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%'e use the generalized Langevin approach to study the dynamical correlations in an
i@homogeneous system. The equations of motion (formally exact) are obtained for the
number density, momentum density, energy density, stress tensor, and heat flux. %e
evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of
microscopic pair potentials and an external field. %'e show using functional derivatives
how these microscopic sum rules relate to more familiar, though now nonloca/, hydro-
dynamiclike quantities. The set of equations is closed by a Markov approximation in the
equations for stress tensor and heat flux. As a result, these equations become analogous
to Grad s 13-moment equations for low-density fluids and constitute a generalization to
inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. %'e also indicate
how the resulting general set of equations would simplify for systems in which the inho-

mogeneity is unidirectional, e.g. , a liquid-vapor interface.

I. INTRODUCTION

Inhomogeneities in Auids constitute an impor-
tant area of current research interest in statistical
physics. Since homogeneous fluids are well under-
stood, ' ' one caIl confidently approach the richer
domain of nonuniformity. ' ' Surfaces, boun-
daries, and other anisotropic disturbances of the
fluid can have novel physical consequences in both
the equilibrium and nonequilibrium fluid structure,
e.g., surface tension and capillary ~aves. In this
paper and elsewhere we have begun a study of the
dynamics of inhomogeneous fluids, following the
classic treatment for homogeneous fluids by
Akcasu and Daniels. '

Inhomogeneous fluid dynamics have been treated
before by Triezenberg and by Jhon et al.
Triezenberg made use of generalized Langevin
theory, while Jhon et al. used kinetic theory. In
both discussions, the analysis was restricted to a
mean-field level description of the time-dependent
number density and momentum density fluctua-
tions, in a liquid-vapor system with a diffuse
planar interface. This was because both groups
were primarily interested in capillary wave disper-
sion. %e undertake a more complete analysis here,
using the generalized Langevin technique.

In this paper, from first principles, we derive
and interpret the equations of motion for an inho-
mogeneous fluid. The derivation is presented in
Sec. II, making use of the Zwanzig-Mori general-
ized Langevin Method. Thus we must choose a
subset of dynamical variables and then project all
the dynamics of the system onto that subset. %ith
a good understanding of what the relevant dynami-
cal variables are, we obtain equations in a tractable
and understandable form; an inappropriate or in-
complete choice of the relevant variables may re-
sult in loss of some physical subtleties.

An important part of the dynamics is governed

by the frequency matrix which requires evaluation
of static correlation functions called "sum rules".
It is this aspect of the Zwanzig-Mori projection
operator formalism which puts the completely in-
tractable Liouville equation into a form which is
afnenable to interpretation. The physical content
of the theory then resides in the calculation and in-
terpretation of these sum rules.

%e identify the set of relevant microscopic vari-
ables as number density, momentum density, ener-

gy density, stress tensor, and heat current vector in
analogy to Grad's 13-moment method. ' This is an
obvious choice which follows from noting that
number, momentum, and energy are conserved, the
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remaining variables being the fluxes entering the
conservation laws. We refine this set further by
rearranging it, as we will show, introducing mgcro-
scopie quantities analogous to temperature, entropy,
viscous stress tensor, and so on. Essentially, we
construct from the above an orthogonal set of fluc-
tuating variables; the orthogonalization procedure
is standard, "e.g., by projecting density fluctua-
tions out of the energy density we obtain a micro-
scopic temperaturelike variable, in the manner of
Schofield and Akcasu-Daniels. ' This process is
done while appealing to the general theory of the
thermodynamic fluctuations. " Thus the dynami-
cal variables are constructed with a well-defined
limiting behavior.

Then, having obtained a basis set of variables we
calculate the microscopic sum rules which
determine the frequency matrix. These results are
summarized in Appendix B. The actual
calculation is straightforward, though tedious; it is
in the interpretation of the sum rules, in Sec. III,
that some interesting physics is seen. By extending
the work of Schofield on homogeneous Quids, we

express the microscopic sum rules in terms of
functional derivatives, which in spite of their
nonlocality, appear familiar due to similarity to
various coefficients in the thermohydrodynamic
equations, e.g., the heat capacity. This makes the
connection to hydrodynamics apparent.

We can then interpret the equations we have ob-

tained as generalized hydrodynamical equations for
a nonuniform fluid. %e stress, however, that these
are formally exact, microscopic equations follow-

ing from first principles. Approximations must be
made in order to solve them.

A nonuniform Quid of particular interest is that
of a liquid-vapor system with a diffuse planar in-

terface. In such a system symmetry is only broken

in one direction, for example, the z direction; the

remaining symmetry in the xy plane allows us to
make many simplifications. It is easy to see how
the starting equations of the van der Waals-type
theories of Felderhof' and Turski-Langer' follow
from the general structure of the equations we
have obtained. %e study the liquid-vapor system
in Sec. IV, and use its characteristic symmetry to
introduce approximations in the same section.

Because the equations we obtain are quite
general, they are complex. However, because we
have cast them in a form akin to hydrodynamic
equations, our insight into possible approximations
is sharpened by experience with hydrodynamics.
%e close the set of equations by a Markov
approximation in the equations for viscous stress
tensor and purely dissipative heat Qux. %'e can
approximate the sum rules in a clear, unambiguous
way by referring to their calculated microscopic
forms. Thus we can realistically approach the
problem of nonuniform Quid dynamics.

Elsewhere we use the dynamical equations to
investigate transverse current correlations in a
liquid-vapor system with a diffuse planar interface.
An expression for the transverse current-current
correlation function is obtained. This correlation
function is explicitly determined by new, nonlocal,
elastic moduli and new, nonlocal, frequency-
dependent viscosities. These describe "shearing"
and "stretching" of the interface. The nonlocal
moduli introduced are simply related to the local
"macroscopic" moduli recently introduced by
Baus. '

%e discuss the results of this paper in Sec. V,
and indicate a number of further problems we are
now pursuing. We have also included a summary
on notations in Appendix A. The main results of
this paper, the equations of motion, are given in
Sec. III C.

II. DERIVATION OF THE EQUATIONS OF MOTION FROM FIRST PRINCIPI. ES

A. Generalized I.angevin eqgation formalism

%e now discuss the form of the Zwanzig-Mori generalized Langevin equation. *' Consider a multidi-
mensional dynamical variable 5A(lt}.' The classical mechanical equation of motion for this variable is

=—i&5A{lt),

where H is the Hamiltonian and Poisson brackets appear because we are in the classical regime. Equation
(2.1) defines the Liouville operator W.
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Through the use of projection operators it can be shown that Eq. (2.1) is equivalent to the generalized
Langevin equation:

—5A(lt) —iQ(12) 5A(2t)+ I /{1,2, t —u) 5A(2u)du = f(lt) .
dt 0

(2.2)

This decomposition is quite easy to understand; it is a formal separation of the total "force" into three parts:
a driving force, a systematic force, and a random force.

The driving force i 0.5A is, in effect, a collisionless mean-field term since it describes the instantaneous
response of the fluid. The frequency matrix 0 is the term about which we have the most assured
knowledge. This is because it is determined by static correlations in the fluid, i.e.,

i™Q{12)=(—5A5A)(13) (5A5A) '{32) .
dt (2.3)

The random force f is the thermal "noise" of the system. It is formally given by

f (1t)=e"' ' {1—H)—5A{1t),
dt

(2.4)

and has the convenient property

{f ( lt)5A(2) ) =0 . (2.5)

The projection operator H is defined by

9'B( lt) ={B( lt)5A(3) ).(5A5A) '(32).5A (2), (2.6)

a projection onto the space of the multidimensional dynamical variable 5A.
The remaining term in Eq. (2.2) is the systematic force. Because of the convolution over time, it

described the "memory" of the system. The complicated kernel, P, called the damping matrix, determines
the non-Markovian behavior of the inhomogeneous fluid. It is formally related to the random force f via
the fluctuation dissipation relation,

$(12,t')={f(lt) f(3)) {5A5A) (32) . (2.7)

Equations (2.2) —(2.7) give us an ansatz for the equation of motion of some variable 5A. It remains to
identify the relevant dynamical variables, from which we construct an orthogonal set of fluctuation variables
comprising 5A.

B. Relevant dynamical variables

The term best understood in Eq. (2.2) is the frequency matrix, since it is time independent. The damping
matrix is sufficiently complicated that in many instances it has to be approximated. It is obvious that if the
components of 5A are conserved variables, or linear combinations of conserved variables, the important part
of the dynamics will be determined by the frequency matrix Q. If the relevant variables include the con-
served variables and their fluxes, then the conserved variables are completely determined by Q. It is only in
the fluxes that the random force and the damping matrix appear. Thus we close the equations with a Mar-
kov approximation in the equations for the fluxes.

We consider an inhomogeneous fluid consisting of ¹tructureless classical particles of mass p, with the
Hamiltonian,

(2.8)

2

0= g + —, g V, (R;,R, )+ g V, (R;),
s

where p; and R; are the momentum and position of the ith particle. The potential energy is in terms of
pairwise additive potentials V2 and an external field V~.

Using Eq. (2.8), we identify the relevant dynamical variables as the conserved extensive variables and their
fluxes, i.e.,
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(i) the number density

n(lt):—+5(r~ —R;), (2.9)

(ii) the momentum density

J(lt)= g p;5(r, —R;), (2.1O)

(iii) the Hamiltonian density

2

H( lt) —= g '
5(r )

—R;)+—, g V, (R;,R,.}5(r,—R;)+ g V((R;)5(r( —R;), (2.11)

where half the potential energy of each pair of molecules is associated with each molecule,
(iv) the heat current vector

q(lt)= g 5(r( —R;)
P

and
(v) the stress tensor

+ —, g V2(R;,RJ )+ V) (R; )
2p

(jQi)

PJ.
X(r i', R;,RJ ),

p
(2.12)

where in Eqs. (2.12) and (2.13)

X(r),R;,R, )= —,R; V; V2(R;,R ) dA[5(rI —(1—A)R; —AR )+5(rI —AR; —(1—A)RJ)],0 (2.14)

and

R,~ =RJ.—Rj,
50(1t}=—4„'(12)50(2t)

(13)(5H5n )(34)E(42)bn(2t),

(2.18)

We have used the conservation equations to intro-
duce J, q, and S, i.e.,

—n(lt)= ——(t& J(lt),
Bt p
—H(1t) = —7 i.q(1t),
Bt

(2.15)

(2.16)

and

QJ
at

( lt) = —7 ) S( lt) —n (1t)V ) VI(1) . (2.17)

It is more convenient to look at fluctuations of
these quantities about their equilibrium values, e.g.,
5n =n —(n ), and to take their appropriate linear
combinations so that the resulting variables are
orthogonal at time t=0. So, the components of
5A consist of the number of density fluctuation,
the momentum density, the "temperature" fluctua-
tion

and

E(12)—:(5nbn ) '(12) (2.22)

the orthogonalized heat current vector

Q(lt)=—q(lt) —(q J)(13) ( J J) (32) J(2t),

(2.19)

and finally the orthogonalized stress tensor fluctua-
tion

Fm ( 1 t }—=5S( 1t}-bcr( 1t),

where

bo ( 1t)—:(5S58)(13)C„(32)58(2t)

+ (555n )(13)E(32)5n(2t),

is the thermodynamic" pressure fluctuation. We
have also introduced the quantitites
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The physical reasons for orthogonalizing the
variables are quite evident. In the Hamiltonian
density fluctuations, we project out density fluctua-
tions leaving only that fluctuation unique to the
Hamiltonian density fluctuation. Conceptually,
this is the temperature fluctuation. In the heat
current vector and the stress tensor fluctuation, we
have projected out the conserved parts of each
leaving a purely viscous stress tensor and a purely
dissipative heat flux. Thus we can define a ther-
modynamic pressure fluctuation in the following
way: that part of the stress tensor which is made

up of the (conserved) temperature and density fluc-
tuations.

So, the multidimensional dynamical variable is

5A( 1t) —={Sn,J,58,5s, Q)

=(Sn,J,58,5u;, Q ) (2.24)

(see the Appendix on notation). This is not a
unique representation. We have constructed 5A in
a way closely analogous to the variables of hydro-
dynamics. In hydrodynamics an alternative repre-
sentation to density temperature is pressure entro-
py. This suggests an alternative representation for
5A which we will explore at a greater length in
Sec. III.

C. Equations of motion, in terms of the sum rules

With SA given by Eq. (2.24}, it is straightforward to obtain the frequency matrix. We have

(SiiJ }(13}

5A 13)=
(J Sn }{13) 0

(58J }(13)

(Sir,J )(13)

0

(J 58)(13), (J~&r~)(13)

0 0

0 0

(Q 58}(13), (Q 5 u}(13)

0

(58Q )(13)

(S~.Q. &(13)

0

(2.25)

where (Q 5n )(12) vanishes, because of the defining relationships Eqs. (2.15) and (2.19), and

(AB)(12)=—(AB}(12). (2.26)

We have also used the fact that J and Q are "odd" in momentum while the other variables are even. In ad-
dition, as constructed,

with

and

SC(32) 0
0 (J Jr} '(32)

(SASA) '(32) = 0 0

X,s(12)—= (Sar, Sup }(12),

B r(12)= ( Q~Qr ) (12) .

0

0

e„(32)
0 x,b'(32) 0

e.—,'(32)

(2.27)

(2.28)

(2.29)

Now recalling froin Eqs. (2.3) that the frequency matrix is given by the product of these matrices, we obtain
the equations of motion, Eq. (2.2), as

Sri(lt)—:(SnJ )(13)(J Jr) '(32)Jr(2t),

J (lt)=(J Sn){13)X(32)Sn(2t)+(J 58}(13)Ã„(32)58(2t)

+ (J~Ss; )(13)X,b (32)Sub(2t),

(2.30)

(2.31)
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58(lt)=(58J )(13)(J,Jr) '(32)J,(2t)+(58Q )(13)B,'(32)Qr(2t), (2.32)

5', (lt)=(5',J )(13}(JJ„) '(32)Jr(2t)+(5', Q )(13)B „'(32}Qr(2t)

—f y."b(12,t —u)5mb(2u)du —f p r(12, t —u)Q r(2 u)du+f, (lt), (2.33)

Q (lt)=(Q 58)(13)K„(32)58(2t}+(Q5s;)(13)X,b (32)5mb(2t)

—f year(12, t u)—Qr(2u)du f—((~b"(12,t —u)5mb(2u)du+ fp(2u) . (2.34)

The random force and damping matrix terms are absent in Eqs. (2.30), (2.31), and (2.32) due to conservation
laws. The sum rules appearing in Eqs. (2.30)—(2.34) are given in Appendix B.

For convenience we now introduce the simple sum rule

(J Jr )(12)=p P '5 p (1)5(12), (2.35)

where P is the inverse temperature measured in energy units, which implies

5~&(12)
(JNJr) '(12)=

pP 'n(l}

Using this and the defining relationships, Eqs. (2.15)—(2.23), we obtain

(2.36)

J~(lt) P n(1)V( ~(12)5n(2t) V) r[(5Sr~58)(13)CU(32)]58(2t) V) Par~(lt) (2.38)

J~(2t)
58(lt)= —(585S r)(12)V&

pP 'n(2)

J„(2t)5'.(lt)= —'X $12)V, ", +(5~.Q )(13}Br'(32}Qr(2t)
pP 'n(2)

—f p,g(12, t u)5mb(2—u)du —f p, r(12,t —u)Qr(2u)du ~f, (1t), (2.40)

Q (lt)= —B $12)v, p8(2t)+(Q &r, )(13)x.b (32)5rrb(2t)

—f ppp12, t u)Qr(2u)—du —f /pe (12,t —u)5mb(2u)du+fp(it) . (2.41)

These are the exact equations of motion for an inhomogeneous fluid. %'e note that Eqs. (2,37), (2.38), and

(2.39) are completely equivalent to Eqs. (2.15), (2.16), and (2.17). In Sec. IIIA we evaluate and interpret the
sum rules appearing in Eqs. (2.37)—(2.41).
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IH. INTERPRETATION OF THE EQUATIONS
OF MOTION

A. Discussion of relevant sum rules

The evaluation of the sum rules appearing in

Eqs. (2.37)—(2.41) is straightforward but often
long and tedious. The procedure for obtaining
some of them has been given in the literature. %e
list our results in Appendix B. %'e stress the mi-

croscopic nature of these sum rules, i.e., their ex-

plicit dependence upon the molecular interaction.
%e note, in particular, that a knowledge of the
four-body distribution function is sufficient to give
all the sum rules and thus all the mean-field level

{without the damping matrix) dynamics. This is
because we have assumed a pairwise additive in-

teraction. More generally, if we assume an s-body,
nonadditive interaction it is easy to see that we will

require the 2s-body distribution function, %e have

also calculated sum rules which are first and
second order in time. These will be reported else-

where as they are not explicitly relevant for our
discussion in this paper, though they can be used

to increase our understanding of the damping ma-

trix. ~'5

To interpret these sum rules we appeal to the
general theory of thermodynamic Auctuations" as
well as the work of Schofield on homogeneous
fluids. Our rationale for interpreting M, defined

by Eq. (2.18), as the temperature fIuctuation fol-
lows from the general theory of fluctuations.
There the temperature fluctuation is seen to be a
linear combination of the energy and density fluc-
tuations, orthogonal to the density Auctuations.
Its correlation with itself is (kP )

' times the in-

verse of the heat capacity {k is Boltzmann's con-

stant). Thus we define 58 and 4'„by Eqs. (2.18)
and (2.23).

%e can relate Ã„(12) to functional derivatives as
follows. %e rewrite Eq. (2.18) as

5H( 1t) =[4„(12)]58(2t)

+ [(5H5n )(13)11.(32)]5n (2t) .

Then, noting the implied integrations over barred
variables, we have

and

5H (1) =4„(12),
n(2)

(3.2)

= (5H5n ){13)E (32) .
5n (2)

0.3)

Thus it is reasonable to call Ã„(12) the nonlocal
heat capacity per unit volume of the inhomogene-
ous fluid.

Similarly one can examine the thermodynamic
pressure fluctuation, from Eq. (2.21):

5o., ( 1t) =[(5S,58 )(13)@„(32)]58(2t)

+[(5S,5n )(13)rt (32)]5n (2t),

from which we obtain

5o, (1) = (5S,58)(13)Ã„{32) (3.4)

50,(1) = (5S.5n )(13K (32) .
5n (2) @~)

(3.6)

and the pressure tensor from Eq. (2.13),

%e can alternatively approach this problem direct-
ly from the grand partition function.

%'e introduce the following quantities: the ener-

gy density, from Eq. (2.11),

E (1)—:(H (1)) = , P 'n (1—)+V, (1)n (1)

+ —., Vp(14)np(14),

r~r& dV~(r)
P r(1)—= (S r(1))=5 P 'n(1) ——, f d r f Adman(l'1"), ,

r dr

1 '= 1+(1—k)r,

and

n, (1 s) =— ' 5(r, —R.;) . . 5{r, —Rk)
i j ~ ~ ~ k

(3.8)
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the s-body distribution function. The prime on the summation means that i,j . k are all distinct.
We can write Eq. (3.8) more explicitly as

1 co N

n, (1 s)= g, exp[ —PV&(r& . . r„R,+i . Rz)],
N=s S '

with

eo gN

, exp[ —PV„(Ri . . R„)],
N=o N.

the grand partition function. Here, VN is the total potential from Eqs. (2.8), while g is the fugacity.
From these we obtain the relationships

6n2(12) = {5n25n )(12,4)K(43)

(3.9)

(3.10)

(3.11)

and

5n2(12) = —,Ng(12, 43)Vg(43) . (3.12)

Note that 5/(5P[n (1)]) is the functional variation with respect to the temperature of an ensemble with a
prescribed density profile, n(1).

We now introduce the reduced distribution functions appearing in Appendix 8 and Eqs. (3.11) and (3.12):

and

{5n25n ){12,3)—:n3(123) —nz(12)n (3)+n2(12)[5(13)+5(23)],

{5n 25n 2 ) (12,34)—:n 4(1234)—n 2( 12)n 2 (34)+n 3 (123)[5(14)+5(24) )

+n3(124)[5(13)+5(23)]+n2(12)[5(13)5(24)+5(14)5(23)],

n2(12)n2(13)
N3{1,23):—n3(123)— +n2(12)5(23),

n(1)

(3.13)

(3.14)

(3.15)

Nq(12, 34)= (5n25nq)(12, 34)—(5n25n )(12,5)K(56)(5n5nz )(6,34) .

Now from Eqs. (3.6) and (3.7) and Eqs. (3.11) and (3.12) we obtain the following:

, p n (—1)5(12)+—, V2(13)Nq(13, 42) V2(42)
5( — n(2) )

=e„(12)

(3.16)

(3.17)

and

=
2 p '5(12)+ Vi(1)5(12)+—, V2(13){5n25n )(13,4)K (42)

5n (2)

= {5H5n )(13)K(32) . (3.18)

Also,

5P (1) f&fy dV2(r)

5( —P[n (2)]) ' r dr
=5~+ n (1)5(12)——, I d'r J dAN(1'4I", 32) V2(3, 2)

= (5S r58 )( 13 )4„(32),
and

(3.19)
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5P~&(1), , r~r& d V2(r)=5 P '5(12)——, Jd r I dA{5,n25n)(1'1", 3)K(32)

=(5$ &5n )(13)K(32) . (3.20)

From Eq. (3.20) and the definitions Eqs. (2.15) and (2.17), it is easy to see that

5Per(1)—P 'n(1)Vi +(12)= —Vi —[Vi rV)(1)]5(12) . (3.21)

Thus the results in Eqs. {3.17)—(3.20) explicitly confirm the prescriptions given in Eqs. (3.2) —(3.5).

B. Pressure-entropy representation

We now briefly discuss another representation for 5A, using the variables of Eqs. (2.9)—(2.13), and call it
the pressure-entropy representation. We introduce a microscopic variable analogous to the entropy fluctu-
ation, 5A, as

(kp) '5A(lt)=@, (12)58(2t)+(kp) '(5A5n )(13)K(32}5n(2t),

which has been appropriately normalized. From the criteria of the general theory of thermodynamic fluc-
tuations we must have"

(5A5cr, )(12)—=0 {3.23)

—K„(13}{585tr,)(32)=(kP) (5A5n )(13)K(34)(5n5tr, )(42),

which determines {5A5n )(12).
%e also define the correlation of 5A with itself as

~,(12)=—(kP)-'(5A5A &(12)

=C„(12)+(kP) {5A5n )(13)K(34)(5n5A)(42} .

(3.24)

(3.25)

Note that from Eq. (3.22) and the prescription of Eqs. (3.1)—(3.5), we can relate 5/A5n~s to (5A5n )E (and

to It (5n5A) also}. Also recall that for a homogeneous system E '{12) is directly related to the isothermal

compressibility. " %e will not pursue this interpretation further at this time, however, now we can see that
Eq. (3.25) is in the form of the familiar thermodynamic identity between the heat capacities. "

%e relate Xz(12) to a functional derivative as follows. We formally write

58( lt) = (585A)(13)(5A5A) '(32)5A(2t)+ (585cr, )(13)(5o,5ob ) '(32)5crb(2t),

which we rearrange as

5A(lt)=[{kp) '(5A5A)(12)]58(2t)+[ . ]s(12)5os(2t) .

As above then, we write

(kP) ' ={kP) '(5ASA)(12}=4 (12) .
58(2)

{3.27)

Thus we call Ã~(12) the generalized nonlocal heat capacity per unit volume at constant thermodynamic
pressure.

Equations of motion recast: hydrodynamic form

Now, from the discussion above, we can write the equations of motion for 5A—=(5n, J,ST,5j,g), where we

have properly normalized variables as
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(3.28)

and

C„(12)—=kP C„(12) .

The equations of motion are

5n{ lt)= ——V, g (lt),1

p
5Py~(1)J (lt)= p—'n(l)V! JC(12)5n(2t)+kp~V, r 5T(2t) V, p—mr (lt),'

5P(n(2))

p, 5P,(2) J,(2t)
5T(lt)= —C„(13) Vg —C„'(12)Vp Q (2t),

tu 5P(n (3)) '
n (2)

Jx(21) +(5' Q )(13)B r (32)Qr(2t)
n(2)

(3.29)

(3.30)

(3.31)

(3.32)

t—f P,p(12, t —u)5mb(2u)du —f ({),r(12, t —u)Qr(2u)du+f, (lt), (3.33)

and

Q (lt): kp 6 r(12)Vg pT!2t)+ tQ 5n )(13)X b (32)5m'b(2t)

—f P r(12, t u)Qr(—2u)du —f PPb {12,t —u)5mb(2u)du+f~(lt) .

For completeness, we must add to these the equation for the density profile,

E(12)Vz~n(2)= —PV& V&(1) .

(3.34)

(3.35)

These are the exact dynamical equations for an inhomogeneous fluid. All the static correlation functions are
known exactly in terms of the microscopic interaction; these sum rules are given in Appendix B. In particu-
lar, note the correlation function K(12) appearing in Eq. {3.31). E(12) is connected to the direct correlation
function by

where C{12)is the direct correlation function. Also note its connection to 5P/5n through Eq. (3.21). E(12)
is discussed further in Sec. IVC.

An equivalent representation of the dynamics can be obtained similarly, with 5A=(5o, J,5A,5P,Q), as
r

J~(2r)

n (2)
5o, (lt)= (5o,5o &)(12)Vz

P

5rr, (lt)= ~X~P12)Vp~ +(5' Q~)(13)B r(32)Qr(2t)p Jz(2t)

p
' n(2)

—f y.,(12,t u)5mb(2u)du — f ((,&{12,t—u)Q„(2u—)du+f, (lt),

5' ( 1 )+kP' C„'(32)V, Q (2t),
5P(n (3))

J (lt) = —5n(lt)V& V&(1)—V& Poz (lt) V& Pnz (lt)—,
5A( 1 t) = —kPV, Q ( lt),

(3.36)

(3.37)

(3.38)

(3.39)

and
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Q (lt)= —klan'B r(13)V3r C~ (32)
k

5A(2t)

Q.{s)—C. '(34) &5o.5~b ) -'(S2)5~, (2t)
5P[u (4)]

+ (Q 5~, )(13)X.b'(32)5trb(2t) —J (()& (12,t u)Q (2u)d„

—J (()~b(12, t —u)5m'b(2u)du+f~~(lt), (3.40)

C~(12)=kP'@p(12) . {3.41)

This set of equations also provides an exact description of nonuniform fluid dynamics; the set is com-

pletely equivalent to Eqs. (3.30)—(3.34). In an inhomogeneous system where inhomogeneity is unidirection-

al, 5o.
~& will simplify. This makes the pressure-entropy representation more tractable.

IV. BROKEN SYMMETRY ONLY
IN Z DIRECTION

A. Approximate form of the damping matrix

We now consider a liquid-vapor system with a
diffuse planar interface in the xy plane. Since the
translational symmetry is broken only in the z
direction, many simplifications result. Specifically,
the external field can be chosen to be gravitational:

V, (1)=~gz, .

After formal calculations we usually take the limit
g~0+ so that fluid behavior is determined by in-

trinsic quantities alone.
Now, it is easy to see from Eq. {2.21) and Ap-

pendix 8 that

5o r diag[5(r——,5cr„„,5o ] .

Similarly, from Eq. (3.19),

5P 5P 5P
'

5P

~11 ~12 ~13

~21 ~11 ~13

&ab =
0 0 0

0 0 0 0

0 0

0 0

0 0

X44 0

0 X66

(4,4)

We note that Eq. (4.2) implies the same form for

X,'b=X,b+(5o, 5ob) .

We also emphasize the property

(4.5)

which follows from the definition, Eq. (2.28). The
moduli introduced by Baus can be obtained exactly
from Appendix 8, i.e.,

C,b(12):——[X,'b(12)+Xb, (12)],
2

where C,b(12) are the elastic moduli. The macro-
scopic moduli introduced and discussed by Baus
are recovered in a straightforward fashion from the
connection

Baus' has discussed the characteristic symmetries
of the elastic moduli. Following that work we can
write

C,b{z)—:C,b(12)5(z2 —z) . {4.8)

In order to close the set of equations of motion
for 5A, we use Markov approximation on the
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memory kernels. In the manner of Akcasu and
Daniels, ' who used the direction of the wave vector
k in a homogeneous system, we use the unidirec-
tional broken symmetry in the z direction to ap-
proximate the damping matrix, P,b and P~~ The

symmetry of the damping matrix is recognized by

examining the system in the steady state; see, for
example, Eqs. (4.14)—(4.16). Then a local approxi-
mation in space and time and the use of unidirec-
tional inhomogeneity as well as isotropy of the
bulk phases leads to the parametrization

y.b(12, t') =5(12)5(t')diag[~«(1), ~«(1),~«(1),~~(1),~~(1),~«(1)],

PPy(12, t')=5(12)5(t')diag[to (1),to (1),to (1)],

for the memory kernels. One way to approximate-
ly evaluate various u's in Eqs. {4.9) and (4.10) is to
Usc h1ghef-ofdcr sum rules. %c shall not do that
here. Equations (4.9) and (4.10) close the set of
equations, (3.30)—(3.34) or (3.36)—(3.40).

with no implied summation over u. In Eq. (4.14)

we have neglected coupling between the heat mode

and the viscosity. Thus, using Eq. (4.13) we obtain

[ Q ( lt) j = —tt (1)VI j 5T(lt) j,

B. Approximate forms of the sum rules
again with no impled summation of u, ~here ~ is
the thermal conductivity tensor

N3(1, 23)f(2,3)=%3(1,23)f(2,2)=0 (4.11)

for an arbitrary function f(2,3), because

Thc sum rules glvcn ln Appendix 8 icqU11c a
knowlcdgc of thc thfcc- and four-body distribution
functions. Some approximations can bc made to
simplify these expressions.

From the definition of E3(1,23), Eq. (3.15), it is
easy to see that it is zero unless points 2 and 3 are
close. ThUs to an cxccllcnt approximation wc can
wri tC

which is the same form as that given by Grad.

[ln Eqs. (4.14) and (4.15), [
. j indicates a

steady-state average; [f j =0.]
Actually, of course this is how we recognize the

symmetric forms of Eq. (4.9) and (4.10), through

examination of the steady-state form of Eqs. (3.33)
and (3.34).' Similarly we can approximate
Ã4(12,34). Here we use the generalized Kirkwood
superposition approximation' (GKSA). %C define

exactly, from Eq. (3.15). This results in a great

simplification to all the sum rules involving

X3(1,23): e.g., from Appendix 8

n (12. . s)
( 12 «««$)

n(1)n(2) . n(s)
(4.17)

& r(12)= 35 $(12)n(1) .5

2~ P3

~c can Usc Eq. (4.13) to investigate thermal
conductivity. In the steady state, wc write for
Eq. (3.34), using Eq. (4.10) above,

0= —B,(12)V, ,j 5T(2t) jkP'
—co Ig (lt) j,

%c also note, froIIl thc form of thc sum rules

given in Appendix 8, that we only need X4(12,34)
for those configurations where 1 and 2 are close
and where 3 and 4 are close. Then, using the de-

finition of %4(12,34}, Eq. (3.16), it is straightfor-
ward to obtain
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Nq(12, 34)=n (1)n (2)g (12)[5(13)5(24)+5(14)5(23)]

~here

n—(1)n {2)g(12)h(34) [ n (3)[5(14)+5{24)]+n(4)[5{13)+5(23)]]
n—(1)n (2)n (3)n (4)g(12)g(34)[h (13)+h (23)+h (14)+h (24)],

(4.21)

Equation (4.20) can be used to put the calculated sum rules into more tractable form. In particular, the
following approximation scheme emerges for C„(12). Recall,

k
C„(12)= , kn —(1)5(12)+ V2(13)N4(13,42) V2(42) .

4

Let us look in the homogeneous limit at

C„=—C„(12),
1

0
where 0 is the volume. Using the form of N4(12, 34) from Eq. (4.20) we obtain

C„=, kn+—2nkP n f dr r g(r)[V2(r)] —San f dr r g(r)V2(r)
0

(4.22)

+4m.n f dr'(r') h(r') f dr"(r") g(r")V2(r") (4.24)

This then leads us to the following local approximation of the nonlocal heat capacity:

C„(12)=(—,kn (1)+ , kP j [Vq(1—4)]nq(14) —2'(14)n2(14)h {45)n(5)V&{45)

—2V2(14)nz(14)h (15)n2(56)V2(56) ) )5(12) . (4.25)

Thus we see how an approximation scheme for the sum rules is approached, and have given two examples

of explicit approximations.

C. Connections to previous work

We now briefly return to Eqs. (3.30)—(3.34) to
note limiting cases, and so make connections to
previous work.

With 58=5m, =Q =0 we recover the dynami-
cal mean-field equations for the density and the
momentum density obtained by Triezenberg and
by Jhon et a/. Because both theories are isother-
mal, they essentially involve only the kernel K(12).
%e note though that

K(12)= —C(12),
n(1)

where C(12) is the direct correlation function, ' is
the sum rule upon which much of the crucial
equilibrium structure of the inhomogeneous fluid is
determined. . For example, the preeminent quantity
involved in the equilibrium structure of the liquid-
vapor interface is surface tension. Surface tension

is determined in one form by K(12). This has
been shown to be equivalent to a form involving
the pairwise additive potential. ' In fact, though,
the form of surface tension involving K(12) can be
shown to be equivalent to one with a potential
composed of a// the nonadditive many-body in-
teractions. ' Thus we can see that within the ker-
nel K(12) there is much rich and detailed informa-
tion on the equilibrium structure.

From our general equations (3.30)—(3.34) we
can obtain the starting equations of (i) the van der
%'aals-type theory of Felderhoff' by setting
5T=5m, =Q, =0, and (ii) the hydrodynamiclike
theory of Turski-Langer' by setting 5m.,=0, and
making a simple approximation for Q . In con-
trast to these phenomenological theories we obtain
microscopic expressions for the various coefficients
there, rather than, for example, the square gradient
ansatz for K(12).

Finally we note that in the low-density limit we
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have recovered Grad's 13-moment equations in

linearized form. ' %e shall elaborate on these fur-
ther in a later paper.

V. CONCLUSIONS

In this paper we have focused on the derivation
of the exact dynamical equations which, in princi-

ple, deterrmne all properties of the inhomogeneous
fluid. Because of the (constructed) resemblance of
the equations to hydrodynamical equations of
motion, we approach these more general equations
with an intuition sharpened by experience with hy-

drodynamics. Thus progress can be made in

understanding nonuniform fluid dynamics from a
molecular basis.

We have introduced two equivalent sets of
dynamical equations. They are analogous to the
density-temperature and (thermodynamic)
pressure-entropy representations of hydrodynamics.
They both result from an identification of the
relevant dynamical variables as number density,
momentum density, Hamiltonian density, stress
tensor, and heat current vector.

We have derived the sum rules, those static
correlation function which are the elements of the
frequency matrix, in terms of the microscopic in-

teraction. These sum rules are related to function-
al derivatives which make their meaning more
transparent, e.g., leading us to introduce general-

ized, nonlocal heat capacities.
A liquid-vapor system with a diffuse planar in-

terface is a relatively simple inhomogeneous sys-
tem. We have used its symmetries through the
nonlocal elastic moduli and the thermal conduc-
tivity tensor, to obtain approximate forms for the
damping matrix. We show the usefulness of such
expressions elsewhere, where we derive an expres-
sion for the transverse current-current correlation
function in terms of the elastic moduli and the
damping matrix.

Finally we have outlined an approximation
scheme, and explicitly used it to analyze the sum
rules D &(12) (and thus the thermal-conductivity
tensor), and C„(12). %'e have also discussed the
limiting behavior of the general equations, and
thereby their connection to previous work.

The set of dynamical equations that we have de-
rived can be used to tackle many problems in inho-
mogeneous fluid dynamics. One interesting prob-
lem is that of /ongitudinal current correlations, an
examination of which should lead to a better

understanding of the coupling between bulk phases
and the surface "phase". Also with the general
equations of motion we can approach the problems
of attenuation and dispersion of capillary waves in

a careful and complete manner, elucidating, in par-
ticular, the role of the heat mode and evaporation
condensation.

Yet another problem that we are pursuing is the
extension of the derivation presented here to gen-

eralized nonlinear hydrodynamics for inhomogene-
ous systems. Since our variable J is akin to n v in

hydrodynamics, to a certain extent the effect of
this bilinearity is contained in our equations (2.37}
and (2.38) which are analogous of the continuity
equation and equation of motion.

%e also plan to apply these generalized hydro-
dynamic equations to the problem of phase separa-
tion for a system which is initially quenched into
the unstable region of the phase diagram. A useful

start for such a study has been made recently. '
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APPENDIX A: NOTATION

Below we discuss the conventions we have used
in this paper and elsewhere. %'e use numbers as
shorthand for field points in three ways, i.e.,

( qzi ) after partial Fourier
(1)=- '

transformation,

(Ozi) as above, with q=0,

with context telling which of these is implied.
%'e have used subscripts in four ways:
(i) as the particle label with Roman letters, e.g.,

R;,p),
(ii) as the field point label 1,2, . . .„e.g., r ), y3, or

V&, which is the derivative with respect to z~,
(iii) as the Cartesian components of a vector, ei-

ther Greek letters or actual components x, y, and z,
e.g., J,M, and

(iv) as the components of a tensor; a, b, . . . , i.e.,
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where (xx)—= 1, (yy)—=2, (zz)=3, (xz)=4, (yz)—=5,
and (xy) =6. Then quantities like X]3=— X~ ap-
pear.

Rather than explicitly writing out summations and
integrals we have adopted the conventions that re-

peated indices are implicitly summed, and barred
variables are implicitly integrated, e.g.,

C~(13):—f d 3 C~(13) .

Iu the sum rules, angular brackets ( ) refer
to thermal averages and we write

(AB )(12)= (A ( l, r =0)8 (2, t =0)) .

Steady-state averages are given by I ], e.g.,

I 5T(lr) j .

The symbol 5 is used as one of the following:
(i) the Dirac delta function, 5(12)=—5(r i

—r~),
(ii) the Auctuation of a quantity about its equili-

brium value, 5A (lt) =A (lt) —(A (1)), aud

(iii) in functional derivatives where 5 refers to a
functional variation, e.g., 5E(1)/5n (2).

Finally we can use a Laplace transform and a
partial Fourier transform, respectively, defined as

A ( l,s)—:f dr A (l, t)exp( —st),

where s =i~ + e, and

A(qzi, r)= f dxi f dyiA(xiyizi, r)exp(ul~xI+&gyp') ~

The latter expression we can use only with unidirectional broken symmetry in the z direction. Note we are

actually using the same notation for A (qzi, r) and A(x~y g~, t) [both are A ( lt)]. Context makes it clear as to
what we are referring to.

APPENDIX 8: RELEVANT SUM RULES

%e list belo~ the relevant sum rules discussed in the text. The first two sum rules appear in Ref. 5; the

other results are new:

(5n5n )(12)=n&(12)—n (1)n (2)+n (1)5(12)

=K -'(l2),
(J Jr)(12)=@P 5grn(1)5(12)

(81)

(82)

(q J )(12)=[—,P +P 'V)(1)]5 P(12)n(1)+ 5 P(12)n (13)V (13)
2

2
X y(1,2, 3)np(23), (83)

where X &(1,23) is defined in Eq. (2.14),

(5H5n )(13)E(32)=—,P 5(12)+V~(1)5(12)+—,Vq(13)(5nz5n )(13,4)K(42),

I' r& dv&(r)
(5S r5n)(13)K(32)=5 rP '5(12)——, f d'r f dA(5nq5n)(l'1", 3)K(32),

r dr

rory d Vp(r)
(M r58)(13)Ã„(32)=5 rP n(1)5(12)——, f d3r " f dA, Xq(1'I",32)Vz(32),

r dr

~„(12)=(5858 )(12)—(5H5n &(13@ (34)(5n50 &(42)

= —,P ~n (1)5(12)+—,Vp(13)Ng(13, 42) Vp(42),
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B $12)=(q q„)(12)—(q J„)(13)(J„J„)'(34)(J„q„)(42)

5p
—3

5 r5(12)n (1)+ 5~$(12)Vg(14) Vg(15)Ng(1, 45)
2p C

Vg(14}XN„(2,15}Ng(1,45)— Vg(24)X r(1,25}Ep(2,45)
4p

—1

X~„{1,34)X„„(2,35)Ng(3, 45),
4p

vX~(12)=(5S „5S&)—(Sa „5o~)
=P 5(12)n (1)(5 P„g+5+„„)+P ~Ãy '(12)n (1)n (2}5~„5'

n(1)5~„f d r' ", , f de@„'(1 4)Vq{43)Nq(43, 2',2")p & -& re~ dVq(r')

~ r~r& de(r)
n (2)5~ f d'r " f dA, Nq(1'1",43)Vq(43)@„'{42)

r dr
r rz de(r} re~ de(r')

+4 dr dr
r dr r' dr'

(8g)

1 1

X f dA, f de[Ng(1'1", 2'2"}——,N, (1'1",65}Vg(65)e'„'(54)V,(43)N, (43,2'2")],
(89)

(810}

with {5A5n ) given by Eq. {3.24} and the sum rules above:

p
—3

(5' Q„)(12)=— [5 V) „+5 V) +5 „V) ][5(12)n(1)]

(5cr,Bc' ){12)= (5S,58)(13}C„(34)(585Ss)(42)+ (5$,5n )(13)E(34)(5n5Ss )(42),
Ã (12)=(k P) (5ASA)(12)

=@„(12)+{kp} ~(5 5A)n(13)&(34)&5 5nA&(42}

+P 5~p (1)4„'(13)V)vBv„(32)

p
—2 n q(14)

5(12)Vp(14)n(1)[5 „V),r+5r„&(, ]
2p n 1)

nq(14)
Xq„(2,14)n (1)[5„V,r+5vrV) ]

2p n (1)

V~(24)[Vp + r(1,25)]Np(2, 45)
2p

From Sec. III,

[P~ + r(1,34)]X„„(2,35)A')(3,45)
2p

+ 4 X~y(1,76)Eg(76,54) Vp(54) 4'„(43)Vg ~B'~~(32) .

E(1)= , P 'n (1)+V—~(1)n(I )+ —, Vq(14)nq(14),

P r(1}=5P n(1)——, f d~r-r~rp de(r)
dA, n~(1'1") .r dr

(813)
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Also, as is shown in Sec. III A,

= (505n )(13W (32),
5n {2)

where in the equations above

1 '=—1+(1—A, )r,

( 12)
5( —P[n (2)])

5P, (1) = (5S,5n )(13)K(32),
5n(2) p

5P, {1) = (5S,58) (13)S„(32), (B18)
5( —P[n (2)])

2 '=2+(1—e)r ',

and (5n25n }, (,5n25n2), X3, and N4 are defined
by Eqs. (3.13)—{3.16).
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