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The complete reduction of a fourth-rank Cartesian tensor into parts which are irreduci-

ble under the three-dimensional rotation group is presented. Results are given for the

general case of a tensor without index permutational symmetry, and also for tensors with

specific index symmetry properties. Applications in the realm of crystal physics are indi-

cated with particular reference to four-photon absorption, and a table of irreducible tensor
representations is provided for the seven crystal classes.

I. INTRODUCTION

In many areas of physics involving the use of
tensor calculus, the adoption of irreducible tensors
leads to a simplification of the theory and a clarifi-
cation of the physical principles. In recent years,
irreducible tensor methods have increasingly been
used in studies on nonlinear optical and electro-
optical processes, ' light scattering in fluids,
multiphoton spectroscopy, ' and the physical
properties of condensed matter. " ' Some of the
important advantages which can be gained from
the use of such methods can be summarized as fol-
lows.

(1) In a given process, a distinct physical mean-

ing can usually be attributed to each irreducible
tensor characterized by a certain ureight.

(2) Irreducible tensors of different weight never
mix under rotational frame transformation, so that
relations between microscopic and macroscopic
properties assume a particularly transparent form.

(3) Each irreducible tensor has a unique group
theoretical representation which facilitates the
derivation of spectroscopic selection rules from
symmetry arguments.

Irreducible tensors have traditionally been treat-
ed in the spherical tensor formalism, and the rela-
tion between Cartesian and spherical tensors has
been examined by several authors. ' ' However,
much less work has been done on the explicit
reduction of Cartesian tensors, despite the fact that
problems involving vector algebra naturally give
rise to tensors in a Cartesian form. Also, Carte-
sian tensors clearly exhibit directional properties in
three-dimensional space which are obscured in
spherical tensors. Whilst the reduction of a

second-rank Cartesian tensor is well known, the
general reduction of the third rank has only been
available in recent years, following the pioneering
studies of Coope ef a/. ' ' Little work appears to
have been done on the reduction of fourth-rank
Cartesian tensors; Harris and Jerphagnon' and
their co-workers have derived certain results, but
only for the irreducible tensors in their natural
form. (An irreducible tensor of natural form is a
tensor with equal rank and weight; such tensors are
fully index symmetric and traceless with respect to
every pair of indices. ) These results are not amen-
able to immediate use since they are not embedded
in the appropriate tensor space of rank four. Ex-
plicit results for the fourth-rank reduction have
only recently been presented for the special case
where the tensor has complete index symmetry. '

As far as we are aware, the complete and general
reduction of a fourth-rank Cartesian tensor has not
hitherto been accomplished, and it is our purpose
to present the results in this paper. In the follow-
ing section we outline Coope's reduction procedure
and in Sec. III we give the explicit results for the
general case of a tensor with no index permutation-
al symmetry. We also show how these results are
modified for tensors with specific index symmetry
properties. Finally, in Sec. IV, we briefly discuss
applications in the realm of crystal physics, and we
provide a table of irreducible tensor representations
in the seven crystal classes.

II. REDUCTION PROCEDURE

An irreducible tensor of rank n is characterized
by a weight j & n, and it has (2j +1) independent
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components. The reduction of a Cartesian tensor

T(„) generally results in a sum of irreducible ten-
sors, with some weights represented more than
once. Hence we can write

N(J)

T(n) g g T(n)
(i 'e)

j=Oq=1
(2.1)

where q is called the seniority index of the irredu-
cible tensor T'J'~' and N'J' is the multiplicity of
weight j in this reduction. This number can be
determined using the rules of angular-momenta
coupling, ' and is given by

~(J) ~ ( 1)II; 2n —3k —j—2
k n —2 (2.2)

where 0& k & [(n —j)/3]. Each irreducible tensor
has (2j+ 1) independent components, so that the
total number of components in the reduction is

j=O
(2.3)

as required.
The reduction procedure is based on extraction

of the natural forms of tensors with weights

j =0,1.. . ,n from T(„),followed by their embed-

ding in the tensor space 7" of rank n. This is ac-
complished by means of mappings between tensor
subspaces of the same symmetry but different
rank. We shall denote the tensor subspace of rank
n and weight j by 4 j, which in turn is expressible

as a sum of X„'~' elementary irreducible subspaces
A j&. We first need to introduce the natural pro-
jection E(J'IJ), defined as the projection of X onto
the natural tensor subspace 4 Jj. The natural pro-
jection is an invariant double tensor of order 2j,
which is separately symmetric and traceless in both
sets of indices; explicit expressions for E'(J'~ J.) with

j &4 may be found in the work of Coope and Snid-
er. ' We also need to define isotropic tensors f( ')

of rank m, which are products of m/2 Kronccker
deltas if m is even, and products of (m —3)/2
Kronecker deltas and one Levi-Civita antisym-
metric tensor, if m is odd. (s'9 The index r in f( ')

is used to differentiate the various index permuta-
tions of f, each of which contracts with a tensor of
rank n to give one of rank j.

The appropriate order m is determined by the
contraction properties of the Kronecker delta and
Levi-Civita tensors; double contraction by 5, e.g.,

. 2
~$ 5 Ts 5 ~ ~ ~ 5 ~O T(N)12 12 a

lowers the rank by 2 whilst leaving the weight un-

changed; similarly double contraction by e, e.g.,

. 2
&5 g Tg g ~ - ~ 5 =+0 T(s)W12 12 jl

lowers the rank by 1 and leaves the weight un-

changed. Naturally the result of any such contrac-
tion which lowers the rank to less than the weight
is a null tensor.

Thus, a tensor of rank j=(n —2j)) can be ob-
tained from T(„) by double contraction with p delta
tensors; hence the appropriate order for the tensor

f here is m =2j) =(n —j). A tensor of rank

j=(n —2p —1) can be obtained from T(„) by a
further double contraction with one epsilon tensor;
hence the order off is

m =(2p +3)= (n —j +2)

in this case.
The principal element in the reduction procedure

is the mapping GI„'tj) of the minimal rank tensor
subspace A Jj~ onto A j~. This mapping is con-
structed by taking the tensor product of the natur-
al projection E(~~'t J.) with one of the isotropic ten-
sors f(

'). In the case of weight 0, the natural pro-
jection is unity, and the mappings GI„'t'0)) are ident-
ical with the isotropic tensors f((„))s. For other
~eights j& n, we have the following expressions
foi' G(n tj)

(0; ).

G(n fj) E(j(j) @ f(n —j)
(O; ) (j) e —j (O)q

(n —j even} (2.4)

G(n tj) =+(j (j)0 @ f(n j+2)—(O; ) (j) n-j+1 (O)q

(n —j odd} . (2.5)

In Eq. (2.5), the contraction symbols denote an
outer product over (n —j +1) indices together with
contraction of one index pair. In both cases the
N„'~' mappings, distinguished by index q, are ob-
tained by taking the tensor products with different
index permutations; a suitable linearly independent
set of mappings is chosen such that a regular sym-
metric matrix g~ may be defined through the rela-
tion

gjnjE(j (j) =G(„'t'j) 0 G(„'fp . (2.6)(j) (o;) .~ (O;)

We now introduce a set of mappings G( 'I'„') dual to
G(„')~), and defined by

G(j In) Qg G(ntj) ~ (2.7)
(mt

where g~ and g~ are elements of inverse matrices,
i.c.,
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g()r=~r .

The dual mappings extract the natural forms t(jj)q'

from the tensor T(„) as follows:

(2.8)

(j;q) (o;q) .nt, .; =G,j*)„,O T,„, .

Consequently, these tensors may be embedded in
the tensor space of order n through the mapping

(2.10)

In summary, the irreducible tensors T(„) ' are de-

rived from the relation

(j;q) (j; ) n
T(n) ~(n )n)o T(n) &

where II((j')„') is an operator given by

(0; ) .j-(o q)
II(~'t~) =G(n'fj) 0 G(j ) n

which projects out the qth irreducible subspaces
P j ~ of symmetry j from X". The results for ten-

sors of fourth rank given in the following section
are entirely based on the application of Eqs. (2.11)
and (2.12). Table I shows the key results in the
reduction program, and a ~orked example in the
Appendix illustrates the details of the calculations.

III. RESULTS

In this section we give the explicit results for the
various weights of a general fourth-rank Cartesian

tensor T. .., . Here the reducible representation1234
of the tensor under 0(3) is obtained from the prod-
uct of four representations of polar vectors

~i i i giving the result
3& + 6 6&'+ 6 6& + S 3& + 6 & +. The su-
perscript on each representation labels the weight j
and the coefficient corresponds to the multiplicity
Ng'. With no index symmetry the result is an 81-
dimensional representation.

Table II summarizes the reduction of fourth-
rank tensors with index symmetry. We adopt the
standard representation of complete index sym-
metry in any group of indices by enclosing them in
parentheses, e.g., T($ $ )$ s is symmetric with

respect to interchange of the indices s
~

and s2
alone. The multiplicity of each weight in the
reduction scheme is determined using Jerphagnon's
procedure, ' giving the number of independent
components shown. The explicit results for each
case of index symmetry can be calculated from the
correlations shown in Table III; for example,

T(,*,",, ) is obtained by summing the results of

the permutational symmetry in the first three in-

dices. Further results for tensors with index an-

tisymmetry are readily deduced by subtraction of
the expressions for the corresponding index-
symmetric tensor from the general results which
follow:

T"" =—'(48 8 -8 8 —8 8
$1$2$3$4 3Q $1$2 $3$4 $1$3 $2$4 $1$4 $2$3 S $ $ $& (3.1)

(0,2)
$1$2$3$4 3Q ( $1$2 $3$4+ $1$3 $2$4 $1$4 $2$3 S $~$ S~

T(0,3)
1234 12 34 13 24 14 23 pere (3.3)

1Q $+1$2 $3 4 rr$1 3 2$4 $+1$4 $2$3 Ssr 2$3 $1$4 $+2$4

T" ' =—( —e 5 +3m 5 —e 5$1$2$3$4 1Q ' SH1$2 '3'4 ' SH1$3 '2$4 SH1$4 $2'3 $02$3 '1$4 SQ3 4 1 2

=—( —e 5 —e(1,3)
1$2$3$4 1Q $+1$2 $3$4 $+1$3 $2$4+ $+1$4 $2$3 $+2$4 $1$3 $+3$4 $1$2 ) Sg $& $ SPP&

T" ' =—(e 5 —e 5 +3@ 51234 1Q m12 34 ((r13 24 m23 1$4 $+2$4 $1$3+ $+3$4

(3-6)

(3.7)

234 1Q' +12 34 +14 23 rr23 14+ + 13 +34
T(1,5) (~ (3.8)

(&,6)
1234 1Q e13 24 e]4 2$3 Ssr23 14 $()r24 13 sr 34 12 cpa Hypo (3.9)
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(2, 1) 2

$]S2$3$4 42 $]$2 $ $ $3$4+ $ $ $4$3 3

I

]4 $]$4 $ $+2$3 + $ $ $3$2

——5 (T +T]4 $2$4 $ $ $]$3 $ $ $3$]

1 2

3 4 ogo ]4 $]$3 S S $2$4+ S S $4$2 3 ~$2$4 S Sg+
—5 T ) ——5 (T +T ——5 T )3 $2$3 S $ $ S ]4 $2$3 $ $ $]$4 $ $ $4$] 3 S]$4 Spgpgog

2 2 2

3 $1$3 S $ $ $ ) + 2] $3$4 $ $ $1$2 + $ $ $2$] 3 S]$2 Spgpsogo (3.10)

g g s s ]4 ~$]$2 $ $3$ $4 & s $4$ $3 3 s3s4 s sos so ~ ' 42 -s]s3 s s2s s4+ s s4s s2 3 s2s4 spsogpso)

——5 (T +T]4 $]$4 $ $2$ $3 $ $3$ $2

2+ 2] $2$4 $ $]$ $3+ S $3$ $]

—5 T )3 $2$3 Spgogpgo

—5 T )3 $ ]$3 Spsosps

——5 (T +T ——5 T )]4 $2$3 $ $]$ $4 $ $4$ $] 3 $]$4 $ S+P

ll+ 42 $ ]$4 $ $2$3$ + $ $3$2$

——5 (T +T]4 $2$4 $ $]$3$ $ $3$]$

3$2$3$$$$

3 $]$3 $ $ $ $

$]$2$3$4 ]4 $]$2 $+3$4$ $ $4$3$3 $3$4 $ $ $ $
1 2

]4 $]$3( $ $2$4$ + S g4g2g 3 5$2$4 gg++
2 2+ 2] $2$3~ $ $)$$$ + $ $$$)$3 ~$)$$T$ $~~
1 2

]4 $3$4( $ $]$2$ + $ $2$]$ 3 $]$2 Sg+Q (3.12)

$1$2$3$4 ]4 $1$2 $3$$$4 $4$$$3 3 $3$4 Ssosos ]4 $]$3( $2$$$4 & g4ggg 35$$ Ts «, )

2 2 11 2+p]$$$$$$+$$$$3~$$$$$$)+$2'5$$(T$$$$+T$$$$35$$T$$~)14 2pp3 3pp2 23 pcrcrp 23 1pp4 4pp] ]4 pogpp

14 $2$4 $&$+ $3+ $3$ $ $] 3 $]$3 $ $$$$$ ' [4 $$$$ $)$ $ $2+ $~$ $ $( 3 $)$2 $/++ (3.13)

T' ' ' = ——5 (T +T ——5 T )+—5 (T +T$]$2$3$4 ]4 $]$2 $3$ $4$p 4$p$3 p 3 $3$4 Sp o p o 2] $]$3 $2$ $4$ ~ $4$ $2$ 3 ~$2$ TS
p p p p 2 4 p- pgcr

]4 $]$4 ~ $2$ $3$ + $3$ $2$ 3 $2$3 $ $ $ So ]4 $2$3 $]$ $4$ + $4$ $]$ 3 $]$4 TSP~P )

11 2 1 2+ 42 $2$4 $]$ $3$ + $3$ $]$ 3 $]$3 $ $ Sps ]4 ~$3$4 $]$ $2g + $2$ $]$ 3 $]$2 SPS+go

(2,6) 2 1 2
$]$2$3$4 2] $]$2 $3$4$ $ + $4$3$ g 3 $3$4 g g g g ]4 ~g]$3 g2g4g g + $4$2$ $3 $2$4 S $ gogo

T ) ——5 (T14 $$ ' $$$$ + $$$$3-$$3 $$$ $14 $2$3 ~ $]$4$$ + —gggg 3'5gg T. .sog )14 23pp 32pp 2 ppcro' PP 14 ppcro

]4 $2$4' $]$3$$ + $3$]$$3 $]$3 $$ $ $ '+42 $3$4 $1$2$$ +-Sg g g 3 g g Tg ~$PP PP ppoo 1 2 p p 2 1 p p 1 2 p-p cr"o
1

'i'z'3'$4 'Hi'3 'H ' 6 'H ' '2' '$ 'H ' '$$ '2 $H2

+~s~ s s4sog +~s~ s sp $2+~s~ Ts s2s s )

1

15 (~s~ ~$2$4 s sp s +~$~2'5sp s sp~ +~$~4~sp spy~

2 4 v cr m H4 p 2 o n. H2 p 4 cr e

$z$$ $ $H$$~ H$ H~ z v p'$ $*$

1 1

4 $$$2$$ $$$ $$l 6 $$$~ $ $)$+$ $Q$ $ $ $ ) $ ( pr+$ $

+~SQ S $ Sog + S+4 S SP $1 + SQ $ $]$ $

1

+5,+,5,~ T,~~+ +~,+ ~,~]T

14 Ho~ H4 ] era r 1 4crm

+ $)$$ $ $QQ +~$+$ $ $+ $) +~$p $ $~ $$)]
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tvott4 totpto~ 6 tw v 'p'&~a Z tdv ~/2t/i+ '2i

—it (5 ~,'i 2Tp*~~,+'~i5 ~2TV~~.+'~25 ~i TV~~,

+~s&$2~«+HA +~«82~« $)«H +~sd&~s s2s s

l2 ponv P2 pooi vi spent

+~sp4~«pps~ +~«84 «Z«QH~+ «HZ «4«p'H

+ t2te totpto v tvt4 troppo'2 tvp2 oo p o 4 ~

3

tvt2 t topp o~ 6 totv oper o S oHv t4tpto*i te i tdptotO

+ $0& $4«sp~+ «H4 $8 «e*&+ $44 s&sp'H~

~$ ~~sg 5$~«4~$+psp++ «g] «p4 $+p«Q& «Q4 «Hl v p 8' v

14 epee H4 I pew Pf 4pne

+ 'i'4 tHp'Hv+ 'H4 tdp'nti+ 'Pi
I I

tvpttO te p 6 ooetv opppo 2 oo v tttppo i tvti tHp a S

t2t te v te C tv ptoti to 2 tioptotv

l

otv oti s 2 vpov o2 v'i v'pov

+ si«2 sdp e'e+ «HZ s)spsese $8& «2«pscs~

+ op2 tot toto tvt2 to ptn i ov i te ponos ~ '
I

'i*a't'o & 'ai*t 'ap'o ' 'n'v '2'~V 'n'v '4'&Vo 'o' 'v' Vo

+ s/2 $4«gp gr $/4 $82 ps' e 4 $2«copse

—
it (5,„,5t,,„Tt~~p.+5.~25*~,T,„~p.+5.~45t~, Tt

+~* ~ ~~~p. +~«~.~s ~;.+~~ ~$ ~,s.

+5;.,Tt~g;. +5tP, T.~;P.+5.P,T.~,V.~&

1 1+ ~ tote'3 totpto~ 6 ootv oF4tpto oo'v t4'pp'o *n'i 'vtCtp'o

o i ovpo o4 vl o ot4 log

—
~s ~&*~,&.,*,&*pg;.+&.g,~.p, &.gpss. +&.g,~.p, &.gpss.

+~«@4 «++ps~+ s+4 $)«gpss s+1 $4«e p~n
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14 gg o $4 $1 cr $1 $4 cr

3 I

4 $14 Q g 6 $$12 ~ $ $21 g $1 $2$$s

+~~ T ~P.+~~ T~s, .+~~ T $~,$.)

I

Sgvpo Se2 v] vvpe

+~ ~ TPZ;.+~a T e, +~~ T ~ps

+5...,T, , +5, ,T. .., +5, , T. ,& )],
I 2 3 4 24 $1$2$3$4 $1$2$4$3 ' $]$3$2$4 ' sls3s4s2+ g g g g +Tg g g g +Ts g g g +Ts s s +T

I 4 2 3 I 4 3 2 2 I 3 4 2sls4s3 s2 3sls4

+T +T +T +T +T$2$ 3$4$1 S2$4$ 1$3 $2$4$3$ I
+ $3$ ]$2$4 $3$ 1$4$2 $3$2$ ]$4 + $3$2$4$1 $3$4$ I $2 $3$4$2$1

(3.18)

+T +T +T +T'4']'2'3 '4'I'3'2 ' '4'2'I'3 + '4'2 3'I 4

—[$ (T ~T ~Tg g2 ~ g g g3g4+ g $ $4$3+ g $3$ $4+ Tg $ S & + Tg s S S + S -~ S S + S S S Spp
+

pp '
p p p-4p-3 P$34p p43P 3pp4

+ Ts s s s + Ts s s s + Ts s s s +Ts s s s + s s s s ~4pp3 3p4p 4p3p 34pp 43pp

$]$3 spspts2$4 ' $ g $4$2 ~ S s s S + Tg g s g + g g g g + Tg g g g
+& (T +T +T

pp P2P4 p4P2 P24P P42P

+T. .. +T$2spspg4 g4g g $2+ $2$ $4$ + g4g g g +Tg g g e +Tg g 4 )PP P P 4p2 p 24pgp 42$pp

+5 (T +T +T$1$4 Sg+2$3+ $$$3$2+ $$2$$3+ gggg +Tgggg +TggggPP p p p3p2 p23p p32p
+Ts2sss + ssss + ssss +Tssss + sss +Tsssp2pp33pp22p3p3p2p23pp32pp

$2$3 Seeps]$4+ spg $4$1+ S $1$ $4+ g g4g $1+Tg g]g4g + Tg g g g
5 {T

+ $1$$$4+ $4$$$ + sssg +Tggss +TSSS~ +Tggg-I pp4 4pp'I I p4p 4p I p 14pp 4]pgp

+~s s (Ts s s s + Ts s s s + Ts s s s +Ts s s s24 pp]3 pp31 p I p3 p3p]

+ S $]$3$ + S $3$1$ + $1$ S $3 + $3$pgpg] + $]sp$3$ + $3$ptglg $1$3$ S + $3$1$ S

+&g g ( g ' ' s + Ts s s s + Ts s s s + Ts s s s +Ts s s s + Ts s g s3 4 p' psl 2 p p 2 I p I p 2 p 2 p I p I 2 p p 2 I p

+ Tg $ $ s + Ts s $ s + Tg $ $ s + Ts s s $ + Tg g g g +Tg g g g )]I pp2 2pp] I p2p 2p]p ] 2pp 2] pp
I+ 10$ l~ $1$2 $$$4+ $1$$ sps4+5$1$45$$$$N Tg+ s+ +Tsg~g +Tgp~~ i] (3.19)

Verification of the above results can be accomplished as follows. Each result is expressible in the form

105
T(j;q) ~ (j;q)T p(0)r

$]$2$3$4 ~ r $5$6$7$8 J $]$2$3$4$5$6$7$8
r=1 (3.20)

i.e., as a linear combination of contractions of the original tensor with the 105 index permutations of the
eighth-rank isotropic tensor 5$ g 5$ g 5$ g 5$ g Addition of the complete set of T,',;,,'...according to Eq.
(2.1) must therefore reproduce the tensor T...,...,;

105

$1$2$3$4 ~ r $5$6sysSJ $1$2$3$4$5$6$7$8
r=1

(3.21)
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f each wegi htind the multiPl ' ym nents anf independent compoTABLE
rth-rank tensor.

II. Numb ro
the reduction of a rt -raa fourt -ra

25

Index symmetry

Number of
independent
components

Weight
2

$]SP$3$4

($1$2 )$3$4

($1$q )($3$4)

($1$g$3)$4
[(Si$2)($3$4)]
(S]SZS3$4 )

81
54
36
30
21
15

3
2
2
1

2
1

6
3
1

1

0
0

6
4
3
2
2
1

3
2
1

1

0
0

1

1

1

1

1

1

x s mmetries.with different index y
'

n of irreducible tensors wit iTABLE III. Correlation of irre u

($1$2$3)$4 $ ]SP$3$4 (S ]ST)$3$4 (S]S~)($3$4) [($1$2)($3$4)] ($]SP$3$4)

(0,1) =

(O, l)

(0,2)

(0,3)

(1,1)

(1,2)

(0,1)

(0,2)

= (0,1)

= (0,2)

= (0,1)

(0,1)
= (0,2)—=

(2, 1

(2,

(1,3)

(1,4)

(1,5)
(1,6)

(2,1)

(2,2)

(2 3)

(2,4)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(2, 1)

(2,2)

(2,3)

(2,1)

~(2,2)
(2, 1)

(3,3)
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F4

C
bO

8
C4
V

C4
CS

bO
C

'C
V
8
E

8
0

V
V

V

~ fW

Ct

~
05

0

0
~ %&&l

CP

5

bO
6

bO

bO

bO

bO
6

. 8 ~o~
.I g o
g O
+ X o sr

g0
bO bO

CO

+XV

y +(j;q)

j=Oq=1

However, the 105 eighth-rank isotropic tensors
are not aB linearly independent, and use has to be
made of the relationships between them which we
have derived elsewhere. ~' Equation (3.21) can then
be written in such a form that the coefficient sum
A„ is zero for all r, except that which corresponds
to the isotropic tensor 5...,5...5...,5...,, where its
value is unity; hence the equality is proven.

IV. APPLICATIONS

The results given in this paper can be applied to
many areas of physics, as outlined in the Introduc-
tion. One important area for consideration is that
of solid-state physics, and in particular, thc appli-
cations to optical, electromagnetic, and mechanical
properties of crystals. For example, a tensor with
the structure T~...,...,) arises in the theory of laser

four-photon absorption, the tensor T~..., )~..., ) is re-

quired for the Kerr effect, and the tensor
Tt(, , )(... )) can be applied in the theory of crystal
elasticity.

To facilitate such applications to crystals of a
particular symmetry class, we present in Table IV
the representations spanned by irreducible polar
tensor components in the holosymmetric point
groups of each class; the corresponding representa-
tions for groups of lower symmetry are readily ob-
tained by the use of correlation tables. (For axial
fourth-rank tensors, the corresponding ungcrade
representations apply. ) For processes such as the
Kerr effect, where the tensor must possess thc
same symmetry properties as the crystal, only
those tensor components which transform under
the totally symmetric representations are nonzero;
thus, for example, in holosymmetric cubic crystals
only weight-0 and weight-4 contributions arise.

In the case of four-photon absorption, the
excited-state symmetry dictates the representation
under which the tensor components must
transform. %e have recently shown how the appli-
cation of this rule to four-photon absorption in
gaseous or liquid media, where the constituent
molecules are randomly oriented, enables the sym-
metry properties of thc excited states to be deter-
mined from a combination of experiments with
different laser-beam polarizations. ' In order to
further illustrate the details of such an application,
we now brieAy discuss the case of four-photon ab-
sorption in oriented crystals.
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Using the principles of quantum electrodynamics, it is readily shown that the rate of four-photon absorp-
tion from a single laser beam of intensity I is given by'

i

4 I (sls2s3s4) (s1s2s3s4) i
(4.1)

where pf is the density of final states, T(. .., ) is a polar nonlinear susceptibility tensor, and S(..., ) is a

radiation tensor consisting of a product of components of the polarization vector e;

S(...,...,)
——e, ,e,,e,,e$4 (4.2)

Since this tensor is fully index symmetric, it may be expressed as a sum of weight-o, -2, and -4 terms, and

the results of Sec. III lead to the following expressions:

(4.3)

$1$2$3$4 $1$2$3$4 $1$2$3$4 $1$2$3$4 (4.5)

Note that (e e) is unity for plane polarized light, but zero for circularly polarized light, where the polariza-
tion vector is complex.

From Eq. (4.1) we now have

3m I pf (0) (0) (2) (2) T (4)5 4

~ T~. .., p~. .., ~+ T~...,... p~, , p3 4) (,$2 3.,«s,*,..., ~ I

(4.6)

Substituting from Eqs. (4.3) to (4.5) and making use of the index symmetry in the susceptibility tensor then

leads to the result

3~'r4
I =

~ ~

—, T~...,...,~(e.e) + 7 T~...,...,~(e e)e,,e,, +TI...,...,~&, , e,,e,,e,, ~ (4.7)

This result is generally applicable to four-photon absorption in crystals of any symmetry class, but only
certain terms will arise for a given transition; for example, reference to Table IV shows that a four-photon
transition to an Eg state in a holosymmetric cubic crystal would involve only the weight-2 and -4 terms.
Several other interesting features emerge, however. Suppose, for example, that four-photon absorption is ob-
served in such a crystal at an optical frequency co, and the transition proves to be forbidden for two-photon
absorption at frequency 2u, in other words the transition is forbidden on symmetry grounds rather than on
the basis of energy matching. In this case the only nonzero irreducible components of the susceptibility ten-
sor are those of weight 4, and hence it is immediately clear from Table IV that the excited-state symmetry is

T1 ~

g

From the brief analysis above, it is evident that irreducible Cartesian tensor methods have a great deal to
offer in several areas of crystal physics. For a fuller demonstration of the power of applying these methods
to physical problems, however, we would again refer the reader to our recent work on multiphoton absorp-
tion in fluids. '
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APPENDIX: ILLUSTRATION OF THE REDUCTION PROGRAM

%e illustrate the scheme for the reduction of a fourth-rank Cartesian tensor by reference to the case of
weight j=1. Using the results of Sec. II, we employ the six isotropic tensors of order n —j +2=5 shown
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in Table I. These generate a set of six linearly independent mappings, the first of which is

~(0;1) ~ K (1)

S

from Eq. (2.5); the natural projection operator in this expression is given by"

and hence 6&4'1",
&

——e.,...5,,, The matrix g~ is generated using Eq. (2.6); for example, the first element is

obtained from the result

(0;1), 4 (0;1) (1)
G(4~1)O G(4~1) —&r S s ~s s & ~s s1 1 2 3 4 ~1S1S2 ~1~1 ~1l~])

so that g11 ——6. Calculation of the matrix g~ and its inverse g~ leads to the expressions for the dual map-
pings using (2.7); for example,

1 (0;1) (0 2) (0 3) (0.4) (0 5) (0 6)
G&&14& ( 6&41&& G&41&& G&&l »+G&41»+G&41»+OG&41»10

Finally, the projection operator III4I'4& which projects out the first irreducible subspace A» of weight I
from 7 follows from Eq. (2.12):

(0;1) (0;1) 1-(0;1)
~(4'~4) =G(4')1) O G(1'~4)

=—e, , 5, , (3e 5 —e 5 —e 5si s&sg & &2 &4 & &3 24 & &4 2& ~@Pi &+4 "PP4 ~P&

and subsequent use of Eq. (2.11) immediately leads to the results (3.4).
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