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The theory of the interaction between radiation fields and atoms as applied to laser
spectroscopy can be approached using either a bare-atom picture (BAP) or dressed-atom
picture (DAP). In the BAP, the basis states are those of the free atoms and free field
while, in the DAP, the basis states encompass some part of the atom-field interaction.
The theory of saturation spectroscopy in three-level systems is discussed using both ap-
proaches. Whereas calculations are usually more easily done using the BAP, one can gain
useful insight into the underlying physical processes from the DAP. Moreover, when the
radiation field strengths (in frequency units) are larger than the relaxation rates in the
problem, the DAP equations simplify considerably and lead to line-shape expressions
which may be given a simple interpretation. The DAP is used to obtain resonance condi-
tions for traveling-wave fields interacting with three- and four-level atoms and for a
standing-wave saturator and traveling-wave probe interacting with a three-level atom. In
addition, the DAP is applied to several problems involving optical coherent transients. A
comparison is made between the various advantages of the BAP and DAP and an in-

teresting duality between the two approaches is noted.

I. INTRODUCTION

There exists today a wide variety of “Doppler-
free” methods for obtaining absorption spectra as-
sociated with atomic or molecular transitions.! ¢
The methods are “Doppler free” in that the width
normally occurring in linear spectroscopy can be
substantially reduced or totally eliminated using
nonlinear techniques. This suppression of the
Doppler width is generally achieved in one of two
ways. First, one can limit those atoms participat-
ing in the absorption process to a narrow velocity
range (either by use of an atomic beam or by selec-
tive excitation with a laser field) leading to a
corresponding reduction of the Doppler width. Al-
ternatively, one can arrange for the atoms to in-
teract with two fields such that the resultant fre-
quency seen in the atomic frame is not strongly
dependent on velocity (cancellation of Doppler
phases). Coherent transient spectroscopy provides
another method for obtaining spectral information
that is essentially free of the Doppler width. It is
also possible to combine the various methods.

There exists a rich literature devoted to the
theory of nonlinear saturation spectroscopy.! =2
The approaches can be divided into roughly three
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groups. First, there is the so-called bare-atom pic-
ture (BAP) in which the atom-field interactions are
represented in terms of a basis using the (bare)
atomic eigenstates.”'® Second, there is the
dressed-atom picture (DAP) in which all or part of
the atom-field interaction is solved exactly and the
resultant atom-field eigenstates are used as the
basis for further calculations.!>!°~2* Finally there
are resolvent methods which will not be discussed
here.?

Most calculations were originally performed us-
ing the BAP. For two- or three-level atomic sys-
tems interacting with two or more radiation fields,
the “Doppler-free” absorption spectra were calcu-
lated using a density-matrix approach. It soon be-
came appreciated, however, that the DAP ap-
proach, previously used to describe optical pump-
ing experiments,?® could be advantageously applied
to laser spectroscopy experiments when one or
more of the fields is intense. The dressed-atom ap-
proach has proven to be extremely useful in obtain-
ing theoretical expressions for resonance fluores-
cence spectra when the exciting field is intense.'?’

It is the purpose of this paper to provide a com-
parison of the DAP and BAP, to indicate the rela-
tive advantages of each approach, and to apply the
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DAP to some cases not previously considered. It
is shown that the BAP equations are invariably
easier to solve than the corresponding DAP ones as
long as one is dealing with single-mode fields in-
teracting with two- or three-level atomic systems.
For multilevel atoms or multimode fields, both
methods lead to equations that present considerable
analytical difficulties.

Although the DAP equations may not provide
any analytical simplifications, they do enable one
to obtain an interpretation of the ongoing physical
processes that may be helpful in understanding the
atom-field interactions. When the frequency
separation of the dressed-energy states is much
greater than the relaxation rates in the problem, an
important simplification. occurs in the DAP. One
can interpret multiphoton interactions of the BAP
in terms of noninterfering single-photon transitions
in the DAP. The positions (but not necessarily the
strengths and widths) of the various atom-field
resonances are then easily and naturally predicted
using the DAP.

A comparison of the BAP and the DAP also
offers an interesting duality between the two ap-
proaches. It is shown that the roles played by the
atom-field coupling constants and the relaxation
rates are interchanged in the BAP and DAP ap-
proaches. In coherent transient spectroscopy, what
appears as an optical nutation signal in the BAP
now appears as a free-induction decay in the DAP.
Other features of the two approaches are discussed
as applied to three-level spectroscopy, four-level
spectroscopy, saturation spectroscopy involving
multimode fields, and coherent transient spectros-
copy.

It should be stressed that the DAP discussed in
this work differs in spirit from that of convention-
al theories.'?=2%2% In the conventional DAP, the
electromagnetic field is quantized and the dressed
states are eigenstates of the atom plus field; conse-
quently, these dressed states represent linear combi-
nations of products of atomic and quantized-field
eigenstates. In our case, the field is taken to be
classical. However, by using a field-interaction
representation for the various state amplitudes and
forming appropriate linear combinations of the
atomic-state eigenstates, one arrives at equations
that are mathematically equivalent to the conven-
tional dressed-atom ones, provided the field
strengths are large enough to be treated classically.
Thus, even though the DAP eigenstates using clas-
sical and quantized fields differ in a fundamental
way, the conclusions and interpretations using both

approaches may be similar. It is in this sense that
we refer to a “dressed-atom” picture, although our
dressed states are not the conventional ones appear-
ing in quantized-field treatments.!®~2%2

In Sec. II the basic formalism is described and a
comparison between the BAP and DAP is given in
Sec. III. The DAP is applied to the saturation
spectroscopy of homogeneously and inhomogene-
ously broadened three-level atoms in Secs. IV and
V, respectively. In Sec. VI, we discuss the manner
in which the DAP can be applied to multilevel
atoms or multimode fields and in Sec. VII,
coherent transient effects are discussed using the
DAP. Some conclusions concerning the relative
merits of the two approaches are given in Sec.
VIIL

Much of the material presented in Secs. II—V is
not new, but is reassembled there to provide the
basis for a comparison between the BAP and DAP
and to lay the foundation for the material that fol-
lows.

II. GENERAL FORMALISM

We consider an idealized three-level moving
atom which interacts with a linearly polarized elec-
tromagnetic field of the form

_E'(Z,t)=é\x[E1 COS(Qlt —Klz +¢7|)
+E, cos(Qyt — K>z +¢,)] . (2.1

The atom-field interaction is of the form u, E(z,1)
where —pu, is the x component of the atomic di-
pole operator. It is assumed that the wave (E,Q;)
couples the atomic states | 1) and |2) only and
(E»,Q,) the states |2) and |3) only. Within the
rotating-wave approximation,?® the reduced density
matrix of the atom in the field-interaction repre-
sentation”® obeys the master equation'?!°

p=i#)""[H,p]+pr+A . (2.2)

Equation (2.2) contains three contributions. The
first of these involves an effective Hamiltonian H
and represents the atom-field interaction. The ma-
trix H is given by

_AZI ay 0
H=#| a 0 a,], (2.3)
0 a Ay

where we have denoted the Doppler-shifted detun-
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ings by
By =My +kyw, (2.4a)
Ap=Apn+kyw, (2.4b)
where

A1 =wy —sgn(wy )Yy |

Ay =03 —sgn(wn), , (2.4¢)

ki =sgn(wy)K, ,

ky=sgn(w3)K, , (2.44)
and the Rabi frequencies by

a=unE, /2%, (2.5a)

ay=unkE,/2#, (2.5b)

in which w;; is the energy spacing (in units %) be-
tween levels i and j, u;; =p; is the x component of
the ij dipole matrix element (notice p3;=0), and v
is the z component of the atomic velocity. The
second term in Eq. (2.2) describes relaxation pro-
cesses and is of the form®

(Prer )i =2 Rij; kPt 5 (2.6)
k1

where the elements R;;,;; represent the effects of
spontaneous emission or collisional relaxation. The
spontaneous emission can lead either to decay out-
side of the three-level system or to a transfer of
population between some of the levels. The final
term in Eq. (2.2) is an incoherent pumping matrix
whose elements are of the form

Aij = A,-E,-,j . (2.7)

weak coupling between |2) and |3). Many ef-
fects of the strong field are conveniently incor-
porated by transforming to a “dressed” basis de-
fined by

|A)=cosf|1)—sinf|2) , (2.8a)
|B)=sin6|1)+cosf|2), (2.8b)
[C)=13), (2.8¢0)

with
sing={ 51— Ky (A3, +4a}) "1 2]} 12,
(2.92)
cosO={ 5[ 148, (A3, +4ad)~172}172
(2.9b)

In the discussion that follows, the states |i)
(i =1,2,3), will be referred to as states in a bare-
atom picture (BAP) and the states |a)
(a=A4,B,C), will be referred to as states in a
dressed-atom picture (DAP).

The transformation (2.8) may be written

la)=Tyli), (2.10)

where the summation convention is adopted and
elements T,; are given by

Toi=(T Nie=(ila). @.11)

In terms of the T matrix the transformation be-
tween the dressed and bare density matrices is

pe=T""ppT, (2.12)
which is used to transform Eq. (2.2) into

TS T P, S
The states | 1) and |2) are assumed to be Po={if)"[Hp,pp]+Pp,re1+Ap , @.13)
strongly coupled by a;, whereas a, provides a where
|
— 38y —swp, 0 —a,sind
H~D=TﬁBT_1=ﬁ 0 *%321-}-%@&4 azcose y (2.14)
—a,sinf a, cosf .7532
wps=(B3+4a})'?, (2.15)
(P, re1)ap=RD)apysPn)ys » (2.16)
(Rplapys=TaiTgi Tyi TsiRij;kt » .17
(Aplap=TauTgA; . (2.18)

[The angle 6 in Eq. (2.9) is taken to lie in the
range 0 < 6 < m/2 such that cosf and sinf are posi-

l
tive. With this choice, dressed state B always has
a greater energy than dressed state 4. In the limit
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that @,—0, states |4), |B)—[1),]2) if 45>0

The transformation T has been chosen to diago-
nalize the A — B submatrix of Hp. In the limit
that a,—0, Hp, is diagonal and one has a complete
solution to the problem. The DAP will be particu-
larly useful when a, is small, enabling one to carry
out a perturbation expansion in this parameter.
Although the matrix H), has a simple structure,
the relaxation and pumping terms are now more
complicated. The pumping matrix, which is diago-
nal in the BAP, has both diagonal and off-diagonal
elements in the DAP as given in Eq. (2.18). More-
over, the relaxation terms are most naturally ex-
pressed in the BAP, where one can typically take
(no sum)

Rijia=—vy0;x8;1(1-8; ;)
—risisfsl,ksl,l +rki81,18k,1( 1 —8“‘ )
(2.19)

leading to a relaxational time rate of change of p
of the form

(Brel )ij=—viipij (i), (2.20)
(;7-1':! Ji=— I‘x“iiii + 2 rjl'b'jj ’ (2.21)
J(4i)

where T'; is the total decay rate of state i and I';
describes population transfer from j to i due to
spontaneous emission or collisions. While the re-
laxational decay and coupling in the BAP given by
Eqgs. (2.20) and (2.21) is fairly simple, the
corresponding coupling in the DAP given by Egs.
(2.16)—(2.17) involves many more terms. Explicit
expressions for the relaxation rates are given in
Appendix A.

To compare the BAP and DAP we write down
the equations of the components of the density-
matrix elements in both representations. For sim-
plicity, we adopt a relaxation scheme in which
I;j=0 and y,-j=-;-(l“,- +T;), corresponding to the
case in which each level decays to some states oth-
er than states 1, 2, or 3. In the BAP, one has

pr=A;—T Py +2a,Im(5y) (2.22a)

Pr=A—T2pp—2a,Im(By) + 20, Im(p,) ,
(2.22b)

P13=A3—T3p33— 20, Im(Bs;) , (2.220)

pu= —(7/21+i521)521+ia1(522—ﬁ“)—ia2ﬁ31 )
(2.22d)

Pr=—(ya+iBy)py+iaypy—pn)+iapy ,
(2.22¢)

Pu=—(y31+iBy +ihy)ps +ioy pyy—icy By
(2.22f)

Pij=Pi* (2.22g)

while in the DAP, the corresponding equations
read:

Pas=M4s T 4Paa+2BRePps)+2a, Im(pey) ,
(2.23a)

Pps=Ap—Tpppp+2BRe(Bp, ) +2ap Im(pcg) ,
(2.23b)

Pec=Ac—Tcpcc—2a, Im(Bey)—2ap Im(pey)
(2.23¢)

.
~

Pca=—Yea +iocy Pca +iayBec—Pas)
—iappPpqs+Bpcs » (2.23d)

Pes=—(¥ca+iocePcs +ias(Boc —Pas)
—iaPas+BPes » (2.23¢)

Poa=Aps— (V4 +iops Ppa +BBaa+Pps)

+ia ppc—iagpcy , (2.23)
Pap=Ppa" (2.23g)
where
Ay=A cos’0+A,sin%0 , (2.24a)
Ap=A,sin’0+A,cos?0 , (2.24b)
Ac=A;, (2.24¢)
Aps=Ap=7(A,—A,)sin26 , (2.24d)
I, =Tcos’0+T,sin% , (2.25a)
I'p=Tsin’0+T,cos%0 , (2.25b)
Fe=T3, (2.25¢)
Yap=7Ta+Tp) , (2.25d)
ay=—a,sinf , (2.26a)
ag=a,cosb , (2.26b)
B=+(I,—T)sin26 , 2.27)
oca =B+ 385+ 5 (83 +4aD)?, (2.28a)

wCB=K32+%521—%(K§1+4af)1/2 . (2.28b)
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The physical observables are the populations p;
and terms proportional to either Re(p;;) or Im(g;;)
giving the dispersion or absorption, respectively,
for the saturator (i,j =2,1) or probe (i,j =3,2). Us-
ing Eqs. (2.8)—(2.12), one can express these BAP
elements in terms of the DAP elements p,g by

P11=C0820 5 14 +5in’0ppp +5in20 Re(Fpy ) ,

(2.29a)
P2 =sin?0p 4+ cos’0ppp —sin20 Re(pp, ) ,

(2.29b)
P33=Pcc » (2.29¢)

a1 =+ 8in260(Ppp —Pas)+c0s’0Ppy —Sin’0P 45 »
(2.29d)
532 =cosf ﬁCB —sinf@ ﬁCA . (2.29¢)

It might be noted that the above equations, to-
gether with the quantum regression theorem, could
also be used to calculate the spectrum of resonance
fluorescence from these levels.!>%3!

III. COMPARISON BETWEEN BAP AND DAP:
APPROXIMATE SOLUTIONS

The DAP equations are more complicated than
the corresponding BAP equations, even for the
simplified relaxation scheme adopted in Sec. II.
One may, in particular, note the following features:

(i) In the DAP, in contrast to the BAP, the off-
diagonal element pp, has a source term Agy. This
disappears only when A;=A; or a;—0.

(ii) All direct coupling between g4, P4B> Ppa>
Pap is proportional to the difference between the
relaxation rates I'y and I';. The coupling parame-
ter is of order B given in Eq. (2.27).

(iii) If we neglect A p and B, the DAP and BAP
equations are equivalent with the replacements
a o), aga, and 4,B,C1,3,2. The prom-
inent difference between the two representations is
that, in the DAP, all couplings are of order a,
(weak), whereas in the BAP, states 1 and 2 are
strongly coupled by a,;. These features are illus-
trated in Fig. 1.

Clearly the BAP equations are easier to solve
than those of the DAP. However, for a strong sa-
turator, there are definite advantages in using the
DAP. Moreover, the simple model configuration

considered here partly hides the power of DAP. A
better comparison could, perhaps, be obtained by
studying a case where both pictures must be solved
approximately. Some applications along these lines
are presented in Secs. VI and VII. For the present,
we consider the three-level scheme of Fig. 1 since
it allows for comparison with well-known re-
sults.' =25

Regardless of the level structure, the DAP sim-
plifies the interpretation of the probe-absorption
spectrum when the saturating field is intense. As
an example, consider a three-level system for
which two peaks appear in the probe-absorption
spectrum at 33220 and 3322-—521. If ay is weak
these resonances can be labeled as stepwise and two
photon in the BAP, but this interpretation breaks
down if a, cannot be treated in lowest-order per-
turbation theory. In the limit of large a;, however,
the DAP allows one to interpret the two peaks as
single-photon transitions between the dressed states
A-Cand B-C.

One way to solve the density-matrix equations
approximately is based on the assumption that the
off-diagonal components are small. In the BAP
this leads to ordinary perturbation solutions in
powers of a;. The expansion converges rapidly
provided that |A,;| or the relaxation constants
are much larger than a;. In the DAP, the role of
the ¥’s and a, is interchanged; therefore, the
corresponding approximate solution holds in the
limit that | A, | or a; is much larger than the re-
laxation rates. Thus, for strong fields a;, a pertur-
bative approach works well in the DAP but not at
all in the BAP.

BAP DAP

FIG. 1. A three-level system in both the BAP and
DAP. In the BAP, there is incoherent pumping to and
decay from each of the states. Levels 1 and 2 are cou-
pled by a strong field a; and levels 2 and 3 by a weak
probe field a,. In the DAP, both couplings a, and ap
between the dressed states are weak. However, there is
now a collisional coupling B of states A and B as well as
a “coherent pumping” A 43 which is not present in the
BAP.
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For the present, we assume (validity conditions
to be stated below) that pp, is negligible. Then, to
zeroth order in a, it follows immediately that the
steady-state solutions to Eq. (2.23) are

Pop=(Aa/T )b p=n280p - (3.1)
Using Eqgs. (2.23) and (2.29) one obtains
iaycos?0(nd—ng)

Ycp +iocp
ia,ysin®0(nd —nj)

Yca +iocy

Pn=

(3.2)

The steady-state value of p;,, is related to the
probe-induced polarization. It can be seen in Eq,
(3.2) that the probe-field polarization may be
viewed as originating from two noninteracting
single-photon transitions between the dressed states
C-B (corresponding strength a,cos?6) and C-A
(strength a, sin®6).

An exact solution for p3, (to first order in a,) is
given in Appendix B where it is shown that Eq.
(3.2) is valid provided that both

(A%, +4a})? 5> 5 | T,—T | (3.3a)
and

|nd—ng |cos?0,

1 [ A=Ay

[n@—nd |sin?0>> T sin?26 . (3.3b)

(29:7

Roughly speaking, Egs. (3.3) are satisfied if the de-
cay rates are much less than the frequency separa-
tion wg, between states 4 and B.

The widths y¢4, ¥cp and the positions wcp =0,
wc4 =0 of the resonances given in Eq. (3.2) are ac-
curate if (3.3a) is satisfied. Equation (3.3a) enables
one to ignore any interference effects between the
two single-photon transitions of the DAP.
Mathematically, this assumption involves the
neglect of the Bpcp and Bpc, terms in Egs. (2.23d)
and (2.23e), respectively, which, in turn, implies
that pc4 and pcp are decoupled. Equation (3.3b),
on the other hand, is the requirement that terms
involving pp4 in Eqgs. (2.23d)—(2.23e) are small
enough to be neglected. Roughly speaking Eq.
(3.3b) is valid when (I’'y+T';)/wg4 << 1. This con-
dition is not sufficient if two of the dressed-state
populations are equal. In this case one of the reso-
nances in Eq. (3.2) disappears, whereas in the exact
solution, the resonance does not totally vanish but
is down in magnitude by a factor of order I" /wp,.

IV. HOMOGENEOUSLY BROADENED SYSTEMS

We consider first a homogeneously broadened
system in which all the detunings Z,-j are indepen-
dent of v as may be the case when laser beams in-
teract with an atomic beam such that k - V=0.
Once Eq. (3.2) is valid the interpretation of the
probe-absorption spectrum is extremely simple.
W3e2 define the probe-absorption spectrum I(Aj,)
as

I(A32)=le{532} ’ (4.1)
a

which is obtained by combining Egs. (4.1) and (3.2)
to give

0 0
YcB coszﬂ(nc —Hhpg )

I(A32)=
7’%‘3 +w%:3
sin20(n2 —n?)
Yca c; A @.2)
Yea +0¢

The two resonances are Lorentzians (which may
overlap) having the following properties:
C-B transition

Ayy=—58y+5(A3 +4ad)'”? (position) ,
Ycp =731 8in*0+y3,cos?0 (width) ,
cos’0(nd —np)/ycp (height), 4.3)

FIG. 2. Dressed-state populations nd,no,ndasa
function of the BAP— DAP transformation angle 6.
The BAP populations n, n3, and n3=n¢ are deter-
mined by the incoherent pumping and relaxation rates.
The gain factors for the CA and CB transitions can be
read directly from this graph. For the case shown
(I'y=4T3; n9:n9:n9=1:2:1.5), region I corresponds to
absorption for the CB transition and gain for CA, region
II to gain for both the C4 and CB transitions, and re-
gion III to gain for the CB transition and absorption for
CA.
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C-A transition

A= — Ay —+(A2,+4a})”? (position) ,

Yca =31 €08°0+ 73, 5in%0 (width) ,
sin®0(nd—n3)/ycq (height) . 4.4)

The dependence of the heights and the nature (i.e.,
absorption or stimulated emission) of the reso-

J

nances on ng, ng, and ng is easily carried out with
graphs like that shown in Fig. 2 which is con-
structed using Egs. (2.24), (2.25), and (3.1). The
linewidths always remain below max{¥3,73;}
which implies that there is no “power broadening”
in these spectra.

One can note some interesting limiting forms of
Eq. (4.2). If field a, is very strong (a;>> | Ay |)
such that 6~ /4, then Eq. (4.2) becomes

1 |As Ay+A F3+va F3+v2
I(A32)=Z F_ 4T 1 2 1 2+ 1 2 1 2
3 2+1 7(F3+7’21) +(A32+'2‘A21-a1) 7(F3+’}’21) +(A32+;A21+a1)
4.5)
which reveals two resonances of the same amplitude and same width, centered at Aj;= +a;— %AZI-
On the other hand, if T'; << a; << | Ay |, then 8 << 1 and the C — B resonance takes the form
a2 271-1
1
I(Agp)cp=yn(n§—n3) [vh+ A32_A_21
N Y3(n§—n3) " 2aiA;,
Y+A%h Ay(Vi+AY) |
(4.6)

which is a Lorentzian with a small AC Stark shift.
If only the nonlinear part proportinal to a3 is mon-
itored, the C-B resonance has a dispersionlike
shape. 3

V. INHOMOGENEOUS BROADENING

According to (3.2) the probe response is negligi-
ble except near the resonances wcp =0 and wc4 =0.
The frequencies wcg and w4 are functions of A,;,
A,,, and ;. Since 32] and 532 depend on the
atomic velocity which is determined by a distribu-
tion function and since, in principle, the value of
a; might also be determined by a distribution func-
tion, the general resonance conditions can be satis-
fied by one or several atomic subgroups in the sys-
tem. In this inhomogeneous broadening case, the
atoms able to satisfy the resonance condition are
those responsible for the probe response.

Many features of the probe spectra can be
predicted with the aid of the simple graphical
analysis given in Fig. 3. To use Fig. 3, it is useful
to recall that Wcp =Wc—dp and Wcqg =Wc—Wy,
where o, is the energy of dressed state |a) in un-
its of #i given by the diagonal elements of the
Hamiltonian (2.14). In Fig. 3, wg and w, are

r
plotted as a function of A,;. A distribution of A,,
is indicated schematically by the vertical-hatched
column; the intersection of this hatched column
with the o, and wp curves indicates the range of
allowed values for w, and wp for this specific dis-

FIG. 3. Dressed-state frequencies w4, wp, and wc as
a function of detuning A,;. (The scales are in arbitrary
frequency units.) The vertical strip gives the allowed
values of A,, for some inhomogeneous distribution. As
the probe is tuned, the wc line moves vertically and its
intersection with the w, and wp curves gives the regions
of probe absorption. These regions are indicated by the
horizontal strips in the figure.
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tribution of A,;. The probe frequency (assumed to
be independent of A,;) appears as a horizontal line
on this graph which moves vertically as the probe
frequency is varied. The intersection of wc=A;,
with the allowed values of w, (or wp) gives the
range over which the resonance conditions may be
satisfied. These regions are indicated by the
cross-hatched zones of Fig. 3.

The above analysis is modified somewhat if the
variation in A,; is due to the Doppler effect.’* In
this case, a distribution of (axial) velocities

W (v)=exp(—v2/u?) /7" ?u , (5.1)

where u is the most probable speed, leads to fre-
quencies

Wy= —%(Au—i-k,v)
— 318y +kP+4ai]'”2,

(5.2a)

wp=—7(Ay+kqv)
+3[(Ay + k) +4a3]?, (5.2b)
wc=~Ay+kyv . (5.2¢)

For the sake of definiteness, we take k; >0 and k,
of arbitrary sign [see Eq. (2.4)] which simply
corresponds to a choice of the direction of the po-
sitive z direction.

Inhomogeneously broadened three-level systems
have been previously analyzed using a graphical
approach.'>!722 We recall some well-known re-
sults and then discuss features not emphasized in
earlier works.

To construct a graph similar to that in Fig. 3,
we first define the dimensionless parameters

x =(Ay+k )/, (5.3)
wg=wg/a; (B=A,B,C). (5.4)
In terms of these parameters the quantity
ks
w'c=v+k—1x , (5.5)
with
v=[A3—(ky/k{)Ay]/a; (5.6)

is a linear function of x with slope of k,/k; and y
intercept of v. In Fig. 4, the dimensionless fre-
quencies w),wp,w¢c are plotted versus x. For a
given A,, there is a range of x centered about

x =A,;/a; of width 2k u /a; which determines

the values of w) and w}p present in the system.
This range, which simply represents the inhomo-
geneous broadening in the system owing to the
Doppler effect, is indicated by the vertical lines in
Fig. 4. The intersection of w¢ with o/ and wj in
this region determines possible resonances of the
system since it corresponds to wcg =0 or wcy =0.
As Aj, is tuned, the w¢ curve moves vertically and
scans all possible resonances. The factors cos?6,
sin0, n2, n3, and n? which appear as weight fac-
tors for the resonances [see Eq. (3.2)] may be ob-
tained from Fig. 5.

The velocity averaging is easily performed by
noticing that for y,g<< | wsg| one can write

;.:z—i@ —_—
YcB +iocp acp
T
8(v —veg) ,
|d0cp /v | 4o B
(5.7)

where wcp(vcp)=0 and |dwcp /v | v=0gs 70 (UcB

is a simple zero of wcg). In the case k,/k; >0
(depicted in Fig. 4) the probe absorption is simply

rf

-0
_ZL 1 AN
/7//4 AN
Zu Dy D
-4 X o4 h

FIG. 4. A curve similar to Fig. 3 in which the
dressed-state frequencies w, wp, ¢ (in units of @) are
plotted as a function of velocity through the parameter
x =(Ay+kv)/a,. Since w¢ varies linearly with v and,
consequently, also linearly with x; the curve w¢(x) is a
straight line of slope k,/k, and ' intercept
v=[A3;—(k,/k)A;1]1/a;. The range of allowed x, indi-
cated by the heavy portions of the w) and wjp curves, is
centered at A,;/a; and has a width determined by the
Doppler distribution, which, in this case, is the inhomo-
geneous broadening mechanism. Tuning the probe
corresponds to a vertical displacement of the w¢ curve.
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cos?0(n2 —n2)
| dwcp /0x |

a\x _A21
ki

o
ki

I(A3)= W

where the dimensionless velocity parameter x, Eq.
(5.3), has been introduced.

Equation (5.8) together with Figs. 4 and 5 can be
used to obtain some qualitative features of the
probe spectrum. One first determines the allowed
range of x contributing to the spectrum. Using
Eq. (5.3) and the fact that |v | <u it is seen that x
must fall within the range defined by

A ku
P (5.9)
a; ay

X —

This range of x, centered at A,;/a; with width of
order 2k,u /a,, is indicated schematically by the
heavy portions of w); and wp curves in Fig. 4.
Having found the allowed range of x, one then
proceeds as follows:

(1) The line w¢(x) [Eq. (5.5)] is drawn for each
value of Aj, (or, equivalently v) to determine the
position, if any, of resonances x =x¢,(v) or
x =xcp(v) for which wc=w) or wc=w}p, respec-
tively. Notice that a variation of v, which
corresponds to varying the probe frequency, is
represented in Fig. 4 by a vertical translation of
the w¢ line.

(2) At any resonance positions xc4(v), xcg(V),
the corresponding weight functions cos?8, sin%6,
nd—nd and nd—nQ are read off of Fig. 5, and the
velocity distribution W[(a;x —A,;)/k,] is evaluat-
ed at x =Xc4q4 OF X =Xcp.

(3) The final factor contributing in Eq. (5.8),

dwcq — M (@=A4,B) ,

dx |x =XcqlV) - ox x =Xcq(v)

is the difference in slopes between the w¢ and w,
curves at the resonance positions. Using the above
steps, one can construct the probe spectrum for
various values of the parameters a;, k,/k; and
Azl-

For positive slope [k;/k; > 0] of w¢(x), it is ob-
vious from Fig. 4 that there always exists some
values of v (i.e., probe detunings Aj,) leading to CA
and CB resonances. For k, negative (recall that we
have arbitrarily taken k; > 0), both resonances still
occur if k,(k;+k;)>0 (magnitude of the slope of
wc greater than the magnitude of the slopes of the

X =Xcp

sin?0(nd —nj)
| By /0x |

a\x _AZI
ki

’

X =Xc, ]

(5.8

T
asymptotes of the wp and w) curves). On the oth-
er hand, if k,(k; +k,) <0, wcp resonances are pos-
sible only if v> 0 and w¢,4 resonances only if v <O0.
There is a range of v

vi<vi=4|kylky+ky) | 7k} (5.10)

for which no resonances are possible and no probe
absorption occurs.

Figures 6—9 illustrate the various cases. In Fig.
6 we have graphed wc,(x,v)=0 and wcg(x,v)=0
for the case k, >0. As discussed above, for each
value of x, there is one value of v for which
w4 =0 and one for which wcz=0. By mapping
out a horizontal strip giving the range of allowed x
and projecting the intersection of this strip with
the wgy =0 and wcp =0 curves onto the v axis, one
obtains the range of v=[A;,—(k,/k;)A;]/a; for
which significant probe absorption occurs.

If kju >>a; and | Ay | <kju, then x is cen-
tered at A,;/a; and the strip of allowed x has a
large width 2k u /a; >> 1 which always includes
x =0. In this case there is a wide range of v for
which resonances occur as shown in Fig. 7(a). The
CA and CB resonances overlap, leading to the typi-
cal probe spectrum shown in Fig. 7(a). For this
case, the probe spectrum is given by (see Appendix
C)

05+

S S S S TS SN S S S S

A -2 0 2 4L x

FIG. 5. Curves which give the weight factors sin’0,
cos?0, n% (a=A,B,C) as a function of x. In the exam-
ple shown, we have taken n%:n%:n3=1:2:2.1 and
l",:l'2=3:1.
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1/2

Ay  Ap+A
m .\32 32 21
T(Agy)~ APl

kz 1+k2

/4

lka| 0) al¥ete

X |(n9=nd)+ (ny—n
T Nk T [Ap—(ky /ky)Ag P4 ¥ie} /T T,
(5.11)
where
k ki+k
I 2| + l 1+ 2‘ (5.12)

= r
Vet 1-\l kl 2 kl

It consists of a broad background term representing linear absorption plus a strongly power-broadened
Lorentzian of width a,(y%/T;T’,)!/2. Although the wcp and wc, terms are not themselves Lorentzmn,
their sum is. Equation (5.11) may be obtained from Eq. (24) of Ref. 13 in the limit of large al.

For large detunings, | Ay | >> @,k u, the situation is depicted in Fig. 7b. The wcp and wc, resonances
are now nonoverlapping, leading to the spectrum shown. In this limit

ai
a)CBzAn———A:-i-kzv R (5.13a)
2

wCA—N—‘A32+A21+K;+(kl+k2) (513b)

and cos’0~1, Ycg ~V32 Yca~V31- The resulting spectrum is the sum of two Voigt profiles

_a_%_ ng—nf .A32+A21+a%/A21+i1’31
A}y |ki+ky|u™ lki+ky|u

Ay —ai/By+ivs
[ky|u

n%’—n‘z’
| ky|u

I(Ap)~

(5.14)

where Z; is the imaginary part of the plasma-dispersion function.’> The spectral components are Gaussians
if the arguments of Z; have magnitude much less than unity and Lorentzians in the opposite limit.

For large intensities, |a;| >> | Ay |,k u, the situation is depicted in Fig. 7c. In this limit both the cen-
tral value and the range of x is much less than unity; the resulting spectrum arises from nonoverlapping CA4
and CB resonances. For this case we have

A A3 +k3w?
wCB:A32+%A21—-a1+ k2+‘;‘k1—_21‘k1 ]U—-"Ll—“ N (5153)
4a, 8a,
Ay A%H-k%vz
wca=Byp+ 30y +ai+ |k +7 ki + _, (5.15b)
4a Qa 8(11
s1n20~cos20z 5> and Yep=Yca =3 (7’31+7’32) Two (nearly) symmetric resonances appear at
Ayp=— A21+a1 and the spectrum is the sum of two Voigt profiles
Ay Ay+A 1 Ap+38y—ai+ives A+ 381 +a+ives
I(A32)—— ?— 1 Z; 1 Z; 1 ’
3 Dol | (kg4 5k |u |ky+5ky|u | ky+7ki|u

(5.16)
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br I k,=0.6k;
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_2: CA res a8
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[ a0
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FIG. 6. Curves representing the resonance conditions
weq(x,v)=0 and wcp(x,v)=0 for the case k,>0. For a
range of allowed x determined by the detuning (Ay/ay)
and Doppler width (k,u /a,), one can find the regions
of probe detuning (v) for which absorption can occur.
Conversely, for any value of probe detuning v, one can
determine whether or not any resonant velocity subset
(x) can contribute to the signal. When k, >0, there ex-
ists, for each value of v, values of x for which both
wecqy =0 and wcp=0.

which are approximately Gaussians if the magni-
tude of the arguments of the Z; functions are
much less than unity. [In arriving at Eq. (5.16),
we neglected the small (A%, +k%?)/8a, terms in
Eq. (5.15).]

The analysis is virtually unchanged if k, <0 and
ky(ki+k3)>0. The wy, wp curves of Fig. 6 are
rotated by 90° about the origin, but the same type
of resonance conditions occur. If k,u >>a; and
| Azi | <kju, Egs. (5.11) and (5.12) are still valid;
Yeft is now smaller than in the copropagating case
owing to some Doppler-phase cancellation. Equa-
tions (5.14) and (5.16) remain valid for the large
detuning and intense field limits. It is now possi-
ble, however, to have a narrow resonance in the
large detuning case, provided that k,~—k,.3

The remaining case k,(k; +k,) <0 is represent-
ed in Fig. 8. As discussed above, there is a range
of detunings v (+? <+2) for which no resonance
values of x may be found. For v> v, two values
of x correspond to the wcp resonance and, for
v < —V, two values of x correspond to the wcy
resonance. The spectrum for the case kK u >> a;,
| A1 | <kyu is shown in Fig. 9(a). For any
| v| > Ve there are two velocity subgroups of
atoms which contribute independently to the probe
spectrum except in a region of width ~I" near
| v| =v, where both contributions overlap. It is
just this overlap region which gives rise to the non-
power broadened resonances shown in Fig. 9(a).
As derived in Appendix C, the spectrum for this
case (| v| >, is

()

)
L N i
10 1\\
=L ]
—
50x CB
L cA i
N R
V
© N
- %0 2V B
N
= | ]
= CA CB
OLt— M I 1 1 L

A2 108 ¥ 08 1 12
Y

FIG. 7. Typical probe-absorption spectra (in arbitrary
units) for the case k,=0.6k; > 0 in the three limits (a)
ki >>ap, k> | Ay, 0 |Ay| >>ay, ku, and (o)
a;>>kyu, | Ay |. In drawing these curves, we have
taken n9:n9:n3=1:3:4 and I' =T, <<a,. In (a), ;=0
and k,;u =10a;; in (b), Ay;=10a; and k,u =a;; in (c),
A, =k,u =0.1a;. The inserts are curves analogous to
Fig. 6 and indicate the resonant-velocity subgroups
which contribute to the probe absorption at a given
value of v.
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1 | 2wk, +ky)
I(v)= xp | — |A
kiu | k2 | P n
Ty ky | (n9—n9)
X (ng_ng) I 1| 2! 2 1
Cilky | +Ta | ky+k, |

The large detuning and large field intensity lim-
its are depicted in Figs. 9(b) and 9(c), respectively.
Equations (5.14) and (5.16) may still be used to
describe these profiles. For the intense field case, a
narrow resonance occurs if ky~—k,/2.

The Doppler-free nature of the narrow reso-
nances which may occur when a; >> k,u or
| Agy | >> kyu, a, arises from a cancellation of
Doppler phases. All atoms contribute equally to
these resonances; this feature is easily seen in Fig.
4. If a;>> kqu, the range of allowed values of x
narrows considerably and the heavy portions of the
o'y and wp curves reduce to points. If the w¢
curve is tangent to the w); or wp curves at these
points, then all atoms contribute to the resonance.
This condition is

ky 11 Ay
=t — (5.18)
ki 272 (A} +4a))'?

leading to narrow resonances centered at
Ap=—3Ay+5 (A3 +4aD)?, (5.19)

where the upper (lower) signs refer to the wc=wjp
(wc=w)) resonance. If | Ay | >>k u,ay, the al-
lowed x values are located on the asymptotes of

6 " lke-06k A
al @0 s
2-7/3
0 %

»
2T 2ku/oy T ‘; i
al . | nolres_;

CA res. CB res\

-6L

32 0 1 2 3
Y

FIG. 8. Resonance conditions w¢4(x,v)=0 and
wep(x,v)=0 for the case —k; <k, <0. There is now a
range of |v| <, for which there are no resonant-
velocity groups of atoms.

(ky+2k,)

[|k2| (ky+k3)]'? ] /?

-172
T — | k2 | +k1+k2
P k, 731 k, 32 .

(5.17)

I
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/e
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I
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FIG. 9. Probe-absorption spectra for the case
k,/k;=—0.6, but otherwise the same conditions as in
Fig. 7. Note that, owing to Doppler-phase cancellation,
the resonances are narrower than those in the
corresponding spectra of Fig. 7.
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the w); and wp curves. By having k,= —k, the
¢ curve coincides with these asymptotes so that
all atoms once again contribute. Since the reso-
nance condition is the same for all the atoms, the
resulting resonance is narrow.

On the other hand, when a; <<ku,| Ay | <kju
only a limited velocity subset of atoms, determined
by the pump intensity and detuning (i.e.,
| kv + 4, | <ay), contribute to the probe absorp-
tion. The resulting linewidths are smaller than the
Doppler width, reflecting the narrower range of
contributing velocity groups.

VI. EXTENSIONS OF THE DAP APPROACH

The DAP allows one to gain physical insight
into problems involving more complicated atom-
field interactions. The dressed-energy levels of a
multilevel atom can be solved exactly or approxi-
mately. The weight factors of the spectra which
involve elements of the transformation matrix
from the bare to dressed picture are generally more
difficult to obtain. For dressed-energy-level
separations much greater than the natural widths
of the levels, a rate-type solution to the DAP equa-
tions may be used. In this section, some features of
a four-level problem and a three-level problem in-
volving a standing-wave pump field are discussed.
In Sec. VII some aspects of coherent transients are
examined using the DAP formalism.

A. Strongly coupled
three-level system!21%19:37-41

We first consider a three-level system in which
one must now diagonalize the complete Hamiltoni-
an. The eigenvalue equation

oo+ Kzl)(w—332)—a%(w+7§2|)
—aXw—As)=0 6.1)

always has three real roots w, (@ =4,B,C). Equa-
tions (2.23) now take the form

ﬁaa =Aq— Fa 5aa + ZR aa;asﬁos s (6.2a)
0,8

Pap=Aapg— Yap+i©ag)Pap+ D RapotPos »
0,8
(6.2b)

where the coefficients are functions of the transfor-
mation matrix elements (i |a). The coupling

coefficients R4 o5 are all proportional to differ-
ences between decay rates I';. The w,g=w,—wg
are the frequency separations between the dressed
states. If |wqg| >>T;, the off-diagonal density-
matrix elements are small and an approximate
solution to Eqgs. (6.2) is

Poa=Aa/Te=n2 , (6.3a)

Pop=—i Aa3+2R.,&.,.,n2‘m;,; . (6.3b)
o

Transforming back to the coordinate system |i)
we obtain the observables p;;, py;, or p3,. In the
special case when all I'’s are equal (I'; =7), the
coupling coefficients R g, ,5 vanish, and the exact
solution is simply

Poa=As/7 (6.4a)
Pog=NAap/(Y+iwgp) . (6.4b)

In this limit, the absorption spectrum for field a,
is

1 « @ap{3|a){B|2)Ay
I(Ayp)=——
2 az% ‘yz+a>3,g

’

(6.5)

where A=A, and w,,=0. Once the transforma-
tion matrix elements are known this formula is
useful for analyzing the strong-field absorption (cf.
the corresponding rather lengthy expression of the
BAP). The solution is more complicated when in-
terlevel relaxation is allowed or the decay rates
differ greatly. Then the spectrum must be ob-
tained using Eq. (6.2) or (6.3) together with the
transformation back to the BAP.

B. Four-level systems*>—*

As shown previously, the DAP is especially
transparent when one of the fields is weak and the
strongly coupled part satisfies the rate-type solu-
tion. This result can be applied to a four-level sys-
tem in which levels 1,2,3 are strongly coupled by
fields @, and a, and one of these levels is weakly
coupled by a probe field to level 4. The cor-
responding dressed states are labeled 4,B,C,D
where D is the weakly coupled state. To obtain the
resonance positions we have to solve Eq. (6.1). A
graphical solution is shown in Fig. 10 for fixed a,
as a function of ;. Whenever wp =0, (@=A4,B,C)
a probe resonance results. A rate-type solution ob-
viously requires that the anticrossing in Fig. 10 is
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FIG. 10. Dressed-atom frequencies as a function of
o for a;=1, Ay =1, and A3, =3 (all frequencies are in
arbitrary units and it is assumed that all relaxation
parameters have values much less than one in these un-
its). The horizontal broken lines give the dressed-atom
frequencies when a;=0. For a fixed a,, there are gen-
erally three possible probe resonances as the probe fre-
quency wp=A, is varied. For =4, these positions
are indicated by the points R, S, and T.

large compared to relaxation rates.

If Doppler broadening is present one may ask
whether a splitting similar to the one appearing in
three-level systems with k,(k{+k,) <0 also occurs
in four-level systems. In three-level systems, the
splitting shown in Fig. 9 is caused by the absence
of resonant-velocity subgroups of atoms over a
range of probe detunings. In a four-level system, a
resonance occurs when wp =Ap +kpv is equal to
any of the solutions w,(v) of Eq. (6.1). Using the
Doppler-shifted values of all the detunings Kij and
substituting wp for  in Eq. (6.1), one obtains a
cubic equation for v which always has at least one
real root.* This result implies that there is always
at least one resonant-velocity subgroup for all
probe detunings of the four-level system. Thus,
the mechanism operative in three-level systems
leading to the split spectrum of Fig. 9 cannot oc-
cur here. The details of the probe spectrum may

1

(i) Ay=A3»=0; wyc=+(@i+ad)'? wp=0;

N T Y =2
(i) Ay=Apn,al=a3; w4c=+(A3+2a})"?, wp=0;

L]
[ 1] e

[/

by, b, ¢
D
i DAP
A
5

FIG. 11. A classification of the atom-field interac-
tions for four-level systems in both the BAP and DAP.
The BAP interpretation, valid only to lowest orders in
the fields, is (a) stepwise absorption of a,, a,, a3, (b,)
two-photon absorption of ; and a, followed by absorp-
tion of as, (b,) absorption of a, followed by two-photon
absorption of a, and a3, and (c) three-photon absorption
of a;, a,, and as. In the DAP, valid at any field inten-
sities, there are three, single-photon processes which
contribute to the absorption. For intense fields «; and
a, the single-photon processes do not interfere.

o 7

depend on the number of resonant velocity sub-
groups contributing (i.e., one or three), but this
feature has yet to be investigated. (Notice that in a
five-level system, the quartic eigenvalue equation
can have 0, 2, or 4 real roots. The absence of real
roots signals a splitting effect similar to that
shown in Fig. 9.)

A comparison between the BAP and DAP pic-
tures for a four-level system is shown in Fig. 11 in
which the probe acts between levels 3 and 4. The
BAP nomenclature is valid in the small-intensity
limit only. Note that the processes a and b, have
the same resonance condition (A4;=0) and provide
two interfering channels for this resonance. The
DAP consists of three noninterfering single-photon
transitions allowing for a very simple physical in-
terpretation.

In some special cases, Eq. (6.1) is easily solved,

e.g.,

veey ~ 2 2, 1~ 1,~2 2 ~
(iii) Ay=—Ap,ai=ay 04c=—70nt5(A3+8a])'?, wp=—A, .

As an example let us consider the case (ii) in which @;=a,=a. The transformation is now

1
Ay=—

Ay a 1
1——= 1 — 12 =
0, l )+‘QR| )+2

Qg

13), (6.6a)
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|BY=(a|1)+A,y|2)—a|3))/Qx , (6.6b)
1 321 a 1 Z21
€)= 1+QR |1>—QR 12)+5 I_QR ]|3>, (6.6¢)

where Qz =(A2;+2a)'?, 0, =0, 0 =0, and wc = —Qp. If the probe couples levels 4 and 2 (wp =A,,),
if all the 9’s are equal and if only level 4 is initially populated the response is simply

0 x2
~ Yna4 a? Ay a?
I(Agy)= = + =+ = . (6.7)
0} | P+Ba—0)?  P+Bh  P+Ba+ )
The absorption spectrum consists of three Lorentzians.!®
Equation (6.7) is applicable to the level scheme in Fig. 12 (k, = —k,=kp =k) for which
Byi=8g+kv (A= — Q) , Byy=—Ag+kv, BAyp=—Ayu—kv (Ayy=wy—0,) .
If A, =0, the conditions for (6.7) are satisfied (A, =A,,=kv, a’=a3=a? and we get
0
n 2
1(Ay)= 2247 2 - 22 2)1/272
(k%2 +2a%) | V+[Agu+kv +(k%2+2a%)"?]
k2v2 a2
+ + (6.8)
P+ (Ag+kv)?  P+[Apu+kv —(k242a%)!2)
The velocity-averaged probe-absorption spectrum (assuming ku >> ¥) is given by
0_1/2 2
namw A%
I(Ayy)~ o exp | — e (6.9)

There is no narrow structure in the spectrum. The result should be contrasted with the structure obtained
when a standing-wave saturator is used (see Fig. 12 and the discussion below).

J=0 2

10 0 10 N

FIG. 12. (a) A four-level scheme in which levels 1,3,4
are degenerate levels of a J =1 state while level 2 is a
J =0 state. The strong fields counterpropagate, are cir-
cularly polarized, and are resonantly tuned (A, =0).
The probe field is 7 polarized and acts on the 2-4 transi-
tion. The probe absorption spectrum I for this case is
flat. (b) For comparison, the probe-absorption spectrum
for a three-level system with a standing-wave saturator
is shown (see Ref. 53).

C. Standing-wave saturator
(two-mode pump)*$—>°

As is well known, the interpretation of the spec-
tra obtained with a standing-wave (SW) saturator is
considerably more complicated than the running-
wave case.**~>* Similar difficulties are encoun-
tered when the saturator is composed of two
running-wave fields having different frequen-
cies.’*=%° The question arises as to whether or not
the DAP offers any simplifications.

In the rotating-wave approximation the equation
of motion of the density-matrix retains a periodic
time dependence owing to the beat frequency
5=0,—, between the two saturator modes; in
the SW case, this beat frequency is twice the
Doppler shift, 3=2k,v. According to the Floquet
theorem,** the stationary solution to the system
contains Fourier components with frequencies
w4 p(n)=wyp+nd (n=0,+1,...), where v, and
wp are functions of the mode amplitudes and de-
tunings and are chosen such that |w g | < |8].
These frequencies are related to the eigenfrequen-
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cies of the DAP. The states | 1,n;,n,) and
|2,m;,m,) are nearly degenerate if

ny+ny=m;+m;+1=N,

where n; and m; are the number of photons in
mode i and we have assumed w,; >0. For a fixed
total number of photons N there is an “infinite”
(~2 X N) number of bare-atom states which must
be diagonalized. The diagonalization, which can
be performed using continued fractions, is not done
here. Instead we concentrate on some qualitative
aspects of the problem.

If the mode spacing 8 is fixed, a rate-type solu-
tion in the DAP is valid provided that both
|8—wpyg | >>7 and wyp >>V (Wpg =wp—w, >0).
Similarly to the running-wave case, probe reso-
nances are found when wc=w, p +n8, where w-
corresponds to the probe detuning (recall that the
probe couples to a third, unperturbed level). The
heights of the various peaks generally depend in a
complicated way on the detunings and amplitudes
of the saturator modes.

For a SW saturator the beat frequency §=2k v
is velocity dependent. Difficulties arise since, for
slow enough atoms, the energy levels in the DAP
form a quasicontinuum. Thus a rate-type solution
for the DAP is clearly not applicable for
|2kyv | <y. This region must be described by oth-
er approximations. For instance, in the limit
v—0, the atoms are stationary and the probe
response is readily calculated.*

Some qualitative understanding of the SW prob-
lem is obtained by constructing DAP energy-level
diagrams similar to those of the running-wave case
(see Fig. 4). Two examples are shown in Figs. 13
and 14.

In Fig. 13, we display the dressed-energy levels
as a function of kv for a SW saturator with de-
tuning | Ay | >a. The standing wave consists of
two running-wave components labeled by
(@y, ky=ky>0)and (@_, k_=—k,). In the re-
gion kv << —v (assuming A,; >0), we can, to a
first approximation, use the unperturbed energy
levels w,4 p associated with the running wave a |
since the wave a_ is strongly detuned and acts
only as a perturbation in the region kv << —7.
The dressed-level frequencies associated with the
a, wave are given by [see Eq. (5.2)]

w450~ —5(Ay +kp)
.T.%[(AZI+k,v)2+4a?,,]‘/2+2nklv .
(6.10)

FIG. 13. Dressed-state frequencies wy(n)=w)
+2nkw/a, og(n)=wp+2nkv/a, and
wc=(As+kw)/a (ky~—k;) as a function of kv for a
large-field detuning | Ay;| >>¥. Values for n are given
by the integers labeling each curve. All frequencies are
expressed in units of a; the detunings are A, /a=10
and Aj;;/a=—1. In the range y< | kv | < | Ay |, the
frequencies w,(n) and wp(n) are approximately given by
w4(n)=—A7y+ | k| +2nkv and wp(n)=2nkv. The
diagram may be used to determine resonance conditions
in regions I and III, but not in region II where the rate-
type solutions of the DAP break down. Resonant-
velocity groups are determined by the intercept of the
wc curve with the curves w) 3(n). In the example
shown, the major contributions to the probe response ar-
ise from the crossings denoted by the large dots (see Fig.
4 of Ref. 53).

Equation (6.10) is not strictly applicable at any
value of kv where two of the eigenfrequencies are
degenerate. At such points, we must use degen-
erate perturbation theory: the net result is that the
crossings are transformed into anticrossings owing
to the action of the saturator mode a_. The ener-
gy levels are sketched in Fig. 13.

In the region kv >> ¥, the roles of a, and a_
are interchanged; the corresponding dressed-level
frequencies are given by Eq. (6.10) with the re-
placement of k; by —k; and @, by a_.

In the intermediate region —y < kv <7, the
rate-type solution of DAP fails. There one may, as
a first approximation, use the results valid for
v =0 discussed in Sec. IV modified to incorporate
the standing-wave nature of the saturator. In this
region Eq. (6.10) is replaced by

a)A,B—_%A2l$;—[A%1+4a(2)2]]/2 ’ (6.11)
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where

—ikyz ikz
1 ell'

a(z)=|ae +a_ (6.12)

The inhomogeneity in w, p, owing to the z depen-
dence of a(z), can be treated by the methods out-
lined at the beginning of Sec. V.

Tuning the probe corresponds to moving the line
wc=A3+k,v vertically. For each value of Aj,
there exists an infinite number of resonant sub-
groups v satisfying the condition wc(v)=w,4 p(v,n).
Whether these resonance subgroups really manifest
themselves in the probe absorption depends on the
magnitude of the various weight factors derived
from the BAP—DAP transformation. For exam-
ple, in the case shown in Fig. 13, the two major
resonant-velocity subgroups are determined at the
intersection parts of the w¢ and dressed states
shown in the figure. For other detunings, one can
map out the contributing resonant-velocity sub-
groups and obtain qualitative agreement with the
numerically calculated curves of Fig. 4 of Ref. 53.

Figure 14 represents the case of a resonantly
tuned SW saturator (@, =a_ =a) for which the
exact DAP energy levels are given by*—%

wA,B(n)=nk1v
w4 (n)=—|kyw|+2nkv, wg(n)=2nkv.

The method for determining possible resonant-

velocity subgroups remains the same. It should be
stressed that this method indicates the positions of
possible resonant structure. The determination of

Kiv/ew

FIG. 14. A diagram corresponding to Fig. 13 for a
resonantly tuned (A,;=0), standing-wave saturator. In
this case, the exact dressed-level frequencies are given by
oy p(n)=nkw/a[wsn)=— |k | +2nk;
wp(n)=2nk,v]. We have chosen a probe with detuning
As,/a=—5 and propagation vector K~k such that
wc~—5+4kv/a. Some of the resonant-velocity groups
indicated by the arrows manifest themselves as distinct
peaks in the velocity-dependent probe response (see Fig.
2 of Ref. 53).

the weights associated with these resonances rep-
resents a much more complicated problem,*6—5°
The striking difference in probe response for run-
ning- and standing-wave saturators is illustrated in
Fig. 12. The structure observed in Fig. 12(b) has
its origin in the various harmonics which enter
when a standing-wave saturator is used (but are ab-
sent for traveling-wave saturators).

VII. DAP TRANSIENTS

A. Two-level system

The steady-state spectra have been given a simple physical interpretation using the DAP. It is interesting
to study also transient behavior using the DAP.% For simplicity we assume that I',=T, =7y in which case

the DAP equation of motion for the 4B system is simply

Paa=Na—VPua >
Pss=NAp—"Pss »

Psa=NAps—(v+iop Pps -

(7.1a)
(7.1b)
(7.1¢c)

[Notice that we have assumed a;=-constant; therefore, Eq. (7.1) can be applied only for stepwise changes of

a].]

Assume that field a, is switched on at time ¢ =0 leading to an optical nutation signal in the BAP. The

solution of the DAP equations (7.1) is
Paa)=(Ag/y)(1—e ") +Dga(0)e 7,

(7.2a)
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Aps . i
Bpa()= | —2A (1=~ THom) 5 (0)e "B (7.2b)

+1(L)BA

The populations show a simple exponential decay towards their new equilibrium. The oscillatory nutation-
type behavior is contained in pp4. The initial conditions, obtained from (2.29) for an incoherent initial state,
are given by

Pa4(0)=n9 cos?0+nJ sin’0 , (7.3a)

Pps(0)=n9sin’0+nY cos’6 , (7.3b)

P84(0)=7(n—n3)sin26 . (7.3¢c)
Using Egs. (2.24) and (7.3) in Egs. (7.2), we find

Paalt)=Paal0) , (7.42)

Ppa()=73(n—n9)sin26 —+l7fw—m—(1 mrtiops)ty | TirHieR )| (7.4b)

The dressed-atom populations remain constant during the transient. If wg, >> ¥ we can write

Ba()=Ppg(0)e ~THIOB4" (7.5)
Nutation in the BAP corresponds to free-induction decay in the DAP. In the BAP the switching on of a;,
creates the coherence j,,, while, in the DAP, the same change destroys the initial coherence pp4(0). Ac-
cording to (2.29) all the observables p,;, Py, and p,; depend on pp,4 and, therefore, reflect the decay of pp,.

The DAP does not offer any substantial advantages over the BAP in calculating the free-induction decay
or photon echo of a two-level system (although it may be useful for nutation echoes).®’ In both cases, the
field is off for a long time period between the pulses when the BAP and DAP coincide. The DAP is a
more natural approach when a strong-field —atomic-interaction occurs.

B. Three-level transients®?—72

The DAP can provide a useful description of three-level transients. For a strong pump field | and a
weak probe a,, Egs. (2.23) give the time evolution of the system in the dressed basis. The DAP is most use-
ful if either (1) field «; is constant and field a,(¢) undergoes some transient behavior leading to optical nuta-
tion, free-induction decay, photon echo, etc. on the BC and AC transitions (see Fig. 1) or (2) the field «, is
switched on at some time and @, may have an arbitrary time dependence.

We consider first the case when a, is constant and a, is switched on at ¢t =0. Equations (2.23) and (2.29)
describing the probe response are (assuming I'j=I",=%)

Pea=—(Yeu +iocs Pes —ias sind(Pac —Pas) —ias cosOpyy (7.62)
Pes=—Ycp+iocy Pop+ias cosd(Pec —pap)+iassinfpyp (7.6b)
P3=costpcp —sinbpcy , (1.7

subject to the initial conditions pc4(0)=pcp(0)=0.
The 52 Pap are the steady-state dressed-atom den51ty matrix elements. Solving Egs. (7.6) using the steady-
state values paa—A /y=nQ, pAB ~0, and pBA ~0, we obtain
2 200,00
ia,sin®0(nd —ny) (1—e~Tentiocty ia,cos“O(nc —np) (1—e ~(Yeatiocs)ty

Yca +Hiocy Yc+iocp

ﬁ32(l) = (7.8)

The oscillatory behavior which appears in homogeneously broadened systems may disappear if inhomogene-
ous broadening is present. The oscillations may, however, remain observable if w4 or wcp depend only
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weakly on the atomic velocity. As an example let us consider the case when (5.15) is valid. The velocity-
averaged CA contribution is (taking n%=n9=0)

aznc
2k'u

a—+iy
k'u

Pt cy=— 4 —exp[ —(y—ia)t — k' 2u**)Z —k—,l+21k ut l , (7.9)

where Z (£) is the plasma-dispersion function,
=lka+3ki |, y=5(T3+Ty)

(recall I'y=T), and @ =A3,+a,+ %Azl. The time-dependent part in (7.9) disappears in a characteristic
time min[(k'u)~',y~']. If k'u >> 7, velocity dephasing is the dominant decay mechanism; in the case
k'u <<y, the system behaves as a homogeneous one decaying at a rate y and oscillating with a frequency
(Ap+a+3 AZI)

In a second example, field a, is kept constant and a, is sw1tched on at t =0. The probe response reflects
the decay of the initial 5, coherence (recall that pg P44 and pBB remain unchanged). Assuming that (7.5) is
valid, we obtain from (7.6)

.o 0 .0
—(ygq +Hiwg )t tazsmO(nc—nA)(l e*%u““’cﬂ')

Pca(t)=pc4(0)e

Yca Hiocy
iay(n? —nY)sin26 cosd —(p+iogyt
e
2ycq —y+iocs)

pcp(t)=pcp(0
Pce(t)=pcp(0)e Vs +ives

iay(nd—n9)sin20sind —(y—iogyt
e
2Aycp—y+iocy)

with initial conditions

Pca(0)=—ia, sinO(ng—ng)(yn—{-iKn)" R

Pcp(0)=iaycos0(n—nd)(ys+iAy,)~! .

. 0 .0
_(,,CB+,-,,,CB),+ iaycos6(ngc—npg) {

—e aatiocty (7.10a)

—(ycp+iocg)t
¢~ Yeptiocs)

_e T tiocp)ty (7.10b)
(7.11a)
(7.11b)

—

The assumptxon T, -Fz_'y implies that
YcB=Yca= F3+ 2V

The velocnty averaging of (7.10) is by no means
easy except in the special cases when w¢y or wcp is
nearly independent of v (Doppler-free cases). The
labeling of the various terms in (7.10) is obvious:
The first term gives the decay of the initial coher-
ence, the second one describes the transient to the
new steady state, and the third one is due to the
decay of the initial g5, coherence (nutation in the
12 system). The various terms in Egs. (7.10) can
be isolated by a proper choice of experimental
parameters [e.g., by choosing a; such that nd=ng
the second term in Eq. (7.10a) can be eliminated].

The advantage of the DAP over the BAP is that
the DAP gives directly the correct eigenfrequencies
ocp and wc, (in the BAP one is required to fully
solve the problem using Laplace-transform tech-
niques’! to obtain these values).

VIII. CONCLUSION

The DAP offers little computational advantage
over the BAP for most calculations. However,
when the frequency separations of the dressed
states are much greater than the relaxation rates of
these states, the equations of the DAP simplify
considerably. In this case, it appears that the
dressed basis is the natural one in which to do cal-
culations. Interpretations of the results in both the
stationary and transient regime are straightforward
in this representation. The positions of the reso-
nances in saturation spectroscopy as well as the os-
cillation frequencies observable in coherent tran-
sient experiments appear as fundamental parame-
ters in the DAP.

When the relaxation rates are comparable with
the field strengths, the BAP is generally an easier
representation to use than the DAP. In some cases
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VIIL.

APPENDIX A: RELAXATION SCHEME
IN THE DAP

The relaxational coupling and decay in the DAP is obtained by transforming the relaxation terms of the
BAP, Eq. (2.19), with the aid of (2.8), (2.11), and (2.17). To slightly simplify the equations we assume
I';3=T3,=0 (no collisional mixing of states 1 and 3), and find for the nonvanishing diagonal elements

R4 44 =—T1cos?0—T,sin?0— +(¢—T'y,—T)sin®20 (Ala)
RM,BB=%¢) sin®20+ T, sin*0 + I, cos’d , (A1b)
Ry4,cc=Tysin’6 , (Alc)
Rygap =Ryu4,p4 =7 sin20(T, — Ty + @ c0s20— 2T, cos?0+ 2T, sin%6) , (A1d)
Rpp 44 = 7@8in’20+ T, cos*0+ Ty sin‘0 (A2a)
Rgp pp = — I sin?0— T, cos’0— (¢ — Ty, — Ty;)sin226 (A2b)
Rpp cc=T3,c08%0 , (A2c)
Rpp 45 =Rpp g =7 sin20(T, — | — c0s26+ 2T, cos’6 — 2Ty, sin%) , (A2d)
Reccc=-T3, (A3a)
Rccaa=To3sin’6 , (A3b)
Recsp=Ta3c08%6 , (A3c)
Recap=Rcecpa=— ';‘I‘ »35in26 , (A3d)
where
p=2yy—-T'1—-I; (A4)

gives a measure of the effect of phase-changing collisions. The nonvanishing terms involved in the off-
diagonal elements are given by

Rpapa=—Vn+7(@—T1—Tyy)sin’26 (AS5a)
Rpsap= ‘1‘(‘17— I'j,—TIy)sin’26 , (A5b)
Rpg 44 = Sin20(T,— 'y + @ c0s20+ 2Ty, sin20 — 2Ty, cos?6) , (A5c)
R4 pp =7 $in26(T,—T'y — @ c0s20+ 2Ty, cos?0— 2Ty, sin’6) , (A5d)

Rpycc=— ‘;‘F 328in20 , (ASe)
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Reu,ca=—73 cos’0—yysin’6 (A6)
Rcp.cp= —7Y3 sin?0—y3, cos%0 (A7)
Rcy,cB=RcB,ca= %(732—731) sin26 , (A8B)

with the remaining elements given by the symmetry property Rgg o5 =Rpga,5,- Note that either I';; or T'j;,
depending on the configuration, vanishes if states i and j are not mixed by collisions. When phase-changing
collisions are absent, i.e., ;j=3(I;+T';), and all I';;=0, the relaxation terms are those given in (2.23). In a
general case all the ierms (A1) —(A8) differ from zero, leading to a complicated relaxation scheme in the
DAP.

APPENDIX B: PROBE =95 +2ady (T +T7 Y

RESPONSES
AND SATURATOR = (P 4+T,)%(1+4a2/T\T,) (B2)

The solution of Egs. (2.22) to zeroth order in a, [the last step follows from the assumption

is given by ) Y= %(I‘l-f—l“z)]. The components 53, and Py
2a ~ vanish. The corresponding DAP equations read
Ph=ni+ T ranfi(B+1)7',  (Bla) poncing BAT e
1 2
2 ﬁ"u=n2+—f—mn&(w& +T307"', (B3a)
~0 _ .0 Eﬂ 0 (X2 2\—1 A4
pn=n;— T, Yany(Ay+T9)77, (B1b) y 25
o o PBB——-'II?'I"IT‘YBA'IBQA(&’%A +T307", (B3b)
p33=n3, (Blc) B
~ ~ ~0 0
par=iand(yy —ihy (A3, 4T, (B1d) pec=nc (B3c)
-0 . _
where n’=A, /T;, n9,=n9—n}, and Pra=DBn34(Yp4 —iwps)0ps+The) ", (B3d)

where 3 =A,/T,,

nga=np+ni+Ag /B, (B4a)
T} =134 —28754(C1 '+ T3 )=4(Tp+T4)X(1—48%/T4Tp), (B4b)

and B is defined by Eq. (2.27). In terms of the BAP variables, the “population inversion” nj, and the effec-
tive width I'p, can be written as

-1

I+T, (T,—Ty)?

ngy=— T,_T, nd, ?ln sin®20 , (B5Sa)

-1
(0,—T))?
1 =1
[34=5(T+T,)? 1+T1F2— sin®20 (B5b)
[Notice that ny, enters only in the product Bn 94 which is nonsingular for (I';—T',)=0.]
To first order in a, we find from (2.22¢) and (2.22f)
[+ (By+By))(P3—pa) — iy
Pn=l1as (B6)

[ya1+i(By+ By +iAs) +ai
In the DAP we obtain from (2.23d), and (2.23e)

Pca=—ia{(ycp+iwcp)[sinb(Boc —ps)+costPp, ]

—BlcosO(pec —pyn) +5in8p4p 1} [(Yea +ioca Vs +iocs)—B1~" (B7a)



2688 P. R. BERMAN AND RAINER SALOMAA 25
Pes =i (Yea +iwca N cosO(Boc —Pgs) +sinbpys]
— Blsin0(pgc —Pus) +c0s8ppa 1} [(vea +iwca\vep +ioes)—B1" (B7b)

which after insertion into (2.29e) yield the observ-
able p3;. The DAP solution Eq. (B7) is clearly
much more complicated than the BAP expression
(B6).

The DAP solution simplifies considerably in the

|
[The corresponding solutions in the BAP would be

pa=n?, py=iamd /(yn+idy) ,

according to (B1).] As B~y we see that ﬁgA is
roughly a factor y/wp, smaller than the diagonal

limit wp, >> ¥p4,1 p4- The lowest-order terms are elements fo,. The rate-type solution (3.2) is ob-

given by tained by neglecting 7;03,, and terms proportional to
B in (B7). This approximation is equivalent to
ﬁga=n?, +O0(p Jwk) (B8a) keepfng pnly the lowest-order terms in a power ex-
pansion in terms of ¥/wp,. In the following, we
Poa=—iBnpy/ops +O0 (¥ J054) - (B8b) study in some detail the accuracy of (3.2).

Strongly coupled transition 1<>2

If we insert (B8) into (2.29), we obtain, after going back to the BAP variables,
2

ﬁ?lzn?'f'%7’21”31(5%1+4}’§10%/F1F2)_1 ) (B9a)
wl
#2)22"(2)'—_F;—YZI”(Z)I(A%]+47/§1a%/rlr2)_l ) (B9b)
Paiaind; (v —iBy (A +4y3,a} /T Ty) 7" (B9c)
A comparison between (B1) and (B9) reveals that the approximation is good provided that
A)1+4ai131/Ti Ty >> 131 - (B10)

This condition is satisfied when either | A, | >> 2 Or al>> %I",I‘Z. Note that if we neglect (B8b) there is
no absorption of the strong field a; [the first term in (2.29d) is real and describes dispersion only].

Probe response

We can express the exact result (B6) in a form'?

Pu=ia)[W (Z, +ikhy) '+ W_(Z_+iky)" '], (B11)
where
Z, =5+ v +ihy) 5 3il By +ivs—iys)*+4ai]'?, (B12)
W =505 —p0) [ 5B —Pn) By +iv—ivs) —apn By +ivn—ivs) +4ai] =12 . (B13)
An expansion of (B12) and (B13) in terms of the assumedly small parameter

e=(yn—v3)/(A5+4a})'”? (B14)
yields

Z  +ihy~ycp+ 11 SI40€ +iocp + yia, sin20€ (B15a)

Z_+ihyp~yos— %a, sin40€’ +iwcy — —;—ial sin20e? , (B15b)
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W, ~(nQ—n) cos?0+ siesin®20nd + i sin®26( A, — A,) /op, (B16a)
W_ ~(n—n3)sin0— siesin®20nd — i sin20(A, — A,) /wp, - (B16b)

A finite value of € slightly chang&s the widths and positions of the resonances. The corrections are negligi-
ble when (A3, +4a})!”2>> 7 | Ty —T,| which is a relatively mild condition. The expressions (B16) for the
weight factors W, are accurate to order O (e%;ey/wpy :¥*/w3,4) and coincide with those given in (3.2) pro-
vided that |€| << 1 and

|n2—n3| >> | Ay—A,|sin’0/wg, , (B17a)
|n@—n3| >> | Aj—A;| cos?0/wp, . (B17b)

The correction terms given in (B16) are purely imaginary and, therefore, introduce a dispersive-type change
in the absorption spectrum (~Img;,;). This change causes a small shift in the position of the resonances, but
does not appreciably affect their height.

APPENDIX C: DOPPLER-BROADENED PROBE SPECTRA

Introducing the dimensionless parameters (5.3) —(5.6) into (5.2) and solving the equations wc=w, p for x,
we obtain

ky(2ky+ky) . K3
v
2ky(ky+ky) T 2ky(ky+k7)

akyky +ky) |
ki

If k,(ky+k,)>0, both the roots in (C1) are real. The root with the plus (minus) sign satisfies the CB (CA)

resonance condition when k, >0 (k, <0). If k,(k;+k,) <0, X, , are complex in the region (5.10); otherwise

both roots belong to the branch wcp =0 for v> v >0 and to the branch w4 =0 when v< —v,,. In all

cases the solutions (C1) must fall within the Doppler profile [see Eq. (5.9)] so that the Doppler-distribution
function is not negligibly small.

Case ky(k;+k3)>0

Inserting (C1) into (5.8), we obtain after lengthy algebraic manipulations

vsgn(k,) |k | Yeft
I(W)==—"—Wlvcg) |(ny—nd) |1— 9—nd)
2k e |\ L e kT2 | T TR, T,
B Ik Ty —(ky +k)D21 /K Yegs T

W(UCA )[V—*-—‘V] 5 (C2)

[V2+ 4k, (ky +ky) /K312 2|k, |

where wcp(vcg)=0, wcy(vcy)=0, and where ¥, is defined by (5.12). Provided that

4k, (ki +k,) 2ky(ky+ky)A k3(ky+ky)u?
V2+2122 2K +K3)8y) 2122 ©3)
k? ki(2ky+ky)ay ky|2ky+ky|aj
the Gaussians in (C2) are approximately equal,
Aaz A32+A21
w ~ ~ 172
(vea)=W (vep)aexp | = | =+ = /4 /% (C)

and the simple result given in the text, Eq. (5.11), is valid. When (C3) is violated the dominant structure in
the absorption spectrum arises from the Gaussians, and Egs. (5.14) and (5.16) become applicable.

Case kz(kl +k2)<0

If v>wv,. >0, both of the roots (C1) satisfy the equation wcp =0 (if v < —v,, the equation wc4 =0). Thus
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only the CB transition contributes, and we can approximate
Pr~ia,cos?@(nd —nd)ycp +iocs) " . (C5)

This can be written as

rt _ai 2 0 0 . —1
Paa~— ” g(x)cos’O(nc —ng)[(x —x1)(x —x,)+ig(x)]"", (C6)
CB
where
7CBk% k2 1 1, 2 1,2

g(x)——a]kz(kl+k2) v+ k, +5 [z +4) (cn
The last factor can be expanded as
Im{[(x —x;)(x —x,)+ig] "} ~Im |[(x; —x, ) +4ig] 1/

X |2 —imd(x —x)— 2 —imdx —x,) | |, (C8)
x —x; X —X;

where the complex square root has to be evaluated so that its imaginary part is positive (assume x, > x ).
The principal values in (C8) are negligible, because for (x, —x,)>> y/a; the complex square root is real and
for x,~x, they cancel. Inserting (C8) into (C6), we obtain

2‘
ki+ky
ki

klﬂ.l/Z

2
Tl Tkt a2 S

i=1

ax;—Ay
klu

ICB(V)’_‘_-'

X[nE—nd(x;)] v+ x; | Ref[(x, —x1)*+4ig(x;)]~1/%} . (C9)

In the limit x,—x, this gives, after insertion of the explicit expressions (Cl1) for x; and x,

Icp(v)~ k:u 21r(|k;:|k2) ]1/2 (n§—nd)+ T, (% IEL’:T L1+k2| (n9—n9)
aadl lAZI—a](]kz(I;cllizkIzz)l)l/z 2/ ku?
XRe v—vc,—a%l { l’,:' Yot k‘;:kz ml ]—ml, (C10)
when x, —x; >> y/a,, Eq. (C9) reduces to
I(A_,,ﬂg% exp | — Eﬁl%,:uﬁz_l_ 2
X {(n§—n$) 1+m]

+(n‘2’_n‘.’)—ﬁ— Tiky |14 ——5—= [+ Tyk;+ky) [1—- ——5—
Kir, (W21 (WP—s2)172
k ki+k, | -
X [+ I‘1k—2+l‘2 lk 2 Flr ]+term[(v2—v2,)”2—»—(vz—vﬁr)‘”].
1 1 112

(C11)
In the limit v— oo, (C11) gives just the flat background absorption. Both (C10) and (C11) agree with the
limiting intense-field results given in Ref. 13.
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