8. Thermal conducivity A, as a function of ther-
mal gradient. (0) p=1.063, T=2.720. (0}Datum
from Ref. 2 at p=1.113 and T=2.74. (6 ) Data from
Ref. 3 at p=1.113, T=2.736, and T=2.803. The ar-
row indicates the value found via formulas (13) and (14)
for p=1.113 and T=2.74. The dashed line is drawn at
the value found by formulas (13) and (14) at the effec-
tive bulk density p= 1.063 and average temperature
T=2.72.

mate the expected variation of A, due to this de-

creased density.
It has been shown that the experimental data for

the thermal conductivity in a large range can be
expressed as A, =++A,„where Q is the thermal
conductivity based on dilute gas theory and A., is
the excess thermal conductivity. A,o depends only
on the tefnperature and is given by (in reduced
units)

where A =0.128, 8= 1.276, and C=0.050. In ar-

gon, for pressure up to 8=2.5 and for tempera-
tures between 0.75 and 2.92, A., depends only on
density', the experimental data are reproduced
within 3% by the formula'

)(,=Q+ 0.113[exp(0.833p/p, ) —1],

where p, is the critical density (p, =0.319).'3 It is
questionable if the formula (14) still holds at the
very high pressure (8=22) that we find in our
simulation. If we use formulas (13) and (14) to es-
timate A, at T=2.74 and p=1.113, we find
A, =2.10; this extrapolated value seems to underes-
timate by about 15% the middle point of the
values found by Ashurst and Levesque. At our ef-

VI. CONCLUSIONS

We have developed a technique based on sto-
chastic thermal walls to produce stationary non-
equilibrium thermal states in a molecular dynamics
system. The relaxation times involved in the heat
exchange between system and heat reservoir are of
the order of 10 " sec, thus making the technique
suitable for computer experiments. Moreover, we
were able to perform an analysis of the local ther-
modynamical properties by dividing the MD sys-
tem in layers with thickness of the order of the in-
teratomic distance. We have applied this technique
to study the bulk properties in a thermal gradient
and to give a physical description of the heat
transmission in the region near the thermal wall.

We have simulated high gradients in a region of
dense fluids ranging from the gas-liquid coex-
istence line to the freezing line to check the validi-
ty of the linear thermal response (Fourier's law).
We have not found any systematic deviation from
that law for gradients up to VT=0.08 at p=0.75,
V'T=0.06 at p=0.85, and VT=0.5 at p= 1.063.
The last gradient corresponds to 1.8X10 K/cm
for argon.

Our technique implies a surface effect of the
boundary conditions on the local density; this ef-
fect is relevant only at the highest density, when

the compressibility factor is much greater than
one. In the bulk, where this effect is absent, we
found that local equilibrium holds over a region
with linear dimension of the order of a (o -3.4 A
for argon),

Work is in progress to extend our method to
shear flow and to reduce the mentioned effect of
our boundary conditions.

ACKNOWLEDGMENTS

We are greatly indebted with D. Levesque and
J.-J. Weis for useful discussions and for kindly



STATIONARY NONEQUILIBRIUM STATES BY MOLECULAR. . .

providing unpublished data on the equation of
state and thermal conductivity. %e thank G.
Jacucci for suggestions on the heat transmission ef-
fect and Y. Adda for stimulating support. Finally,

we are pleased to acknow&ledge the ~mm hospitali-
ty by C. Moser at CECAM m'here an essential part
of this work has been done.

~G. Ciccotti and A. Tenenbaum, J. Stat. Phys. 23, 767
(1980).

2%'. T. Ashurst, paper presented at the 13th Internation-
al Conference on Thermal Conductivity, Lake Orzak,
Missouri, Nov 5—7, 1973, in Advances in Thermal
Conductivity (University of Missouri-Rolla, Rolla,
Missouri, 1976), p. 89.

3D. Levesque, L. Verlet, and J. Kurkijarvi, Phys. Rev. A
7, 1690 (1973);and D. Levesque (unpublished results).
In the latters the result for the thermal conductivity
given in the pubbshed paper has been corrected.

~L. Verlet, Phys. Rev. 159, 98 (1967).
5J. L. Lebowitz and H. Spohn, J. Stat. Phys. +1, 633

(1978).
S. Goldstein, J. L. Lebomtz, and E. Presutti, colloqui-

um on Random Fields: Rigorous Results in Statisti-

cal Mechanics and Quantum Field Theory, Hungary,
June, 1979 (unpublished).

7J. H. Irving and J. G. Kirkmood, J. Chem. Phys. 18,
817 (1950).

SSee, for example, H. Ziebland, in Thermal Conductivity,
edited by R. P. Tye (Academic, New York, 1969),
Vol. 2.

96as Eneyelopaediu (Elsevier, Amsterdam, 1976).
'OL. Verlet and J.-J. %'eis, Phys. Rev. A 5, 939 (1972).

The data to which me refer in the text have been
kindly supplied by J.-J. %'eis.

~ ~J. E. Freund, Mathematical Statistics (Prentice Hall,
Englewood Cliffs, N. J., 1962), Chap. 13.

~28. J. Bailey and K. Kellner, Physica +, ".".". (1968).
'3A. Michels, J. M. Levelt, and %. De Graaff, Physica

24, 659 (1958).


