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In a previous article it has been shown how the variance of the distribution of the lines

belonging to a transition array between taro atomic configurations can be computed exact-

ly. The agreement with experimental unresolved spectral patterns was good. %'e general-

ize the formal expansions obtained previously for simple arrays to cases with an arbitrary

number of open subshells. T'he results are expressed in terms of the formulas already

published [Phys. Rev. A 20, 2424 (1979)].

I. INTRODUCTION

In the problem of the identification and analysis
of the spectra of highly ionized atoms, the ab initio
evaluation of the variance 0 of the transition ar-

rays proves to be a valuable tool. ' Indeed, it
often happens that the numerous lines of an array
between two configurations are merged together by
various line-broadening mechanisms, so that they
cannot be seen individually; then, the spectrum
shows characteristic "bands, " each of which ori-

ginates in a different ionization state and pair of
configurations. The full width at half maximum of
such a band, if assumed Gaussian in shape, is
equal to 2trv 21n2=2. 355o. But the mathematical
quantity o. does not depend, of course, on any

shape assumption.
The formal expansions of o for the simplest

types of arrays, nI~+'-nl"n, 'I' and nl~n'I'-nl"n "I",
have been determined by Moszkowski and
Bauche-Arnoult et al. , ' and the latter authors have
dealt with the case of intermediate coupling and
published explicit tables. However, in the course
of experimental interpretations of some spectra,
there appeared transition arrays whose variances

could not be calculated with the formulas already
pubhshed' because they involved configurations
with three open subshells, e.g., 3d 4s-31 4f4s and

3p 3d -3p 3d 4p in MoXv and MoXYI. In the
present paper, we derive the formulas for the vari-
ance of any array where three or more open sub-

shells occur, and for the mean energy (wave
number} of such an array, which is also useful in
the experimental interpretations.

The variance for the transition array A-8 is de-

fined as
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is the nth moment of the weighted line —wave-

number distribution [Ref. 1, Eq. (4)]. The weight

m, b of a transition is taken as the z part of the
strength [ur, s ——
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I ], W is the sum

g, & w,s, and a and b are the states of the respec-

tive configurations in intermediate coupling. For
example, p& can also be written

X.,c, « IZ Ib)(b IH Ib)(b IZ Ia) —X.,c, (b IZ Ia)« IH Ia)(a IZ Ib)

g, s(a IZ Ib)(b IZ Ia)

an expression suitable for the use of the second-
quantization formalisIn. Throughout the follow-

ing, the results and arguments of Ref. 1, hereafter
referred to as I, are largely used.

For the sake of brevity, each single letter I, I', l",
and A, figures in the present paper, either the whole
symbol nl, etc., for some atomic subshell, or only
the corresponding I orbital quantum number.
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II. CONFIGURATIONS
%'ITH THREE OPEN SUBSHELLS

A. Variance of the A,"l~l'-A, "l~l" transition array

The array A."I I'-A, I I" is the simple extension

of the nl n'I'-nI n "I"array, studied in I, by the
addition of one passive subshell A, . The list of
products of Slater integrals (PSI) which may occur
in the variance ~ can be divided into three groups,
which are considered successively.

(i) In group 1 are gathered the PSI already oc-
curring in the variances of the arrays A.'I'-1,"I"or
I I'-I I", where they can be calculated with Table
III of I. In the former case, for example, choosing
the couplings of the states as a = [(A,"I')a~J~,
I~a2J, ]JM and b = [(k"I")aIJ'„,I~a,J,]J'M is

convenient for the argument. In the calculation of
o. , the considered part of the energy does not
depend on a2J2. The latter quantum numbers only

appear in the matrix elements of the transition
operator Z, through the same sum in the numera-
tor as in the denominator of p2 [Eq. (I)]. There-
fore, that part of p2 does not depend on X, and the
contributions to a of the PSI of group 1 are sim-

ply the applications of Table III of I to both A,"I'-
A, I" and I I' I I"

(ii) In group 2 are gathered the PSI where A,

and/or I occur only once. The product
I'"(A, , l')6 (I,I") can be taken as an example. In
this case, it is first deduced that the second-
quantization operator Op [Eq. (9) in I] for the
second-order moment p2 contains only one
creation-annihilation pair of operators for A, elec-
trons. Then, the corresponding part of o. depends
on the number v through a binomial factor of the
form av+P. But this binomial evidently vanishes
when v=O and 4A, +2; therefore, it is zero for any
value of v, and it can be concluded that the PSI of
group 2 do not contribute to o. .

(iii) In group 3 are gathered the remaining PSI
where only A, and I occur. Here the adopted cou-

p)ings are [(A."I )a~J~, I'j')JM and [(A,"I )a~J~,
I"j"]J'M, and the sums over J, M, J', j', and j"
reduce to a multiple of (2Ji+1), i.e., to the statist-
ical weight of the relevant level of I,"I (a similar
property has been exploited in I, Sec. III 8, for ex-

plaining why expressions D] and E] are almost
identical). Therefore, Table I of I, which gives the
variance cr of the distribution of the level energies
with (2J+ 1) as statistical weight, is useful. How-
ever, it is evident that, in the case where any Slater
integral containing one I' or I" electron is zero and
where the other integrals have identical values in

both configurations, o. is zero bemuse all the lines
have the same energy. In this way, it can be
shown that the contributions to o (of the transi-
tion array) of the PSI of group 3 are simply the ap-
plication of Table I of I to A,"I,each Slater in-

tegral in this Table being replaced by its increment

from configuration A to configuration 8. For ex-

ample, the formula for the quantity D7 then con-

tains the product

[Fs(A I)—Fg (A l)][Gs (Al) —G„(iU)] .

At this point, it should also be indicated that in

the quoted formula for D7 in Table I of I a mis-

print occurred in the 6j symbol, which should evi-

dently read

as in formula E4 of Table III of the same article.
The contributions to o. coming from the spin-orbit

integrals are easier to compute. The result is

A(A, + 1)v(4A, —v+2)(kg~)
4(41+1)

where Es is given in Table III of I and where the
second term makes the contributions of the A, and I
electrons formally identical.

In the upper part of Table I, the expansion of
the variance cr of the array ss's"-ss'p is a simple
example of application of the present results.

B. Variance of the A, "l++'-A, "l+I' transition array

The array i' +'-A,"I I' is the extension of the
nl +'-nl n'I' array, studied in I, by the addition
of one passive subshell A,'. It is convenient to de-

fine five groups of PSI, among which the first three
resemble those of Sec. II A.

(i) In group 1 are gathered the PSI already oc-
curring in the variance of the array I +'-I I', they
can be calculated with Table II of I, a conclusion
which is reached in the same way as for group 1 in
See. II A.

(ii} In group 2 are gathered the PSI where A, oc-
curs only once. The same argument as for group 2
in Sec. II A shows that they do not contribute to
0-2.

(iii) In group 3 are gathered the PSI where only
A, appears, i.e., where it appears four times. The
argument is analogous to that for group 3 in Sec.
II A. The contributions to cr of the PSI of group
3 are simply the application to A,

"of formula D] in

Table I of I, each Slater integral being replaced by



25 VARIANCE OF THE DISTRIBUTIONS OF ENERGY. . . . II. 2643

TABLE I. Examples of variance expressions for transition arrays A-B. For the array sd'-sdp,

only the PSI of group 5 in Sec. II B are listed.

Array ss's"-ss'p:

tr =3{[G(s,s")] +[G (s', s")] ]/4 —[G (s,s")6'(s p)+6 (s',s")6'(s',p)]/2

+ [[6'(sp)] +[6'(s',p)]']/12+3[Gq(s, s') —Gs(s, s')]'/4+ps/2

Array sd -sdp:

(part of o )=4[G„'(s,d)]'/75 46„—( sd)G s( sd)/ 75+3[ Gs( sd)]'/1 00

—4 Gg s(, d) 6'(s,p) /4 5—Gs(s, d)6'(s, p)/90+ [6'(s,p)] /12

its increment from configuration A to configuration
B.

(iv) Group 4 contains the PSI where A, appears
either three times, or only twice, provided that
these two A, 's occur in the same integral, F (A, ,A, )

(in the former case, the latter integral necessarily
occurs). The contributions to o depend on v

through a polynomial of order 3 and 2, respective-

ly, and they vanish for v=O, 1, (4A, +1), and

(4A. +2), because of the occurence of an F (A, , A, ) in-

tegral. Therefore, the PSI of group 4 do not con-
tribute to 0. .

(v) Group 5 contains the PSI where A, occurs
once in each integral. These PSI are formed from
the Slater integrals of the three types (k, l) (in con-
figuration A or B) and (A, ,l'). The v dependence of
their contributions to o is a polynomial of order 2
which vanishes for v=O and (4k+2), namely
v(4A, —v+2). The N dependence can be found in
the same way, i.e, by taking benefit of the particu-
lar values of N for which the contributions to e

1((A,+ 1)v(4A, —v+ 2)(kg~)

4(4i, +1) (4)

vanish, except for the PSI with two (k, l) integrals
of the same configuration. For the latter case, oth-
er particular examples must be computed explicitly
to determine the N dependence completely. The fi-

nal results are conveniently expressed in terms of
the E; formulas in Table III of I. They are
presented in Table II.

The contributions of the spin-orbit integrals to
o. can be divided into three types of products:
those where no gq integral occurs (to this type, for-
mula H7 in Table II of I evidently applies), those
where g~ occurs only once (this type brings a null

contribution to 0. , for the same reason as group 2
of PSI in Sec. II A), and those where gq occurs
twice. The latter contribution does not depend on
N, so that N can be fixed to zero, and the result is
analogous to the first term of Es in Table III of I,
namely, with proper notations,

TABLE II. Contributions to the variance of the transition array A."I +'-A, "1 1' (denoted A-B) of all the products of
the Sister integrals in which A. occurs once. Quantities E; can be found in Table III of I. The notation l~), for ex-

ample, means that in these formulas 1 must be changed into k.

PSI type contributions to a

(~,1)g x (~,1)g

(X,l)~ x(k, , l)g

(k, 1)g X (A.,1)~

(N +1)(4l N+1)ii—
—2N(41 —N +1) X E2+E3+E4 (with 1~A,, 1'~1, t ~1)v(4a —&+2)

41+1
X(41—N +2)

(k, 1)g x(i,, l')g

(k, 1)~ x(k, l')~

(A, ,1')g x (A, , l')g

(41 —%+1) ~(4A, —v+2)
X [Eq+E6+E7+E7] (with !~A,, 1'~l, 1"~l', t~l)

41+1

v(47 v+2)[E2+E3+E—4] (with I~A. , t~1)
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In the lower part of Table I, the contribution of the
PSI of group 5 [see (v) above] is given for the array

sd -st as a simple example of application of the

present results.

C. Var1ance of the A, I I -A, I / transit1on array

The array X"I"+'I'"'-X I"I'"'+' can be con-

sidered as the result either of the addition of one

passive subshell V to the array I +'I' -I I' +'

or of one or several I' electrons to the array
X"I"+'-k"I"I' considered in Sec. II B. Again, rive

groups of PSI can be distinguished in o, in com-

plete analogy with those for the lat~er array. Qnly

three groups contribute, as in Sec. II B.
(i) Group 1, where lt, does not appear, can be

computed as in I +'I' -I I' +'. This array was

studied by Moszkowski, but under the assumption

that any given Slater integral has the same va1ue in

both configurations. If this assumption is not

made, thc formal cRlculat1on of the varlancc G' bc"

comes very cumbersome, so that it was not under-

taken in I. However, Moszkowski's assumption

corresponds to the cases of frozen-core Hartree-

Fock RQd central-field model potentials, wh1ch arc
currently used, ' so that it may not be necessary

here to allow for a variation of the Slater orbitals

from one configuration to the other. Consequently,

formula (3-7) in Ref. 5 may be used for writing the
contribution to 0 of the PSI of group 1, namely,

2(IX+ jlsgf' I+lrPj'+ J)

N'(4l' —X'+ 1)
41'

(except for I or I'=0, in which case the comple-
I4I —Pf + &I~4I' —&'+P I4I —Pf +2I~41' —N'+1

is of 8 type s'tudicd 1Q I).
(ii) Group 3, where only A appears, contributes

exactly as in Sec. II 8.
(iii) Group 5, where A, occurs once in each in-

tegral, contains 10 types of PSI, six of which are
already listed in Table II. In the latter Table, the
contributions which appear in the first three lines

can be kept unchanged. The results for all 10 PSI
are listed in Table III. It can be checked that
Table III is altogether invariant when the inter-

changes I~I', %~X', and A~8 are made, and
that it reduces to Table II when E'=0.

As concerns the contributions of the spin-orbit

integrals to o, they can be divided into three types
of products. The products where g~ occurs once or
twice contribute exactly in the same way as in Sec.
II B. As for the contributions pertinent to the
I +'I' -I I' +' array, their dependences on N
and X' are very easily determined, and formula H7
in Table II of I, which corresponds to X =0, con-

tains the relevant X- and X'-independent quanti-

ties; the expression deduced is

l (l +1) 2 2

4(4I +1) [(X+ 1)(4l N+ 1)g(g —2—X(41 —X + 1 )g( g gl s + X(41 %+2)g( s—]

[(N'+1)(41' N'+ 1)gp s —2—X'(4l' —X'+ l)(p sgp g +N'(4/' N'+2)(p „—]I'(I'+1) 2

4(4I'+ 1)

I (I + 1)+I'(I'+ 1)—2 [X'(4l %+1)gl„g( „—~X(41'—X'+l)glsg( s

+(4l &+1)(4—1' &'+1%i—,~ka+&&'0l , ~k,s] .

This expression is invariant when the inter-
changes I~I', N+ X', and A~8 are made, and
reduces to formula H7 of Table II in I when
N'=0.

D. Average energies (wave numbers)
of the transition arrays

Together with the variances of the transition ar-

rays, the mean energies of these arrays can be cal-
culated, as has been done in I for I +'-I I' and

I

I I'-I I". More precisely, the quantity

M(C —C') = T,„(C—C')

—[E.,(c')—E„(c)],
where T„(C—C') is the mean energy of the
C —C' array (configuration C being lower in ener-

gy than configuration C') and E,„(C), the average
energy of the configuration C, can be expanded in
terms of thc cncrgy 18dial 1ntcgfals. T~y is ident-
ical to the moment pi of the weighted line-energy
distribution [Eq. (2)].
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TABLE III. Contributions to the variance of the transition array A, "I +'1' -A."I 1' +' (denoted A-B) of all the prod-
ucts of the Slater integrals in which A, occurs once. The notations N ~41 —N +1 and I+ 1', for example, mean that N
must be changed into 41 —N +1 and that 1 and 1' must be interchanged.

PSI type contributions to 0.

(A, , l)~ X (A, , l)g
(A, , l)~ X(A,, I)g
(A, , l)g X (A, , l)g
(1,1)q X (A., 1')g

(A, , l)g X (A, ,1')g
(A, ,1')g X (A, , I')g
(A., l)~ X(~,1')g

(A, ,1')g X (A, ,1')g

(A, ,1')g X (A., 1)g

{k, 1') X (A, , 1')g

same
same
same
same
same
same
same
same
same

same

as in Table II
as in Table II
as in Table II
as in Table II, multiplied by (41' —N'+1)/(41'+1)
as in Table II, multiplied by (41' —N'+1)/(41'+1)
as in Table II, multiplied by (N'+1)(41' —N'+1)/(41'+1)
as (~,1)qX(A, , I')q above, with 1~1', N~N'
as (~,1)gX(A,, I)q above, with l~l', N~N'
as (A, , l)&X(i,, l')& above, with N~41 —N+1, N'~41' —N'+1
as (A., l)& X(k,, l)q above, with l~l', N~N'

The 5E quantities can be computed successively
for the three arrays studied in Secs. II A —II C.

(i) For the array A."I I'-A, "I I", three types of in-

tegrals must be considered, where, respectively, two
A, 's, one A, , and no A, 's occur. The contributions of
the first type of 5E clearly do not depend on N;
therefore, they are zero, as for N =0, which can be
found in I. The contributions of the second type
depend on v through some binomial av+P, as
shown in an argument such as the one in Sec.
II A (ii); therefore, they are zero, because they van-

ish for v=O and 4A, +2. The contributions of the
third type do not depend on v', therefore, they are
zero, as for v=O, which can be found in I.

(ii) For the array k"I +i
A,"I I', the same three

types of contributions as in (i) appear. The only
difference is that for the third type, already present
in the case of I +'-I I', the contributions are not
zero, but are given by Eq. (14) of I.

(iii) For the array ~ Iw+&I w' g"Ixl x'+] the si-

tuation is again different only for the contributions
to 5E which do not depend on A, , namely, those oc-
curring in I +'I' -I I' +'. For the latter array,
it is easy to derive the expression,

5E(IN+11 N —lwl'w +])

41' —N +15E(1 +' —I I')
41'+ 1

5E(1 ~'+ ] Ir~'I)
41 +1

which changes in sign when the interchanges 1~1'
and N~N' are made, in agreement with the evi-

dent relation 5E(C' —C) = —5E(C —C') ~

III. GENERALIZATION —CONCLUSION

%e deal above with spectra where three open
subshells occur, but there exist experimental cases
with more open subshells. Neutral uranium is a
prototype for atomic spectra with very complex
configurations. A long list of its configurations of
spectroscopic interest has been computed ab initio

by Rajnak. " In this list, there appear several con-
figurations which contain four open subshells.

In general, an array where one configuration
contains m and the other one m or m —1 open
subshells can be deduced from the three types stu-
died in Sec. II by the addition of m —3 passive
open subshells. The contributions to 0. of all the
types of PSI where, at most, three different atomic
orbitals occur can be classified in groups, and sub-

sequently computed, exactly as in the correspond-
ing paragraphs of Sec. II. As for the single other

type to be considered, the one where four atomic
subshells occur once each, its contribution can be
shown to be zero through the same kind of argu-
ment as for group 2 in Sec. II A. To the quantity
5E [Eq. i4)] of any transition array, the m —3 pas-
sive open subshells quoted above do not contribute.

In conclusion, formulas for the variance and
mean energy (wave number) of any electric-dipole
transition array between two pure configurations
can be found in I or in the present paper. These
formulas, although cumbersome, are readily pro-
grammable on any computer.

Their numerical applications are relevant provid-
ed that:

(i) The effects of configuration mixing can be
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neglected, as is often the case in highly ionized

spectra;
(ii) the effects of relativity on the radial integrals

can be neglected, or accounted for approximately
through the use of the nonrelativistic integrals de-

duced from ab initio relativistic integrals
(iii) the array of experimental line wave numbers

does not split into two or more distinct subarrays,
due to some very large spin-orbit effects (for subar-

ray variances, other formulas have been devised
and mill be published elsnvhere);

(iv) the populations of the levels of the upper
configuration responsible for the spontaneous-
emission "band" under investigation do not deviate
too much from a Boltzmann-type distribution.

We are currently applying the present formalism
to the interpretation of various plasma spectra ob-
tained from sparks and laser shots.
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