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The theory of the interaction between radiation fields and atoms as applied to laser

spectroscopy can be approached using either a bare-atom picture (BAP) or dressed-atom

picture (DAP). In the BAP, the basis states are those of the free atoms and free field

while, in the DAP, the basis states encompass some part of the atom-field interaction.
The theory of saturation spectroscopy in three-level systems is discussed using both ap-
proaches. Whereas calculations are usually more easily done using the BAP, one can gain
useful insight into the underlying physical processes from the DAP. Moreover, when the
radiation field strengths (in frequency units) are larger than the relaxation rates in the

problem, the DAP equations simplify considerably and lead to line-shape expressions
which may be given a simple interpretation. The DAP is used to obtain resonance condi-

tions for traveling-wave fields interacting with three- and four-level atoms and for a
standing-wave saturator and traveling-wave probe interacting with a three-level atom. In
addition, the DAP is applied to several problems involving optical coherent transients. A
comparison is made between the various advantages of the BAP and DAP and an in-

teresting duality between the two approaches is noted.

I. INTRODUCTION

There exists today a wide variety of "Doppler-
free" methods for obtaining absorption spectra as-
sociated with atomic or molecular transitions. '

The methods are "Doppler free" in that the width
normally occurring in linear spectroscopy can be
substantially reduced or totally eliminated using
nonlinear techniques. This suppression of the
Doppler width is generally achieved in one of two
ways. First, one can limit those atoms participat-
ing in the absorption process to a narrow velocity
range (either by use of an atomic bein or by selec-
tive excitation with a laser field) leading to a
corresponding reduction of the Doppler width. Al-

ternatively, one can arrange for the atoms to in-

teract with two fields such that the resultant fre-

quency seen in the atomic frame is not strongly
dependent on velocity (cancellation of Doppler
phases). Coherent transient spectroscopy provides
another method for obtaining spectral information
that is essentially free of the Doppler width. It is
also possible to combine the various methods.

There exists a rich literature devoted to the
theory of nonlinear saturation spectroscopy. '

The approaches can be divided into roughly three

groups. First, there is the so-called bare-atom pic-
ture (BAP) in which the atom-field interactions are
represented in terms of a basis using the (bare)
atomic eigenstates 7—18 Second, there is the
dressed-atom picture (DAP} in which all or part of
the atom-field interaction is solved exactly and the
resultant atom-field eigenstates are used as the
basis for further calculations. ' ' Finally there
are resolvent methods which will not be discussed
here 25

Most calculations were originally performed us-

ing the BAP. For two- or three-level atomic sys-
tems interacting with two or more radiation fields,
the "Doppler-free" absorption spectra were calcu-
lated using a density-matrix approach. It soon be-
came appreciated, however, that the DAP ap-
proach, previously used to describe optical pump-
ing experiments, could be advantageously applied
to laser spectroscopy experiments when one or
more of the fields is intense. The dressed-atom ap-
proach has proven to be extremely useful in obtain-
ing theoretical expressions for resonance fluores-
cence spectra when the exciting field is intense. ' '

It is the purpose of this paper to provide a com-
parison of the DAP and BAP, to indicate the rela-
tive advantages of each approach, and to apply the
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DAP to some cases not previously considered. It
is shown that the BAP equations are invariably
easier to solve than the corresponding DAP ones as
long as one is dealing with single-mode fields in-

teracting with two- or three-level atomic systems.
For multilevel atoms or multimode fields, both
methods lead to equations that present considerable
analytical difficulties.

Although the DAP equations may not provide
any analytical simplificstions, they do enable one
to obtain sn interpretation of the ongoing physical
processes that may be helpful in understanding the
atom-field interactions. When the frequency
separation of the dressed-energy states is much
greater than thc relaxation rates in the problem, an

important simplification. occurs in the DAP. Onc
can interpret multiphoton interactions of the BAP
in terms of noninterfering single-photon transitions
in the DAP. The positions (but not necessarily the
strengths and widths) of the various atom-field
resonances src then easily and naturally predicted
using the DAP.

A comparison of the BAP and the DAP also
offers an interesting duality between the two ap-
proaches. It is shown that the roles played by the
atom-field coupling constants and th, e relaxation
rates are interchanged in the BAP snd DAP ap-
proaches. In coherent transient spectroscopy, what

appears as an optical nutation signal in the BAP
now appears as a free-induction decay in the DAP.
Other features of the two approaches are discussed
as applied to three-level spectroscopy, four-level

spectroscopy, saturation spectroscopy involving
multimode fields, and coherent transient spectros-
copy.

It should be stressed that the DAP discussed in
this work differs in spirit from that of convention-
al theories. ' ' In the conventional DAP, the
electromagnetic field is quantized and the dressed
states are eigenstates of the atom plus field; conse-

quently, these dressed states represent linear combi-
nations of products of atomic and quantized-field
eigenststes. In our case, the field is taken to be
classical. However, by using a field-interaction
representation for the various state amplitudes and
forming appropriate linear combinations of the
atomic-state eigenstates, one arrives at equations
that are mathematically equivalent to the conven-
tional dressed-atom ones, provided the field
strengths are large enough to be treated classically.
Thus, even though the DAP eigenstates using clas-
sical and quantized fields differ in a fundamental

way, the conclusions Rnd interpretations using both

approaches may be similar. It is in this sense that
we refer to a "dressed-atom" picture, although our
dressed states sre not the conventional ones appear-
ing in quantized-fieM trestments. "-""

In Sec. II the basic formalism is described and s
comparison between the BAP and DAP is given in
Sec. III. The DAP is applied to the saturation
spccti oscopy of honlogcncously snd inhomogcnc-
ously broadened three-level atoms in Secs. IV and
V, respectively. In Sec. VI, we discuss the manner
in which the DAP can be applied to multilevel
atoms or multimode fields snd in Scc. VII,
coherent transient effects are discussed using the
DAP. Some conclusions concerning thc relative
merits of the two approaches are given in Sec.
VIII.

Much of the material presented in Secs. II—V is
not new, but is reassembled there to provide the
basis for a comparison between the BAP and DAP
and to lay the foundation for the material that fol-
lows.

II. GENERAL FORMALISM

Wc considci' an idealized three-level IIloviilg
atom which interacts with a linearly polarized elec-

tromagnetic field of the form

E(z, t) =e [Ei cos(Qit Eiz+yi)—
+E2 cos(Q2t E2z +y2)) .—

The atom-field interaction is of the form p„E(z,t),
where —p„ is the x component of the atomic di-
pole operator. It is assumed that the wave (E&,Q~)
couples the atomic states

~
I) and ~2) only and

(E2,Q2) the states
I » and

I P only. Within the
rotating-wave approximation, the reduced density
matrix of the atom in the field-interaction repre-
sentation obeys the master equation' '

p=(iA') [H,p]+p ~+A .

Equation t,
'2.2) contains three contributions. The

first of these involves an effective Hsmiltonian H
and represents the atom-field interaction. The ma-
trix H is given by

—52i ai 0

0 0,'2

0 ag 632

where we have denoted thc Doppler-shifted detun-
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ings by

h2i ——52j+ki v,

632——h3g+ k2u,

where

~z& =2& —Sgn(2i ~~I,

&11=~»—Sg (~11)IIz

ki =sgn(coll)E1,

kz ——sgn(i011)Ez,

and the Rabi frequencies by

a& ——p2&E& /2A,

a2 ——p32E2/2A,

(2.4c}

(2.5a)

(2.5b)

with

)~ &=cose (1)—sine
~
2&,

[ 8)=sine
~

1)+cos8 [2),
[C}=[3&,

sine= I -,
' [I—a„(a',, +4 ', )-'"]

I
'",

(2.8a)

cose= t —,
' [1+5„(Z'„+4 ', }-'"lI'" .

weak coupling between
~
2) and

~
3). Many ef-

fects of the strong field are conveniently incor-
porated by transforming to a "dressed" basis de-
fined by

in which io" is the energy spacing (in units R) be-

tween levels i and j, p,j——pj, is the x component of
the ij dipole matrix dement (notice jiz, ——0), and U

is thc s coH1poncnt of thc RtoIIC velocity. The
second term in Eq. (2.2} describes relaxation pro-
cesses and is of thc form

e

(prel}ij QItij;klpkl
k, l

where the elenmnts R,&.kI represent the effects of
spontaneous CImssion ol collisional relaxation. Thc
spontRncous emission can lead either to decay OQt"

side of the three-1cvcl system or to 8 transfer of
population between some of thc lcvcls. Thc final
term in Eq. (2.2) is an incoherent pumping matrix
whose elements are of the form

In the discussion that follows, the states
~
i )

(i = I,2, 3), will be referred to as states in 8 bare-
atom picture (HAP) and the states

~
a }

(ix =2,B,C), will bc rcfclYcd to as states ill a
dressed-atoID picture (DAP).

Tllc tlallsforlnatloil (2.8) Iliay bc wflttcil

fa}=T;fi&, (2.10)

T;=(T' '); =(i ~a& . (2.11)

In terms of the T matrix the transformation bc-
twccIl thc dressed and bare density Inatriccs is

Pa=T POT s

%herc the sumAlation convention is adopted and
clcGlcnts T«are given by

AJ ——A;5;J. .

The states ~1) and ~2) are assumed tobe
strongly coupled by ai, whereas o;2 provides 8

(2.7)
which is used to transform Eq (2.2) in. to

j711=(1+ V4 Pnl+iin, -i+An

where

(2.13)

Hg) ——THg T

—CK2 Sin(9

(2.14)

~a~ =(~z~+4o'~ ~
2 i/2

(PO, -l }aP=(I'll }aP;yS(PD)yS ~

(~D)ajkys =TaiTPj~ykrslR ij;kl ~

(Ag )~P
——T«TP(AI. .

[The angle 8 in Eq. (2.9) is taken to hc in the
rknge 0+8 ~ ff/2 such that cos8 and sin8 arc posi-

tive. %'ith this choice, dressed state 8 always has
a greater energy than dressed state A. In the limit
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that a1~0, states
I
A &, I

B&~ I
1 &, I

2 & if 621)0
~d I~&, I&&~I2&

I
1& lf ~21&0&

The transformation T has been chosen to diago-
nalize the A —B submatrix of HD. In the limit
that a2—+0, HD is diagonal and one has a complete
solution to the problem. The DAP will be particu-
larly useful when a2 is small, enabling one to carry
out a perturbation expansion in this parameter.
Although the matrix Hz has a simple structure,
the relaxation and pumping terms are now more
complicated. The pumping matrix, which is diago-
nal in the BAP, has both diagonal and off-diagonal
elements in the DAP as given in Eq. (2.18). More-
over, the relaxation terms are most naturally ex-

pressed in the BAP, where one can typically take
(no sum)

&(i;kl = yes—l, ski 1(1 .51,J—)
I' g—liglkf;1+I alga jgkl(1 gik—)

(2.19)

leading to a relaxational time rate of change of p
of the form

ply pp (2.22g)

while in the DAP, the corresponding equations
Icad

pAA=AA —I'ApAA+2pRe{pBA)+2~A Im{pcA»

(2.23a)

pBB AB IBpBB+2I3Re{pBA )+2aB Im(pcB ),
(2.23b)

pcc =Ac I CPCC —2A2A Im—{pcA ) —2A2B Im{pcs)

(2.23c)

PcA = (ycA +—1rBcA )PCA +1&A {pcc —
pAA)

P32= —(&32+i~32)P32+ i&2(P33—P22)+ ia1P31,

(2.22e)

P31= ('F31+i~21+ i~32)P31+ i&1P32 i2P21,

(2.22f)

(P„l);,= y;,P;—; (1'Qj),

~p" + X ~i pfj
J(~i)

(2.20)

(2.21)

where I; is the total decay rate of state i and rj,.
describes population transfer from j ta i due to
spontaneous emission or collisions. While the re-
laxational decay and coupling in the BAP given by
Eqs. (2.20) and (2.21) is fairly silnple, the
corresponding coupling in the DAP given by Eqs.
(2.16)—(2.17) involves many more terms. Explicit
expressions for the relaxation rates are given in
Appendix A.

To compare the BAP and DAP we write down
the equations of the components of the density-
matrix elements in both representations. For sim-

plicity, we adapt a relaxation scheme in which
I';i =0 and y;J =—,(I;+I'J), corresponding to the

case in which each level decays to some states oth-
er than states 1, 2, or 3. In the BAP, one has

p11
——A1 —I 1p11+2a1Im(p21),

p„=A,—r,p„—2, I (p„)+2,Im(p„),

p33 A3 I 3p33 2~2 ™(p32)

(2.22a)

(2.22b)

(2.22c)

P21 {)21+1A21)P21+1+1(P22 Pl 1 ) ltt2P31

(2.22d)

'~BPBA+PPCB

PCB = —(yCB+lCOCB)PCB+1&B{PCC PBB)

1+APAB+PPCA i

PBA ABA (yBA +l~BA )pBA +p(PAA+PBB )

+iAPBC —«BPCW ~

pap= kg

where

Aq ——A1cos 8+A2 in 8,
AB ——A1sin 8+A2cos 8,
Ac ——A3,

1

ABA =AAB =
2 (Al —A2)sln28,

I =I cos 8+I sin 8,
rB ——r, sin 8+I cos 8,
rc=r, ,

1

y.ts
=-, (r.+r~),

ag ———a2 sin8,

cxB =cx2 cos8,
I

p =—,(I'2 —I'1)sin28,

CA ~32+ 2 ~21+ 2 (~21+~1)

CB ~32+ 2 ~21 2 (~21+~1) ~

1 —2 2 1/2

(2.23d)

(2.23e)

{2.23f)

(2.23g)

(2.24a)

(2.24b)

(2.24c)

(2.24d)

(2.25a)

(2.25b)

(2.25c)

(2.25d)

(2.26a)

(2.26b)

(2.27)

(2.28a)

(2.28b)
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p2l= &
sln28(pss —p~}+cos 8psg —stn 8pgs ~

p32=cos~ pcs —sin~ p~ ~

(2.29d)

(2.29e)

It might be noted that the above equations, to-
gether with the quantum regression theorem, could
also be used to calculate the spectrum of resonance
fluorescence from these levels. ' ' ' '

III. COMPARISON BET%EEN BAP AND DAP:
APPROXIMATE SOLUTIONS

The DAP equations are more complicated than
the corresponding BAP equations, even for the
simplified relaxation scheme adopted in Sec. II.
One may, in particular, note the following features:

(i) In the DAP, in contrast to the BAP, the off-
diagonal element p~z has a source term Azz. This
disappears only when A& ——Az or a&~0.

(n} All direct coupling between p~, p„z, pz„,
kg is proportional to the difference between the
relaxation rates I i and I 2. The couphng parame-
ter is of order P given in Eq. (2.27).

(iii) If we neglect Azz and P, the DAP and BAP
equations are equivalent with the replacements

eg~), o.'g~2, and A,B,C~1,3,2. The prom-
inent difference between the tmo representations is
that, in the DAP, all couplings are of order c2
break), whereas in the BAP, states 1 and 2 are
strongly coupled by ai. These features are illus-
trated in Fig. 1.

Clearly the BAP equations are easier to solve
than those of the DAP. However, for a strong sa-
turator, there are definite advantages in using the
DAP. Moreover, the simple model configuration

The physical observables are the populations p;;
and terms proportional to either Re(p,&) or Im(p;J)
giving the dispersion or absorption, respectively,
for the saturator (ij =2,1) or probe (ij =3,2). Us-

ing Eqs. (2.8)—(2.12), one can express these BAP
elements in terms of the DAP elements p p by

pl 1 =cos 8p~+»n 8pss +S1n28 Rc(ps„),
(2.29a)

pl2 ——sin 8p~+ cos 8pss —sin28 Re(ps& ),
(2.29b)

(2.29c)

considered here partly hides the power of DAP. A
better comparison could, perhaps, be obtained by
studying a case where both pictures must be solved
approximately. Some applications along these lines
are presented in Secs. VI and VII. For the present,
we consider the three-level scheme of Fig. 1 since
it allows for comparison with well-known re-
sults. '-"

Regardless of the level structure, the DAP sim-

phfies the interpretation of the probe-absorption
spectrum when the saturating field is intense. As
an example, consider a three-level system for
which two peaks appear in the probe-absorption
spectrum at 532-0 and 532-—62&. If a& is weak
these resonances can be labeled as stepmise and tmo
photon in the BAP, but this interpretation breaks
down if u& cannot be treated in lomest-order per-
turbation theory. In the limit of large a~, however,
thc DAP allows onc to ill'tcrprct thc two peaks as
single-photon transitions between the dressed states
A-C and B-c.

One way to solve the density-matrix equations
approximately is based on the assumption that the
off-diagonal components are small. In the BAP
t41s leads to ordinary perturbation solutions in
powers of a&. The expansion converges rapidly
provided that

~ Z2&
~

or the relaxation constants
are much larger than o;~. In the DAP, the role of
the y"s and al is interchanged„ therefore, the
corresponding approximate solution holds in the
limit that

~

b,zt ~

or al is much larger than the re-
laxation rates. Thus, for strong fields a&, a pertur-
bative approach works mell in the DAP but not at
all in the BAP.

s
A~ ~s

FIG. 1. A three-level system in both the SAP and
DAP. In the SAP, there is incoherent pumping to and
decay from each of the states. Levels 1 and 2 are cou-
pled by a strong field al and levels 2 and 3 by a weak
probe field a2. In the DAP, both couplings n~ and n~
between the dressed states are weak. However, there is
now a collisional coupling P of states A and 8 as we)1 as
a coherent pumping" A» which is not present in the
SAP.



For the present, we assume (validity conditions
to be stated below) that pzz is negligible. Then, to
zeroth order in a2 it follows immediately that the
steady-state solutions to Eq. (2.23) are

P~II (A——/I )5~ P=nN5~, II .0 (3.1)

UsIIlg Eqs. (2.23) RIld (2.29) oIlc obtalIls

ICII cos18(nc nII—)
P32=

Xca+~~ca

IIII s111 8(IIc—Ilg )
+

'Vm+~~c~

The steady-state value of p32, is related to the
probe-induced polarization. It can be seen in Eq,
(3.2) that the probe-field polarization may be
viewed as originating from two noninteracting
single-photon transitions between the dressed states
C-8 (corresponding strength a2cos18) and C-A
(strength aI sin 8).

An exact solution for p32 (to first order in ez) is
given in Appendix 8 where it is shown that Eq.
(3.2) is valid provided that both

(~II+4Ix1)'"» —,
I
I'I —I'I

I
(3.3a)

IV. HOMOGENEOUSLY BROADENED SYSTEMS

We consider first a homogeneously broadened
system in which all the detunings 5,J are indepen-
dent of u as may be the case when laser beams in-
teract with an atomic beam such that k ~ v =0.
Once Eq. (3.2} is valid the interpretation of the
probe-absorption spectrum is extremely simple.
We define the probe-absorption spectrum I(632)
as32

1I(EII)=—ImIpII j,
CK2

(4.1)

which is obtained by combining Eqs. (4.1) and (3.2)
to give

}c11 cos 8(IIc—Ils )
0 0

I(632)=
Ica+ca

peg SIII 8(IIc Itg —)
7 CA+CA

The two resonances are I.orentzians (which may
overlap) having the following properties:
C-8 transition

and

) Ilc —II11 i
COS 8,

I
IIc —IIa I

sin 8» —, sin 28 (3.3b)
iAI —Ap i

~aw

AIz ————,b,II+ —,(AI I+4aI)'i (position),

AS ——yII sin 8+yII cos 8 (width),

cos28(nc —ng )lycg (height), (4.3)

Roughly spcakIng, Eqs. (3.3}arc satlsflcd If thc de-

cay rates are much less than the frequency separa-

tion ~zq between states A and 8.
The widths ycz, yc~ and the positions ~c~ ——0,

RIcq ——0 of the resonances given in Eq. (3.2) are ac-
cllfRtc If (3.3R) Is satlsfIcd. EquatloII (3.3R} cIlablcs
one to ignore any interference effects between the
two single-photon transitions of the DAP.
Mathematically, this assumption involves the
neglect of the Ppcs and PPcq terms in Eqs. (2.23d)
and (2.23e), respectively, which, in turn, implies
that p~ and Pcs are decoupled. Equation (3.3b),
on the other hand, is the requirement that terms
involving p~~ in Eqs. (2.23d}—(2.23C) are small
enough to be neglected. Roughly speaking Eq.
(3.3b) is valid when (I I+I 2)/co1I~ g~ 1. This con-
dition is not sufficient if two of the dressed-state
populations are equal. In this case one of the reso-
nances in Eq. (3.2) disappears, whereas in the exact
solution, the resonance does not totally vanish but
is down in magnitude by a factor of order I /uzi.

QO

I

90'

FIG. 2. Dressed-state populations nq, n~, nc as a
function of the BAP~DAP transformation angle 8.
The HAP populations n I, n~, and n 3

——nc are deter-
mined by the incoherent pumping and relaxation rates.
The gain factors for the CA and CB transitions can be
read directly from this graph. For the case shown

(I 1
——4I 2, n ~.n z..n 3

——1:2:1.5), region I corresponds to
absorption for the CB transition and gain for CA, region
II to gain for both the CA and CB transitions, and re-

gion III to gain for the CB transition and absorption for
CA.
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C-A transition

~32= 2 ~21 —
2 (~21+4121) (Posltloll),

ycA y31 cos 8+y32 sill 8 (width),

sin 8(nc n—a )/yea (height) . (4.4)

The dependence of the heights and the nature (i.e.,
absorption or stimulated emission) of the reso-

nances on n~, n~, and n is easily carried out with

graphs like that shown in Fi. 2 which is con-
structed using Eqs. (2.24), (2.25), and (3.1). The
linewidths always remain below max( y32, y31I
which implies that there is no "power broadening"
in these spectra.

One can note some interesting limiting forms of
Eq. (4.2). If field ni is very strong (ai »

~
621

~
)

such that 8 n/4, then Eq. (4.2) becomes

A3 A, +A, I 3+F2~ I 3+X2i1(&32)=—
1 2 l 2+4 I'3 12+1'1 —,'(l 3+y21)'+(b,32+-,'~21 —ai)' —,'(1.3+y21)'+(~32+-,

'
b,21+al)

which reveals two resonances of the same amplitude and same width, centered at 532—+A'}

On the other hand, if I'; « ai «
~
621 ~, then 8&& 1 and the C Breson—ance takes the form

' 2 —j.

0 0I(~32)ca~y32«3 n2)—y32+ ~32

y32(n 3
—n 2) 2n1532

0 0 2

1+
y»+~32 ~»(y»+~32)

which 1s a Lorcntzian w1th a small AC Stark shift.
If only the nonlinear part proportinal to a~ is mon-

itored, the C-8 resonance has a dispersionlike
shape.

I

plotted as a function of 621. A distribution of h, 2~

is indicated schematically by the vertical-hatched
column; the intersection of this hatched column
with the m~ and ~~ curves indicates the range of
allowed values for ~z and co& for this specific dis-

V. INHOMOGENEOUS BROADENING

According to (3.2) the probe response is negligi-
ble cxccpt near thc rcsonanccs Ncg =0 and Abc's =O.
The frequencies a)cg and a)gg are functions of hp),
632s and a ~. S1nce h2 ~ and 532 depend on the
atomic velocity which is determined by a distribu-
tion function and since, in principle, the value of
o.~ might also be determined by a distribution func-
tion, the general resonance conditions can be satis-
fied by one or several atomic subgroups in the sys-
tem. In this inhomogencous broadening case, the
atoms able to satisfy the resonance condition are
those responsible for the probe response.

Many features of the probe spectra can be
predicted with the aid of the simple graphical
analysis given in Fig. 3. To use Fig. 3, it is useful
to recall that a)cg ——sic —cog and a)cg ——a)c —a)g,
where co is the energy of dressed state

~
u) in un-

its of A given by the diagonal elements of the
Hamiltonian (2.14). In Fig. 3, m~ and uq are

FIG. 3. Dressed-state frequencies eq, ~~, and co~ as
a function of detuning Z2i. {The scales are in arbitrary
frequency units. ) The vertical strip gives the allowed
values of 52~ for some inhomogeneous distribution. As
the probe is tuned, the ~c line moves vertically and its
intersection with the co~ and co~ curves gives the regions
of probe absorption. These regions are indicated by the
horizontal strips in the figure.
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tribution of 62i. The probe frequency (assumed to
be independent of 62~) appears as a horizontal line
on this graph which moves vertically as the probe
frequency is varied. The intersection of coc =&32
with the allowed values of co& (or coB) gives the
range over which the resonance conditions may be
satisfied. These regions are indicated by the
cross-hatched zones of Fig. 3.

The above analysis is modified somewhat if the
variation in 62~ is due to the Doppler effect. In
this case, a distribution of (axial) velocities

W(v)=exp( —v /u )/m'"u, (5.1)

where u is the most probable speed, leads to fre-
quencies

1

co& ————,(52~+k
~ v)

——,[(h21+k1v) +4a1]'/

(5.2a)

the values of cd and coB present in the system.
This range, which simply represents the inhomo-
geneous broadening in the system owing to the
Doppler effect, is indicated by the vertical lines in
Fig. 4. The intersection of coc with co& and coB in
this region determines possible resonances of the
system since it corresponds to ~cB——0 or cocz ——0.
As 632 is tuned, the coc curve moves vertically and
scans all possible resonances. The factors cos 8,
sin 8, nc, nB, and nq which appear as weight fac-
tors for the resonances [see Eq. (3.2)] may be ob-

tained from Fig. 5.
The velocity averaging is easily performed by

noticing that for y p&& ~

ro p ~

one can write

1 1=—iH
VCB +~ CB CB

+T~[(621+k1v) +4a1]' (5.2b)

(5.7)

c=h32+kzv (5.2c)

For the sake of definiteness, we take k~ g 0 and k2
of arbitrary sign [see Eq. (2.4)] which simply
corresponds to a choice of the direction of the po-
sitive z direction.

Inhomogeneously broadened three-level systems
have been previously analyzed using a graphical
approach. ' ' ' We recall some well-known re-

sults and then discuss features not emphasized in
earlier works.

To construct a graph similar to that in Fig. 3,
we first define the dimensionless parameters

~C
0 5~,~c~-

where coca(vca) =0 and
I
r)ca /Bv

~
„„+0(vcr

is a simple zero of cocB). In the case k2/k» 0
(depicted in Fig. 4) the probe absorption is simply

x =(62(+k)v)/a),

cv~=rvp/a1 (P=A,B,C) .

In terms of these parameters the quantity

(5.3)

(5.4)

2~2' U

4 O-1 (Xl

2 4
X

with

k2
c——v+ x,

k)
(5.5)

[~32 (k2/kl +21]/+1 (5.6)

is a linear function of x with slope of k2/ki and y
intercept of v. In Fig. 4, the dimensionless fre-
quencies co&,coB,coc are plotted versus x. For a
given h2~ there is a range of x centered about
x =62~/a~ of width 2k~u/ai which determines

FIG. 4. A curve similar to Fig. 3 in which the
dressed-state frequencies co~, co~, roc (in units of a~) are
plotted as a function of velocity through the parameter
x =(h2~+k~U)/a~. Since cue varies linearly with U and,
consequently, also linearly with x; the curve co~(x) is a
straight line of slope k2/k~ and co' intercept
v=[1)32—(k2/k)62, ]/a, . The range of allowed x, indi-
cated by the heavy portions of the co& and co& curves, is
centered at h2&/a~ and has a width determined by the
Doppler distribution, which, in this case, is the inhomo-
geneous broadening mechanism. Tuning the probe
corresponds to a vertical displacement of the re~ curve.
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aj[x —621 cos 8(nc —n~)0 0

I(63g) = 8'
~
I}coca/Bx

~
x=xc$

lxlx —XII Sill 8(IIc I—Ig )
~ 2 0 0

+8
kl

~
I}cong /Bx

~
x =xc&

(5.8)

where the dimensionless velocity parameter x, Eq.
(5.3), has been introduced.

Equation (5.8) together with Figs. 4 and 5 can be
used to obtain some qualitative features of the
probe spectrum. One first determines the allowed
range of x contributing to the spectrum. Using
Eq. (5.3) and the fact that

~

v
~

& u it is seen that x
must fall within the range defined by

k]ux—
Ci Qi

This range of x, centered at 42]/a~ with width of
order 2k&u/a&, is indicated schematically by the
heavy portions of coq and coq curves in Fig. 4.
Having found the allowed range of x, one then
proceeds as follows:

{1}The line I0'c{x) [Eq. {5.5)] is drawn for each
value of EI2 (or, equivalently v) to determine the
position, if any, of resonances x =xcz(v) or
x =xc~(v) for which uc ——mq or cue ——m~, respec-
tively. Notice that a variation of v, which
corresponds to varying the probe frequency, is
represented in Fig. 4 by a vertical translation of
the mc line.

(2} At any resonance Positions xcl (v}, xcs(v},
the corresponding weight functions cos 8, sin 8,
tip —

pig and pfg —lip are read off of Fig. 5, and the
velocity distribution 8'[{alx—b2I)/kI] is evaluat-
ed at x =x~z or x =xcz.

(3) The final factor contributing in Eq. (5.8),

I

asymptotes of the cos and c0„' curves) On the oth-
er hand, if k2(kl+kz) ~0, elcs resonances are pos-
sible only if v&0 and ~~q resonances only if @&0.
There is a range of v

v (v„=4~ kg(kl+kl)
~
/k, (5.10)

for which no resonances are possible. and no probe
absorption occurs.

Figures 6—9 illustrate the various cases. In Fig.
6 we have graphed toe~ (x,v) =0 and coca(x, v) =0
for the case k2 &0. As discussed above, for each
value of x, there is one value of v for which
wc~ ——0 and one for which ac~ ——0. By mapping
out a horizontal strip giving the range of allowed x
and projecting the intersection of this strip with
the m~ ——0 and roc~ ——0 curves onto the v axis, one
obtains thc range of v= [ALII —(k2/kl )52I]/aI for
which significant probe absorption occurs.

«f k, II » III and
~

b,2I ~
&k, u, then x is cen-

tered at 6,21/a~ and the strip of allo~ed x has a
large width 2k~u/a& ~& 1 which always includes
x =0. In this case there is a wide range of v for
which resonances occur as shown in Fig. 7(a). The
CA and CB resonances overlap, leading to the typi-
cal probe spectrum shown in Fig. 7(a). For this
case, the probe spectrum is given by (see Appendix
C)

BA)c~ B(NC —
APN) (a=A,S),

x =@co(v) Bx x =@ca(v)

Is thc dlffer8IIC8 lit $10p8$ bctwccll thc toe slid 8I'

curves at the resonance positions. Using the above

steps, one can construct the probe spectrum for
various values of the parameters a», kq/k~ and

~2i
For positive slope [k2/kl & 0] of Iac(x), it is ob-

vious from Fig. 4 that there always exists some
values of v (i.e., probe detunings 632) leading to CA

and CB resonances. For k2 negative (recall that we
have arbitrarily taken ki ~ 0), both resonances still
occur if k2(kl+ kl ) & 0 (magnitude of the slope of
co& greater than the magnitude of the slopes of the

-2 0 2

rP,

-4 -2 0 2
~ l I

x

FIG. 5. Curves which give the weight factors sin28,

cos28, n (a=A, B,C) as a function of x. In the exam-

ple shown, we have taken n «.n2..n 3
——1:2:2.1 and

r, :r,=3:1.
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~32+~21
1(i4?)= exp — ' + /4u'

k? u k? k, +k?
2

o o Ik? I o o +13 cff
X (ni n—?)+ (n? n—i)I 2k( t~i2 —(k? ~ki @?il'+r'rvi~l il'?

I ki+k?!
+I2

1 1

It consists of a broad background term representing linear absorption plus a strongly power-broadened

I.orentzian of width ni(y, rr/I'ii?)'~ . Although the o?cs and o?~q terms are not themselves I.orentzian,

their sum is. Equation (5.11) may be obtained from Eq. (24) of Ref. 13 in the limit of large ai.
For large detunings,

I ~?i I &&ai,kiu, the situation is depicted in Fig. 7b. The o?cs and o?cz resonances

are now nonoverlapping, leading to the spectrum shown. In this limit

A)
i?+~?i+ ~ +(kl+k?

'Vca =732 peg =$31. Thc resulting spectrum is the sum of two Vojgt profiles2

0 0 2 ~ 2 0 0 2 4

5, 3
—Pl 2 532—0,'1/521+1 f32 A ) Pl 3

—Pl 1 632+621+iX)/621+1 f31
I(hi?)= Z;

Ik? Iu
'

Ik? Iu ~?i Iki+k? Iu
' Iki+k? Iu

where Z; is the imaginary part of the plasma-dispersion function. The spectral components are Gaussians

rgumcnts of Zi have magmtudc much less than unity Rnd I orcntzlans 1n thc opposite l1IQ1

For hrge intensities,
I ai I » I ~?, I,k, u, the situation is depi«ed inFig. 7c. In tins hmit both the cen-

tral value and the range of x is much less than unity; the resulting spectrum arises from nonoverlapping CA

Rnd CB resonances. Fol this case wc have

(S.15R)

1

2 2 2~21+k)~
~cg -532+ —,hP)++1+ k2+ —,k)+ k1 u +

4R( 8a1

I
sin H=cos 8= —,, and yon-ycq ——,(yii+y32). Two (nearly) symmetric resonances appear at

532————,5?i+ai and the spectrum is the sum of two Voigt profiles

A3 A2+ A) 1

I?+I i Ik?+ —,ki I
u

I

~32+ 2 ~21 &1+&3C8

Ik?+ —,ki Iu

1

~32+ —,~21+&1+& XC~
+Zg 1

I k?+ , ki Iu—
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2-
br, /~

g &F( +u

r
eir~wA. ezi ~A

cA res,

CB

X

I I

-4
I

-2 2 4

FIG. 6. Curves representing the resonance conditions

a)gg (x,v) =0 and a)gg(x, v) =0 for the case kp & 0. For a

range of allowed x determined by the detuning (4~&/a&)

and Doppler width (k]u/a~), one can find the regions

of probe detuning {v) for which absorption can occur.

Conversely, for any value of probe detuning v, one can

determine whether or not any resonant velocity subset

(x) can contribute to the signal. %'hen k2 g0, there ex-

ists, for each value of v, values of x for which both

Ngg =0 and copy =0.
-10

which are approximately Gaussians if the magni-
tude of the arguments of the Z; functions are
much less than unity. [In arriving at Eq. (5.16),
we neglected the small {62(+k)v )/Sai terms in

Eq. (5.15).]
The analysis is virtually unchanged if k~ g0 and

k2(ki+k~) ~0. The u~, u~ curves of Fig. 6 are
rotated by 90 about the origin, but the same type
of resonance conditions occur. If kiu yp a~ and

~

b,2~ ~
(k~ u, Eqs. (5.11) and (5.12) are still valid;

g ff is now smaller than in the copropagating case
owing to some Doppler-phase cancellation. Equa-
tions (5.14) and (5.16) remain valid for the large
detuning and intense field limits. It is now possi-
ble, however, to have a narrow resonance in the
large detuning case, provided that k2- —k~.

The remaining case k2(ki+k2) ~0 is represent-
ed in Fig. 8. As discussed above, there is a range
of detunings v (v (v„) for which no resonance
values of x may be found. For v& v„ two values
of x correspond to the co~~ resonance and, for
v& —v„, two values of x correspond to the ~~&
resonance. The spectrum for the case k&u gg a&,

h2,
~
(k, u is shown in Fig. 9(a). For any

v
~

& v„, there are two velocity subgroups of
atoms which contribute independently to the probe
spectrum except in a region of width = I near

~
v

~

=v„where both contributions overlap. It is

just this overlap region which gives rise to the non-

power broadened resonances shown in Fig. 9(a).
As derived in Appendix C, the spectrum for this
case (

~
v( &v„) is

50x

(c)

FIG. 7. Typical probe-absorption spectra (in arbitrary

units) for the case k2 ——0.6k& g 0 in the three limits (a)

kiu » n&, kiu & i d2& i, (1)
i bz& i » ai, k&u, and (c)

u~ && k ~u,
~
62~

~

. In drawing these curves, we have

taken n~.nq. n3 ——1:3:4and I ~
——I 2&&a]. In (a), 42~ ——0

and klu =10a~', in (b), 52I ——10a~ and klu =a~', in (c),

k2& =k]u =0.1Q~. The inserts are curves analogous to

Fig. 6 and indicate the resonant-velocity subgroups

which contribute to the probe absorption at a given

value of v.
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r(~) = 1

kiu

2n(k( +k2)
1/2

(k)+2k2)
exp —6 2~

—n~
i Ik2 I(ki+k2)~'"

1, Ik, I(n',—no)

kpI+I'2Ikg+k2I " a
ki+k2

'Y3~+
k y32

1 1

(5.17)

The large detuning and large field intensity lim-

its are depicted in Pigs. 9(b) and 9(c), respectively.
Equations (5.14) and (5.16) may still be used to
describe these profiles. For the intense field case, a
narrow resonance occurs if k2- —k ) /2.

The Doppler-free nature of the narrow reso-
nances which may occur when a~ g~ k~u or

I 42~ I
&& k~ u, a~ arises from a cancellation of

Doppler phases. All atoms contribute equally to
these resonances; this feature is easily seen in Fig.
4. If a~g&k~u, the range of allowed values of x
narrows considerably and the heavy portions of the

m& and ~~ curves reduce to points. If the ~c
curve is tangent to the co& or coq curves at these
points, then all atoms contribute to the resonance.
This condition is

CA

X

I I I I

2 4

k 2 2 (g' +~')'/' (5.18)

leading to narrow resonances centered at

532————,52)+ —,(h2)+4a ) )
'

where the upper (lower) signs refer to the roc ——ros
{roc=co&) resonance O'

I
~»

I
&& k&u a& the al

lowed x values are located on the asymptotes of

)'" /

1'
I J

tA

A res. C

I I I I I

-3 -2 -1 0 1 2 3

FIG. 8. Resonance conditions mc~(x, v) =0 and
co~~(x, v) =0 for the case —k~ & k2 &0. There is now a
range of

I
v

I &v„ for which there are no resonant-
velocity groups of atoms.

r.,
-SO0-0.98 '"

~Go

FIG. 9. Probe-absorption spectra for the case
k2/k ~

———0.6, but otherwise the same conditions as in
Fig. 7. Note that, owing to Doppler-phase cancellation,
the resonances are narrower than those in the
corresponding spectra of Fig. 7.
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the mz and u~ curves. By having k2 ———k», the

a& curve coincides with these asymptotes so that
all atoms once again contribute. Since the reso-
nance condition is the same for all the atoms, the
resulting resonance is narrow.

only a hmitcd velocity subset of atoms, determined

by thc pump intensity and dctuning (i.c.,
~
k, U +ht,

~

&a,},contribute to the probe absorp-
tion. The resulting linewidths sre smaller than the
Doppler width, reAccting the narrower range of
contributing velocity groups.

VI. EXTENSIONS OF THE DAP APPROACH

The DAP allows one to gain physical insight
into problems involving more complicated atom-
field interactions. The dressed-energy levels of a
multilevel atom can be solved exactly or approxi-
mately. The weight factors of the spectra which
involve elements of the transforInation matrix
from the bare to dressed picture are gcneraBy more
difficult to obtain. For dressed-energy-level
separations much greater than the natural widths
of the levels, a rate-type solution to the DAP equa-
tions may be used. In this section, some fcatuIes of
a four-level problem and a three-level problem in-

volving s standing-wave pump field are discussed.
In Sec. VII some aspects of coherent transients are
examined using thc DAP forma11sm.

A. Strongly coupled
three-level system'~'~'~'3~ ~'

%C first consider a three-level system in which
one must now diagonalize the complete Hamiltoni-
an. The eigenvalue equation

a)(co+ h2) )(ro 432) a2(co—+&2))—
—a~(co —b,3q) =02 (6.1)

always has three real roots m (a~A, B,C). Equa-
tions (2.23) now take the form

4

p~=A I p +JR~. s—p s,
%,5

4

Pap Aep (Yap+™np)Pap++Rap,'crsPes ~

e,5

(6.2b)

where the coefficients are functions of the transfor-
mation matrix elements (,i

~
a). The coupling

coefficients R p ~ are all proportional to differ-
ences between decay rates I I ~ Tlm Hop=03~ —6)p
are the frequency separations between the dressed
states. If

~
co p ~

&~ I';, the off-diagonal density-
matrix elements are small and an approximate
sohltion to Eqs. (6.2} 18

0pad=ha~I a=&a (6.3

0 —»

p~p= —/ A~y+ ~R~p.~~pl ~ Q)~p

Transforming back to the coordinate system
~

i )
we obtain the observables p;;, pz», or p32. In the
special case when all I"s are equal (I'; =y}, the
coupling coefficients Roy, ~~ vanish, and the exact
solution is simply

p~=~e~x

p~p ——A~p/(@+i a)~p) .
(6.4a)

In this limit, the absorption spectrum for field o,2
is

~~(3(a&(P~2}A.pI(i}3t)=-
a2~.p y +Np

where A —=A and ~ =0. Once the transforma-
tion matrix elements are known this formula is
useful for analyzing the strong-field absorption (cf.
the corresponding rather lengthy expression of the
SAP). The solution is more complicated when in-

terlevel relaxation is allowed or the decay rates
differ greatly. Then the spectrum must be ob-
tained using Eq. (6.2) or (6.3) together with the
transformation back to the BAP.

B. Pour-level systems

As shown previously, the DAP is especia11y

transparent when one of the fields is weak and the
strongly coupled part satisfies the rate-type solu-

tion. This result can be applied to a four-level sys-
tem in which levels 1,2,3 are strongly coupled by
fields a» and o.z and one of these levels is weakly
coupled by a probe field to level 4. The cor-
responding dressed states are labeled A,B,C,B
where D is the weakly coupled state. To obtain the
resonance positions we have to solve Eq. (6.1). A
graphical solution is shown in Fig. 10 for fixed a2
as a function of a&. Whenever con ——co (a=A, B,C)
a probe resonance results. A rate-type solution ob-
viously requires that the anticrossing in Fig. 10 is
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( ~V ltd

-&z

tftt
HAP

t
a b) b2 C

10 20
xf

FIG. 10. Dressed-atom frequencies as a function of
ai for a2 ——1, 52i ——1, and 532——3 (all frequencies are in

arbitrary units and it is assumed that all relaxation

parameters have values much less than one in these un-

its). The horizontal broken lines give the dressed-atom

frequencies when at ——0. For a fixed ai, there are gen-

erally three possible probe resonances as the probe fre-

quency ~D ——ED is varied. For ai ——4, these positions
are indicated by the points R, S, and T.

FIG. 11. A classification of the atom-field interac-
tions for four-level systems in both the BAP and DAP.
The BAP interpretation, valid only to lowest orders in
the fields, is (a) stepwise absorption of ai, a2, a3, (b, )
two-photon absorption of a~ and a2 followed by absorp-
tion of a3, (b2) absorption of ai followed by two-photon
absorption of a2 and a3, and (c) three-photon absorption
of a~, aq, and a3. In the DAP, valid at any field inten-
sities, there are three, single-photon processes which
contribute to the absorption. For intense fields a~ and
a2 the single-photon processes do not interfere.

large compared to relaxation rates.
If Doppler broadening is present one may ask

whether a splitting similar to the one appearing in
three-level systems with k2(k~+k2) &0 also occurs
in four-level systems. In three-level systems, the
splitting shown in Fig. 9 is caused by the absence
of resonant-velocity subgroups of atoms over a
range of probe detunings. In a four-level system, a
resonance occurs when coo =ED+kau is equal to
any of the solutions co (v) of Eq. (6.1). Using the
Doppler-shifted values of all the detunings A,J and
substituting boa for ro in Eq. (6.1), one obtains a
cubic equation for v which always has at least one
real root. This result implies that there is always
at least one resonant-velocity subgroup for all

probe detunings of the four-level system. Thus,
the mechanism operative in three-level systems
leading to the split spectrum of Fig. 9 cannot oc-
cur here. The details of the probe spectrum may

I

depend on the number of resonant velocity sub-

groups contributing (i.e., one or three), but this
feature has yet to be investigated. (Notice that in a
five-level system, the quartic eigenvalue equation
can have 0, 2, or 4 real roots. The absence of real
roots signals a splitting effect similar to that
shown in Fig. 9.)

A comparison between the HAP and DAP pic-
tures for a four-level system is shown in Fig. 11 in
which the probe acts between levels 3 and 4. The
HAP nomenclature is valid in the small-intensity
limit only. Note that the processes a and b~ have
the same resonance condition (643——0) and provide
two interfering channels for this resonance. The
DAP consists of three noninterfering single-photon
transitions allowing for a very simple physical in-

terpretation.
In some special cases, Eq. (6.1) is easily solved,

e.g.,

(i) ~2i=~32=0' ~, c=+«i+a2) ~a=0,i /2

(ii) 62i ——632a~ ——a2', co~ c——+(62i+2ai), a ~ ——0;2 2. 2 2 1/2

(iii) hP) ———532,ai ——a2, a)g c————,hP(+ —,(62i+Sai)2 2. i — i -2 2i/2

As an example let us consider the case (ii) in which ai ——a2 ——a. The transformation is now

(1&+ (2)+—1+
R R R

(6.6a)
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(6.6b}

(6.6c)

(6.7)

The absorption spectrum consists of three Lorentzians. '

Equation (6.7) is applicable to the level scheme in Fig. 12 (k~ ———k2 ——k~ ——k) for which

~21 ~21+kv (421=&21 ~1}~ 632 ~21+kv, 642——624—kv (624——r024 —Q2) .

If 42i ——0, the conditions for (6.7) are satisfied (532——52]——kU, ai ——a2 ——a ) and we get

n04y 2

I(h )=
(k2V2+2122) y2+[+ +kV +(k2V2+2~2)1/2]2

I» =(~
I »+~21 I

2& —&
I

3& }~&R

C&=—' 1+ ~ Il& —
~ 12&+—1 —

~ 13&,
R R R

where QR ——(b,2]+2a')', ~& ——QR, ~& ——0, and ~c= —QR. If the probe couples levels 4 and 2 (coD ——642),
if all the y's are equal and if only level 4 is initially populated the response is simply

0 2 2
yn4 a ~2i aI(642)= 2+ 2+
+R 1 +(~42 +R) } +~42 1 +(~42+flR)

2~2 a2

y +(h24+kv)' y + [424+kv —(k v'+2a }'~2]2
(6.8)

~24
2

k u

The velocity-averaged probe-absorption spectrum (assutning ku » y) is given by

1/2n 4n.
I(624)= exp

ku
(6.9)

There is no narrow structure in the spectrum. The result should be contrasted with the structure obtained
when a standing-wave saturator is used (see Fig. 12 and the discussion below).

J=1
1 4 3

10 0 10

lo 0 10

FIG. 12. (a) A four-level scheme in which levels 1,3,4
are degenerate levels of a J=1 state while level 2 is a
J=0 state. The strong fields counterpropagate, are cir-
cularly polarized, and are resonantly tuned (b,21——0).
The probe field is m polarized and acts on the 2-4 transi-
tion. The probe absorption spectrum I for this case is
flat. (b) For comparison, the probe-absorption spectrum
for a three-level system with a standing-wave saturator
is shown (see Ref. 53).

C. Standing-wave saturator
(two-mode pump)

As is well known, the interpretation of the spec-
tra obtained with a standing-wave (SW) saturator is
considerably more complicated than the running-

wave case. Similar difficulties are encoun-

tered when the saturator is composed of two
running-wave fields having different frequen-
cies. The question arises as to whether or not
the DAP offers any simplifications.

In the rotating-wave approximation the equation
of motion of the density-matrix retains a periodic
time dependence owing to the beat frequency
5=Q2 —Q~ between the two saturator modes; in

the SW case, this beat frequency is twice the
Doppler shift, 5=2k

~ v. According to the Floquet
theorem, the stationary solution to the system
contains Fourier components with frequencies

~~ ~(n)=coq g+n5 (n =0,+1,...), where coq and

co~ are functions of the mode amplitudes and de-

tunings and are chosen such that Icoqs I &
I
5 I.

These frequencies are related to the eigenfrequen-
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cles of the DAP. The states
~
I,n ~,n2 ) and

~
2,rn ),m2 ) are nearly degenerate if

gg )+g2 —m (+m2+1=%,
where n; and m; are the number of photons in
mode i and we have assumed co2] p O. For a fixed
total number of photons N there is an "infinite"
(=2XN) number of bare-atom states which must
be diagonalized. The diagonalization, which can
be performed using continued fractions, is not done
here. Instead we concentrate on some qualitative
aspects of the problem.

If the mode spacing 5 is fixed, a rate-type solu-

tion in the DAP is valid provided that both

I
6—rua~ I » y and re~a» )' (a~ =run ru~—& 0)

Similarly to the running-wave case, probe reso-
nances are found when ~c——~~ ~+n5, where ~-
corresponds to the probe detuning (recall that the
probe couples to a third, unperturbed level). The
heights of the various peaks generally depend in a
complicated way on the detunings and amplitudes
of the saturator modes.

For a S% saturator the beat frequency 5=2k] v

is velocity dependent. Difficulties arise since, for
slow enough atoms, the energy levels in the DAP
form a quasicontinuum. Thus a rate-type solution
for the DAP is clearly not applicable for

~
2k~v

~
(y. This region must be described by oth-

er approximations. For instance, in the limit
v~O, the atoms are stationary and the probe
response is readily calculated.

Some qualitative understanding of the S% prob-
lem is obtained by constructing DAP energy-level

diagrams similar to those of the running-wave case
(see Fig. 4). Two examples are shown in Figs. 13
and 14.

In Fig. 13, we display the dressed-energy levels

as a function of k&v for a S%' saturator with de-

tuning
~
62t i & a. The standing wave consists of

two running-wave components labeled by

(a+, k+ ——k ~ & 0) and (a, k =—k ~). In the re-

gion kiv gg —y (assuming 62i gO), we can, to a
first approximation, use the unperturbed energy
levels mq ~ associated with the running wave a+
since the wave a is strongly detuned and acts
only as a perturbation in the region k& v ~~ —y.
The dressed-level frequencies associated with the
a+ wave are given by [see Eq. (5.2)]

1a„~(n)= ——,(a»+k, v)

+ —,[(h2~+k~u) +4rr+]'~ +2nk~u .

(6.10)

10-

0-

-20-

-']0 -5 0 5 10
k)Vj+

FIG. 13. Dressed-state frequencies ~q (n) =co&

+2nkiu/a, a)g(n) =ug+2nkiu/a, and

~~=(h32+k2U)/a (k2- —k~) as a function of k]u for a
large-field detuning

~
621

~
&& y. Values for n are given

by the integers labeling each curve. All frequencies are
expressed in units of a; the detunings are h2~/a= 10
and 632/a= —l. In the range)'& Ik|u I ( I~» I

the

frequencies ~q(n) and coq(n) are approximately given by
ruq(n)= —52i+

~
kiu

~

+2nkiu and res(n)=2nk&u. The
diagram may be used to determine resonance conditions
in regions I and III, but not in region II where the rate-

type solutions of the DAP break down. Resonant-
velocity groups are determined by the intercept of the

mc curve with the curves co~ ~(n). In the example
shown, the major contributions to the probe response ar-
ise from the crossings denoted by the large dots (see Fig.
4 of Ref. 53).

Equation (6.10) is not strictly applicable at any
value of kiv where two of the eigenfrequencies are
degenerate. At such points, we must use degen-
erate perturbation theory: the net result is that the
crossings are transformed into anticrossings owing
to the action of the saturator mode a . The ener-

gy levels are sketched in Fig. 13.
In the region ki v g» y, the roles of a+ and o.

are interchanged; the corresponding dressed-level
frequencies are given by Eq. (6.10) with the re-
placement of k] by —ki and a+ by a

In the intermediate region —y&kiv ~y, the
rate-type solution of DAP fails. There one may, as
a first approximation, use the results valid for
v =0 discussed in Sec. IV modified to incorporate
the standing-wave nature of the saturator. In this
region Eq. (6.10) is replaced by

t 1ru„a- ——,62, + —,[h2~+4a(z) ]' (6.11)
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where

a(z)= ~a+e ' +a e (6.12)

The inhomogeneity in coA B, owing to the z depen-
dence of a(z), can be treated by the methods out-
lined at the beginning of Sec. V.

Tuning the probe corresponds to moving the line

co( —632+k Q v vertically. For each value of 632
there exists an infinite number of resonant sub-

groups u satisfying the condition roc(u) =roq v(v, n).
Whether these resonance subgroups really manifest
themselves in the probe absorption depends on the
magnitude of the various weight factors derived
from the BAP~DAP transformation. For exam-

ple, in the case shown in Fig. 13, the two major
resonant-velocity subgroups are determined at the
intersection parts of the co& and dressed states
shown in the figure. For other detunings, one can
map out the contributing resonant-velocity sub-

groups and obtain qualitative agreement with the
numerically calculated curves of Fig. 4 of Ref. 53.

Figure 14 represents the case of a resonantly
tuned SW saturator (a+ ——a =a) for which the
exact DAP energy levels are given by

coA B(n)=nk, u

re(n)= —~k~u ~+2nk~v, rue(n)=2nk, v .

The method for determining possible resonant-
velocity subgroups remains the same. It should be
stressed that this method indicates the positions of
possible resonant structure. The determination of

0-

I I I I I I

-4 0 4
k) v/g.

FIG. 14. A diagram corresponding to Fig. 13 for a
resonantly tuned (h2& ——0), standing-wave saturator. In
this case, the exact dressed-level frequencies are given by
rvqv(n)=nk~v/a [a&q(n)= —

~
k~v

~
+2nk, v;

eve(n)=2nk~v]. We have chosen a probe with detuning

k3p/a = —5 and propagation vector k 2-k &
such that

co&-—5+k&v/n. Some of the resonant-velocity groups
indicated by the arrows manifest themselves as distinct
peaks in the velocity-dependent probe response (see Fig.
2 of Ref. 53).

the weights associated with these resonances rep-
resents a much more complicated problem. 59

The striking difference in probe response for run-
ning- and standing-wave saturators is illustrated in
Fig. 12. The structure observed in Fig. 12(b) has
its origin in the various harmonics which enter
when a standing-wave saturator is used (but are ab-
sent for traveling-wave saturators).

VII. DAP TRANSIENTS

A. Two-level system

The steady-state spectra have been given a simple physical interpretation using the DAP. It is interesting
to study also transient behavior using the DAP. For simplicity we assume that I 2

——I
&

——y in which case
the DAP equation of motion for the AB system is simply

PAA =~A —
yPAA ~

PBB AB yPBB

PBA ABA (y+ ~BA )PBA ~

(7.1a)

(7.1b)

(7.1c)

[Notice that we have assumed a~ =constant; therefore, Eq. (7.1) can be applied only for stepwise changes of
ai.]

Assume that field a& is switched on at time t =0 leading to an optical nutation signal in the BAP. The
solution of the DAP equations (7.1) is

p (t)=(A /y)(1 —e &)+p (0)e (7.2a)
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~a~
pa~(&) =

y+ «cogg

~+ BA
)

— (0) ~+ BA

The populations show a simple exponential decay towards their new equilibrium. The oscillatory nutation-

type behavior is contained in pzz. The initial conditions, obtained from (2.29) for an incoherent initial state,
are given by

p~(0) =ll i cos 8+ill sill 8,
p~~(0)=n& sin 8+nzcos 8,
psq(0}= —,(n l n—l ) sin28 .

Using Eqs. (2.24} and (7.3) in Eqs. (7.2), we find

p~(t) =p~~(0),

(7.3b)

(7.3c)

(7.4a}

o o y —(y+i cd& )t —(y+iaPB& )g

Psq (t)= —,(n i
—nl ) sin28 . (1—e )+e

y+ «cong
(7Ab)

The dressed-atom populations remain constant during the transient. If cozen g~ y we can write

—(y+itoB„)t
pa~ (t}= pa~ (o}e

Nutation in the BAP corresponds to free-induction decay in the DAP. In the BAP the switching on of c~
creates the coherence p2&, while, in the DAP, the same change destroys the initial coherence p~z(0). Ac-
cording to (2.29} all the observables pi „ply, and pl, depend on pliq and, therefore, reflect the decay of psq.

The DAP does not offer any substantial advantages over the BAP in calculating the free-induction decay
or photon echo of a two-level system. (although it may be useful for nutation echoes). ' In both cases, the
field is off for a long time period between the pulses when the BAP and DAP coincide. The DAP is a
more natural approach when a strong-fie1d —atomic-interaction occurs.

B. Three-level transients~2 72

The DAP can provide a useful description of three-level transients. For a strong pump field o,
&

and a
weak probe az, Eqs. (2.23) give the time evolution of the system in the dressed basis. The DAP is most use-

ful if either (1) field al is constant and field al(t) undergoes some transient behavior leading to optical nuta-

tion, free-induction decay, photon echo, etc. on the BC and AC transitions (see Fig. 1) or (2) the field a& is
switched on at some time and a2 may have an arbitrary time dependence.

%'e consider first the case when a& is constant and a2 is switched on at t =0. Equations (2.23) and (2.29)
describing the probe response are (assuming r, =I,=y)

Pcg =—(Kg +t~cA )PcA —t'ai sln8(pcc PAA) —tttl cosKP—gg
0

peti = —(}'ca+itoes )peti

+It'll

cos8(pcc —pea )+Ettl slnKpgtt,

p32 =cosHpcg —s1I18pcg

(7.6a)

subject to the initial conditions pcs (0)=pc~(0) =0.
The p ti are the steady state dressed-atom de-nsity-matrix elements. Solving Eqs. (7.6) using the steady-

state values p =A /y=n, pz&-0, and p~& -0, we obtain

2 0 0 0 0
«a2s&n 8{nc—nz ) (zc~+,„c ~t «a2cos 8(nc —nz) (zcB+gg)cB)f

p32(~) =- ( 1
cA cA )+ CB CB

ycw +«cw yea+«ca
(7.8)

The oscillatory behavior which appears in homogeneously broadened systems may disappear if inhomogene-
ous broadening is present. The oscillations may, however, remain observable if cue& or cue~ depend only



COMPARISON BETWEEN DRESSED-ATOM AND BARE-ATOM. . .

weakly on the atomic velocity. As an example let us consider the case when (5.15) is valid. The velocity-
averaged CA contribution is (taking n i

——nz ——0)
0 Z, —exp[ —(y —EQ)t —

4 k it r ]Z, + z ik ter (72k'u k'u k'u

where Z(g) is the plasma-dispersion function,

k'=
~
kz+ —,ki (, y= —,(I i+I i)

(recall I'i ——I z), and a =buzz+ ai+ —,Azi. The time-dependent part in (7.9) disappears in a characteristic
tiille min[(k Q ),y ]. If k 9 ))y, velocity dephasiilg is tile doilliiiailt decay mechanism; in tile case
k'u &~y, the system behaves as a homogeneous one decaying at a rate y and oscillating with a frequency'

1

(~iz+&i+ z ~zi).
In a second example, field e~ is kept constant and u~ is switched on at t =0. The probe response reflects

the decay of the initial ps' coherence (recall that p~q and ps' remain unchanged). Assuming that (7.5) is
valid, we obtain from (7.6)

n~ 0 Oi
]g l &2 8168(lfC —Pig ) [~ +g~ ]g

pc~(t) =pc~(0)e '" '" — . (1—e '" '"
)

Xcw +~c~
0 0

Eo'2(fl 1
—N 2 ) sln28 cosg [y+g~p )g [y +g~ )g

2(Xcw —T+~ca }

nr 0 0iscx2cos8(nc —5g )
Pcs(r) =Pc.(0) " " + . (1-.

3'ca+ ~ca
0 0l &2(5 ) —Pl 2 ) sln28 sing [y g~ )g ( + ~

)g+
2(Xca —7+ ~ c~ )

with initial conditions

(7.10a)

pcs (0)= —iaz sin8(n z
—n z )(yzz+ i biz)

pc@(0}=l EX2 cos8(1l 3
—Pf 2 )(f32+ f +32)

(7.11a)

(7.11b»

The assumption I 1
——I 2

——y implies that
1 1

VCB XCA 2 ~3+ 2 P'
The velocity averaging of (7.10) is by no means

easy except in the special cases when ~c~ or ~c~ is
nearly independent of U (Doppler-free cases). The
labeling of the various terms in (7.10) is obvious:
The first terra gives the decay of the initial coher-
ence, the second one describes the transient to the
new steady state, and the third one is due to the
decay of the initial p~q coherence (nutation in the
1~2 system). The various terms in Eqs. (7.10) can
be isolated by a proper choice of experimental
parameters [e.g., by choosing ai such that nc ——nz
the second term in Eq. (7.10a) can be ehminated].

The advantage of the DAP over the BAP is that
the DAP gives directly the correct eigenfrequencies

wc~ and ec~ (in the BAP one is required to fully
solve the problem using Laplace-transform tech-
niques ' to obtain these values}.

Vul. CONC& US&ON

The DAP offers little computational advantage
over the BAP for most calculations. However,
when the frequency separations of the dressed
states are much greater than the relaxation rates of
these states, the equations of the DAP simplify
considerably. In this case, it appears that the
dressed basis is the natural one in which to do cal-
culations. Interpretations of the results in both the
stationary and trans1ent reg1me are straightforward
in this representation. The positions of the reso-
nances in saturation spectroscopy as well as the os-
cillation frequencies observable in coherent tran-
sient experiments appear as fundamental parame-
ters in the DAP.

%%en the relaxation rates are comparable with
the field strengths, the SAP is generally an easier
representation to use than the DAP. In some cases
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it may be difficult to interpret the results obtained
using the BAP in terms of fundamental physical
processes, but the calculations needed to arrive at
these results are much more readily done in the
BAP. Moreover, the BAP has the advantage of
directly supplying the physical observables.

The DAP may be useful when applied to the
analysis of atom-field interactions involving mul-

tilevel atoms or multimode fields. It also seems to
be a convenient basis to use in solving coherent
transient problems of the type discussed in Scc.
VII.
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APPENDIX A RELAXATION SCHEME
IN THE DAP

The relaxational coupling and decay in the DAP is obtained by transforming the relaxation terms of the
HAP, Eq. (2.19), with the aid of (2.8), (2.11), and (2.17). To slightly simplify the equations we assume
I ]3—I 3]

——0 (no collisional mixing of states 1 and 3), and find for the nonvanishing diagonal elements

R~ ~ ———r] cos 8—r2sii] 8——,(Ip —r]2—rp]) sin 28, (A 1

R~ BB ——
4 f sin 28+I &2sin 8+I 2& cos 8,

RAA, CC P32S1n 8 s

1

R~,~]]=R~,a~ =
&

s]»8(r2 —r]+]Pcos28—2l q] cos 8+2I ]& s]n 8),
RBB~——4q sin 28+1 i~cos 8+I 2i sin 8,
RBBBB=—I 1 s1n 8—I 2cos 8—

4 (g—I 12
—I 21) sin 28,

RBB,CC=I 32cos 8 s
2

R]]]]„]]——R]]]]s„———sin28( I 2
—I', —q cos28+ 2I,2 cos 8—21 g] sin 8),

(A lc)

(Ald)

RCC, CC ~3 s

Rcc~ =I 23 sin 8 &

2

Rcc BB=I 23 cos 8,2

1

RCC,~B =RCC,Bw = —
2 I 23»n28

where

(A3a)

(A31)

(A3c)

(A3d)

q =2X2i —I 1
—I 2

gives a measure of the effect of phase-changing collisions. The nonvanishing terms involved in the off-
diagonal elements are given by

RBg Bg ———y21+ ~ (y —I $2
—I 21)sin 28 s

2

RBg AB g (+ I 12 I 21) sin 282

R]]z ~ ———, sin28(I' —I', +]Pcos28+2r2] sin 8—21 ]2cos 8),
1

RBg BB ———, sin28(I 2
—I j

—q7cos28+2r2] cos 8—2ri2 sill 8),
1

RBg cc————,I 32sln28, (A5e)
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&cw, cw =—'V31cos 8—3'32sm 8

Rcg cg = —f31 sin 8—$32 cos 8 &

2

l~cA, cB=&cB,cA =
2 (1'32—'Y31)»n2()

(A6)

with the remaining elements given by the symmetry property R~@ ~
——Rp ~. Note that either I,z or I'J„

depending on the configuration& vanishes if states i and j are not mixed by collisions. When phase-changing
collisions are absent, i.e., y,z ———,(I";+Iz), and all I,J ——0, the relaxation terms are those given in (2.23). In a
general case all the terms (Al) —(AS) differ from zero, leading to a complicated relaxation scheme in the
DAP.

APPENDIX B. PROBE

AND SATURATOR RESPONSES

O 1 O -2 2 —1
P11 ~1+ 321~21(~21+~ )

r1
2

0 ~ 1 0 -2
P,2 ——,— y1 2 (~21+I )r,

0P33=~3 s

P21
——l Q18 21(f21—1 421)(~21+I )

0 . 0 .— -2 2 —1

where n; =A;/I';, n 21
——n2 —n1, and0 0 0 0

(81a)

(81b)

The solution of Eqs. (2.22) to zeroth order in a2
is given by

0
Pcc —&c ~ (83c)

PBA PBBA (7BA 103BA )(~BA + rBA ) ~ {83d)

r'=y'„+2a', )„(r +r )

= —,(ri+r2) (1+4ai/I 1I 2)

[the last step follows from the assumntion
1y»—-—,(r, +r,)]. The components p32 and p31

vanish. The corresponding DAP equations read

p = + y ( +I ), {83 )
0 8 0 2 2 —1

paa=&a+ ~ ra~&a~(a~+I a~)
-Al 0 213 0 2 2 —1

B

where no. =~.Zr. ,

iiBA iiB+iiA+ABA/I
0 0 0

r,'„=y,'„—2p'y, „(r„-'+r )=-,'(r, +r„) (1—4p /I'„I ),
{84a)

(84b)

and p is defined by Eq. (2.27). In terms of the 8AP variables, the "population inversion" nBA and the effec-
tive width I » can be written as

1I,+I, , (I,—I,)'
Ilgg = — tf 21 1+ sm 28

2 1 1 2

1
(I'2 —I 1)

I gg ——4(I 1+I p) 1+ sin 28 (85b)

[Notice that nBA enters only in the product pnBA which is nonsingular for (I'1—I 2)=0.]
To first order in a2 we find from (2.22e) and (2.22f)

[I31+i ( ~32+ ~21 )1(P33—P22 ) &a821—
P32=&&2 0

[l 31+1(532+621)](132+lk32)+al

tn the DAP we obtain from (2.23d), and (2.23e)

PcA =—ia2({)'cB+i01cB)[»n@pcc PAA)+cos~Pm]—

{86)

II[cose(pcc —PBB)+sinepA—B]] [(I'cA +i 03cA )(I'cB +i 03cB ) 0]—
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which after insertion into (2.29e) yield the observ-

able p32. The DAP solution Eq. (B7) is clearly

much more complicated than the BAP expression

(B6).
The DAP solution simplifies considerably in the

limit cozen )&yz&, I zq. The lowest-order terms are

given by

Paa=iia+o(7 ~aiaA»

PBA iPBBA ~~BA +0(y ~~BA ) 'p 2 2 (B8b)

Pca =1&2[(yCA+iaiCA )[COSe(pcc PBB )+»n~PAB]

P—[sine(pcc P—AA)+cos~paA ]][(ycA+i ~CA )(yea+& ~ca) 0—] (B7b)

I

[The corresponding solutions in the BAP would be

p ~ . 0
P;; =n;, P2]

——ia]n2] /(y2]+ih2]),

according to (Bl).] As p=y we see that paA is

roughly a factor y/cu~z smaller than the diagonal
elements p~~. The rate-type solution (3.2) is ob-

tained by neglecting p~~ and terms proportional to

P in (B7). This approximation is equivalent to
keeping only the lowest-order terms in a power ex-

pansion in terms of y/cozen. In the following, we

study in some detail the accuracy of (3.2).

Strongly coupled transition 1~2

If we insert (BS) into (2.29), we obtain, after going back to the BAP variables,

2
0 1 0 2 2 2 —1

P]]—n 1 + ~ y2]n 2] (~2]+4y2]a]/~]~2)
1

p 0 2a] 0 2 2 2 —1

P22—n 2 I y2] 2] (~2]+ 72] 1/ 1 2)
2

P21—ia1n 21 (yz1 i~21)(~2]+4y21a1/~] ~2)p . 2 2 2 —1

A comparison between (Bl) and (B9) reveals that the approximation is good provided that

Z,', +4,72, gr, r»y, .

(B9a)

(B9b)

(B9c)

(Bla)

This condition is satisfied when either
~

b,2, ~
&& y21 or ai && —,I,I 2. Note that if we neglect (Bgb) there is

no absorption of the strong field ai [the first terin in (2.29d) is real and describes dispersion only].

Probe response

We can express the exact result (B6) in a form'

P32 ——ia2[ W+(Z++ik32) + W (Z +i 532) '],
where

,'(y32+y3-1+1~21)+ [(i321+ y32 y31) +4 i]

II'+ =-, (p» —P22)+ [—,(p» —P22)(~»+1 y32 —iy») ~ip21 l[(~»+iy32 iy»)'+—4 i] '" .

An expansion of (B12) and (B13) in terms of the assumedly small parameter

(y32 y31)/(~2] +4a1)
2 2 ]/2

yields

Z+ +i 432—y( g+ 4 a]sin40e +icocz+ —,ia] sin28e

1 . 3 1Z +l 632 yQg 4 a] sin419e +i co~& ——,ia] sin28e

(B11)

(B12)

(B13)

(B14)

(B15a)

(B15b)
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8'+ -(neo —n80) cos'8+ , i—esin'28nc+, ~ » n'28( A~ —Al )/~8~,

(nc —nq ) sin 8——,iesin 28nc ——,i sin 28(A] —A~)/u~q .
(B16a)

A finite value of e slightly changes the widths and positions of the resonances. The corrections are negligi-
ble when (hz, +4a, )'~ && —,

~

I'1 —I 1 ~

which is a relatively mild condition. The expressions (816) for the

weight factors W+ are accurate to order 0 (8;ey/ulna', y /cosq) and coincide with those given in (3.2) pro-
vided that ~e~ &&1 and

i nc na—i » i
Ai —Al i

sill 8/CO 8g

( nc nz—( » [ Ai —Al (
cos 8/co &8.

The correction terms given in (B16) are purely imaginary and, therefore, introduce a dispersive-type change
in the absorption spectrum (-Imp32). This change causes a small shift in the position of the resonances, but
does not appreciably affect their height.

APPENDIX C: DOPPLER-BROADENED PROBE SPECTRA

Introducing the dimensionless parameters (5.3)—(5.6) into (5.2) and solving the equations mc ——mz z for x,
we obtain

Xi 2=—k 1(2k' +k, ) k, 4k'(ki + kg )
'p+ +

2k, (k, +k, ) 2k, (k, +k, )

If kl(ki+kl ) &0, both the roots in (Cl) are real. The root with the plus (minus) sign satisfies the CB (CA)

resonance condition when k2 p 0 (kq ~0). If k2(k] +k2) & 0, x
& 2 are complex in the region (S.10); otherwise

both roots belong to the branch wc~ ——0 for vp v„g 0 and to the branch coc~ ——0 when v ~ —v„. In all

cases the solutions (Cl) must fall within the Doppler profile [see Eq. (5.9)] so that the Doppler-distribution
function is not negligibly small.

Case kg(k ) + k2) g 0

Inserting (C 1) into (5.8), we obtain after lengthy algebraic manipulations

0 0 vsgn(kl ) o o ~
kl

~ /errI(v)= II'(uc8) (n, —n, ) 1— +(n2 —n])
2/kl f [v+4k (k, +k )/k, ]'~' kil 1 v+y, r/I', I

v[k 1I'1—(k 1 +k 1 )I 1]/k 1 y,rr
1 —— + II (ups ) v~ —v

[v'+4k, (k, +k, )/k', ]'"
where coc8(uc8) =0, co~q(ucq )=0, and where y, ir is defined by (5.12). Provided that

4k' (k 1 + kg ) 2k' (k 1 +kl )All k 1(k 1+k' )lgl
+ V+ 2k, ki(2kl+ki)ai k,

~
2k, +k,

~
a,

the Gaussians in (C2) are approximately equal,
'2

~32+~2'
~(ups)=W(uca)=exp — + /4ul /8'~'n

k, k, +k, (C

slid tllc 81111plc result glvcll 111 tllc text, Eq. (5.11), 18 valid. WhcB (C3) 18 violated thc dolnillant structure ill
the absorption spectrum arises from the Gaussians, and Eqs. (5.14) and (5.16) become applicable.

Case k2(k i +k2 ) ~0

If v& v„&0, both of the roots (Cl) satisfy the equation coc8 ——0 (if v& —v„ the equation toe„——0). Thus
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only the CB transition contributes, and we can approximate

P32—&2cos ~( c B)(3cB+ cB)

This can be written as

a2
p32— g (x) cos 8(nc n—s )[(x —x ) )(x —x2 )+ig (x)]

7CB

where

(C5)

(C6)

g(x) =—
2

CBk1 k2 1 2 1/2v+ +—x+ —,(x +4) (C7)

The last factor can be expanded as

Im[[(x —x( )(x —x2}+ig] '] =Im [(x3—x, )2+4ig]

1 1x i@5(x——x~) —H in5(x——x3)
X —X1 X —X2

(C8)

where the complex square root has to be evaluated so that its imaginary part is positive (assume x2 &x1).
The principal values in (C8) are negligible, because for (x2 —x

& }» y/a~ the complex square root is real and
for x2», they cancel. Inserting (C8} into (C6), we obtain

'2
1xi —~21

k1u

X[nc na(x;—)] v+ x; Re[[(x2—x& } +4ig(x;)] ] .k1+k2 2 ~ —1/2

1

—1/2 '

In the limit x2~x&, this gives, after insertion of the explicit expressions (Cl) for x~ and xz
' 1/2

2 (k, +k, )

k1+2k2x exp —521—a1 1/2 k1u
(

~
k2(k)+k2)

~

)'/

Ikz I
ki+kz

XRe v —vcr
k 731+ k F321 1 1

(C9)

(C10)

&1X2—~21

k1u

1/2
I(+32)- exP

2ik3]u

when x2 —x~ && y/a&, Eq. (C9) reduces to
'2

X ' (+3 +2) 1+0 0 v

( —v,',)'"

+(n3 —n, ) I',k2 I+, ,/ +I'2(k~+k2) I—
k1I 2 ( ~~ )1/2 (~ 2 )1/2

2
k2 k1+k2

'k k1 1 1 2
+term[(v —„)'/ —(v —v )'/ ] .

(C11)
In the limit v~ 00, (C11) gives just the flat background absorption. Both (C10) and (C11) agree with the
limiting intense-field results given in Ref. 13.
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