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A novel phase-modulation technique which permits subkilohertz-laser stability and new

levels of precision in laser spectroscopy was reported recently. For spectroscopy, the

basic arrangement consists of a combination of an optical pump and a probe field which

is phase modulated. The pump prepares the atomic sample by burning a narrow hole

within the atom's inhomogeneous line shape, and the probe beam samples the prepared
hole when its modulation sidebands are swept into resonance. Off resonance, the probe is

balanced as pairs of sidebands produce heterodyne beat signals of opposite phase which

just cancel. On resonance, the balance is upset and yields a nonvanishing beat signal with

a Lorentzian absorption or dispersion line shape and with residual noise approaching the

shot noise limit. Here we investigate the theory of phase-modulation spectroscopy. We

treat the nonlinear response of an atomic two-level quantum system subject to an intense

pump and a weak copropagating or counterpropagating phase-modulated probe beam.

The density-matrix equations of motion are solved by a Laplace-transform method and by

the novel use of a translation operator which allows the infinite hierarchy of coupled

equations to close. A solution equivalent to the rate-equation result is developed and

coherence corrections are found which predict new resonances that have just been detect-

ed in this laboratory. The delayed pump-probe technique encountered in solid-state laser

spectroscopy is analyzed in this context for two- and three-level quantum systems. The
response of a Fabry-Perot cavity to a phase-modulated light wave is examined also and

reveals an unexpected absorption feature.

I. INTRODUCTION

An elegant phase-modulation method for detect-

ing optical atomic resonances, particularly in the
nonlinear regime, has been devised recently' and

applied to phase locking a laser to a reference cavi-

ty with unsurpassed precision. Laser phase
locking has produced a laser linewidth as narrow

as —100 hertz in the case of a dye laser and is
also being used in an attempt to detect gravity
waves with optical interferometers. While these
detection ideas are new in the optical region, far
earlier developments at longer wavelengths exist.
Thus, Smaller demonstrated some thirty years ago
the advantages of phase modulation in (linear)
magnetic resonance spectroscopy. Even earlier,
Pound proposed that microwave oscillators could
best be stabilized by phase locking. Phase-
modulation spectroscopy also resembles the hetero-
dyne detection utilized in coherent optical tran-
sients where laser frequency switching is em-

ployed. s

The basic spectroscopic arrangement considered
here consists of a combination of optical pump and
probe fields which appear either simultaneously or

in sequence. The pump is typically a single fre-

quency cw laser field that prepares an atomic sam-

ple, for example, by burning a hole within its inho-

mogeneous line shape. The probe, which can be
derived from the pump or another laser source, is

phase modulated and therefore contains a Bessel
function distribution of sidebands that appear sym-

metrically in pairs about the unmodulated laser

frequency.
In the absence of attenuation, each pair of side-

bands generates with the central frequency com-

ponent at a photodetector a pair of heterodyne beat

signals of opposite phase which just cancel. This
balance is upset and a nonvanishing beat signal
remains when the probe frequency is swept, bring-

ing a sideband into resonance with the prepared
hole. The background signal and its noise are
therefore eliminated automatically. Moreover,
since the beat frequency can be made arbitrarily

high (radio or microwave), the desired beat signal
can be detected in a spectral region where the resi-
dual noise spectrum is falling off. The resulting

high sensitivity, which will ultimately be limited

by shot noise, promises new levels of precision in
laser spectroscopy.
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II. BASIC THEORY

A. Equations of motion:
counterpropagating beams

%C treat the nonlinear optical response of an
atomic two-level quantum system subject to two
collinear light fields that propagate in opposite
directions along the laboratory z axis. The one
field,

i {uot +kz)
E&(z,t) =E&e +c.c. ,

we designate the pump field. The counterpro-

pagating component, the probe field

Eo(z, t) =Eoe e'~ +c.c. ,
l {cgot kZ) l {t)

is phase modulated at frequency 0 where

(2.2)

and therefore possesses sidebands according to the
Fourier decomposition

In this article, we investigate the theory of
phase-Inodulation laser spectroscopy, extending the
work of Bjorklund"' and Hall et al. Our
analysis treats the nonlinear optical response of a
two-level atomic quantum system subject to copro-
pagating or counterpropagating laser beams where
at least one of the fields is phase modulated. The
counterpropagating beam case resembles the
I.amb-dip effect but is more complex due to the
multimode character of the phase-nodulated
probe. Solutions equivalent to a rate-equation re-
sult are developed and the effect of coherence
corrections are examined, revealing in certain cases
ncw rcsonanccs. Thc dclaycd puIIlp-pI'obc meas-
urement frequently encountered in solid-state
optical-hole-buring studies is analyzed where it is
found that the two- and thr~-level quantum sys-
tems behave differently. Finally, the (linear)

response of a Fabry-Perot cavity to a phase-
modulated light wave is considered because of its
relevance to phase locking a laser.

and hence its time dependence, we transform from
the laboratory (z) to the atom's moving coordinate
(z') by

z =z'+u, t .

The total field can then be written in the compact
form

E(z', t) =E,(z', t)+E, (z', t)
i {A)0—kU&)f ~ z yl

where the pump field is specified by m =1,

Ao ——Eie' and Qo ——2ku» n =0,
and the probe field by m =0,

Q„=nQ, n =0, +1, +2, . . . . (2,.6)

Thus, it is assumed that the two fields are present
simultaneously, ~hereas in Sec. III the simpler
problem of pump and probe occupying different
time intervals is considered. %C ignore the slight
diffcrcncc in pump and pI'obc k vectors
(hk =0/e) arising from phase modulation and as-
sume in (2.5) and (2.6) that k =ko ——k„. Also, the
slowly varying components of (2.4) are given by

E+(t)= QA„e " and E =(E+)

In addition, (2.4) is sufficiently general to allow
phase modulation in each of the countcrpropagat-
ing beams, a case we treat later.

The density-matrix equations of motion

ih =[8,p]+Bp

Bt

where the ellipsis represents damping terms for a
two-level quantum system, with upper level 2 and
lower level 1, can now be written as

d—p„(t)= (i~—&/T2)pg2
dt

lnQt
n (2.3a)

l Qttlt

2igw Q—A„e (2.8a)

Here, a„=i"Jn(M), J„ is the nth-order Bessel func-
t1On,

Both f1clds Ric RssuIIlcd polarized along thc x Rxis.
To account for the atom's motion with velocity u» —(m —m )/T& .
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Here, the atomic unperturbed energy eigenvalues
are

Hii ——%)i, H22 ——Ao)2,

Q)2i —=Q)2 —6)~,

while the off-diagonal optical-atom interaction is

H)p ——gAE(z, t),
with

g = —LM)2/A,

(2.9)

(2.10)

pi2 being the dipole matrix element. In (2.8), we
have applied the rotating wave approximation and
retained the slowly varying off-diagonal component

pi2 with the substitution

(2.14) is valid for an optically thin sample and fol-
lows from Maxwell's wave equation in the slowly-

varying envelope approximation. The angle brack-
et of (2.14) indicates an average

(p~2) = f G(u, )p~2(u, )d(ku, } (2.15)

over the inhomogeneous line shape where

—(0 /Q)
G(ug)=e * /(~~ku)

for an atomic system, u being the most probable
velocity. Equation (2.15) is to be evaluated in the
limit of infinite Doppler width, an assumption
which is valid in optical-hole-burning experiments.

However, the observable is a heterodyne beat of
the signal field (2.14) and the total field (2A) where
the cross terms of the intensity

~
E(t)+E,(t)

~

are
i(coo—ku )t

p&2=p&2~

The tuning parameter is defined as

~=~Zi —0+ ku

(2.11)

(2.12)

8(t)=E+E, +E E,+.

B. Laplace transform

(2.16)

the population difference as

1~=
2 (p22 —p]])

and the phenomenological dipole (T2) and popula-
tion (T& ) decay times have been introduced.

The pump and probe fields generate a signal

field

The equations of motion (2.8) constitute a set of
three linear differential equations with time-
dependent coefficients. These can be solved by use
of the Laplace transform'

p(Z) = f e 'p(t)dt, (2.17)

E,+ ~ig (p~2(z', t) ), (2.14) where the inverse transform is given by

where the directionality of the beam, as we shall

see, appears in the solution p&2(z', t) due to the
e-+' phase factors of (2.5) and (2.6). Equation

p(t)= . f e 'p(Z)dZ .

By application of (2.17), Eqs. (2.8) become

(2.18)

p, t(Z)= QA~w(Z —iQ„),

0
w(Z)(Z+1/T& }= ig QA„p~2(Z—+iQ„)+ig QA„p2~(Z —iQ„) .

n, m n, m

(2.19a)

(2.19b)

Here, the initial conditions are not retained as only the long-time behavior (t ««T2) is of interest. Notice
that Eqs. (2.19) do not close on one another but instead form an infinite hierarchy of coupled equations in-
volving terms of the type

p, 2(Z+iQ„),pi2(Z+2iQ„), pi2(Z+3io„), . . . .

This difficulty is formally avoided by introducing the translation operator"

T(X)f(Z) =f(2+iX),
where

T(X) ~ (iX)" 8"
n! QZn

(2.20)

and it is evident that
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T(X)T(Y)=T(X+Y) .

The hierarchy of Eqs. (2.19}can now be written in a compact form which closes, namely,

(2.21)

pi&(Z) = . g A„T(—Q„)w (Z),

0
w(Z)(Z+1/T, )= ig—gA„'T(Q„)pii(Z)+ig gA„T( —Q„)pzi(Z) .

] n, m n, m

(2.22a)

(2.22b)

(2.23)
n, n'

m, m'

where

However, the problem of dealing with noncommuting operators must be faced. We find from (2.22b), after
inserting p, z(Z) and pz, (Z) from (2.22a) and then using {2.21},that

w /ZTi ——Z + 1/Ti +4g g A„„(Z)A„'A„'T(Q„—Q„) w (Z),

A„'„. (Z}=—,[(Z ii},+—iQ„+1/Ti) '+(Z+ih iQ,—+1/Ti) '] . (2.24)

C. Rate equations

At this point, it becomes necessary to introduce approximations, as the general analytic treatment
developed thus far cannot be sustained for all fields having arbitrary intensity. As an initial approximation,
we assume that the probe field ~A„~ is weak while the pump field ~At

~

is of arbitrary strength. Next, the
leading term (m =1, m'=1, n =0, n'=0) in (2.23), which yields an exact solution, is extracted from the
sum so that

w /ZTi ——Z+1Ti+4gi ~AO
~

iAOO(Z)+4gig' A„„(Z)A„'A„T(Q„Q„)w(Z—), {2.25)

where the prime on the summation denotes that the leading term of the sum (m =m'=1) is omitted. Equa-
tion (2.25) now has the form

[a(Z)+T]w(Z)=f(Z),

or equivalently we can invert the transformation to obtain

w(Z)=(1+a 'T) 'a 'f{Z) .

(2.26)

(2.27)

A perturbation expansion of (1+a 'T) ' in powers of the smaller terms A„'A„of (2.25) where m, m'Ql
yields

w' '

w(Z)= 1 —4g [Z+1/T, +4g~ ~A0
~

Ai'x'i(Z)] ' g 'A„'A„"A„„'-"(Z)T(Q„—Q„-" )
1 In, m)

XZ —'[Z+1/T, +4g ~AO ~'Aoo(Z)] (2.28)

where the translation operator T operates on all terms to the right of it that depend on Z. The leading term
of (2.28),

w' 1w(Z)= —Z+ +4g' ~A,
'

~

'A~ii(Z)
] ]

(2.29)

which we now consider, generates a result equivalent to the rate equations. The remaining higher order g
terms of (2.28), the coherence terms, modulate the population at the sideband frequencies 0„'—0„-' '

and
will be treated later as a correction. With the aid of (2.19a) and (2.29), we have



P[z(»=—
2IgLO /Ti

gA„(Z —iQ„) ' Z i—Q„+ +4g IAo I
Aoo(Z i—Q„)

The inverse Laplace transform (2.18) applied to (2.30) yields

2lgN /T( g OeilOt

pie«) = —g i(» —~)+ l/T2 l/T, +4g' IAt I'Aoo(0)
(2.31)

where we have considered only the poles Z =in 0 as the others, with decay time Tz or shorter, are strongly
damped in the long time limit t g~ Tz.

Notice that piz generates the signal field (2.14)

E+( i t) y D ilot

l

where

—Big (Tt/Tr)w IAo I
~t 2(~—2k')'+, +4g'(Ti/T2)

I
~o

I

'
5—IQ+i/Tz T2

(2.33)

and we have omitted the unsaturated term anticipating that it vanishes upon Doppler integration. To this
order of approximation, E,+ is emitted in the direction of the probe beam as the above term
Dl ~Al ——Eoe ' al indicates.

The heterodyne beat signal (2.16) then follows from the signal field (2.32) and the probe field (2.7) with
m =0 where

g g oeitlot~+e ilot+—c c
n, l

Selecting those terms in the double sum which give the fundamental beat term E-+' ', we find that

&(t)= g t~l 1~If (i)+/tl+ I~I f—'(ll]e'"'+c.c. ,
1

(2.34)

(2.35)

where f(I) consists of the remaining terms of DI. The relations (2.3b) allow us to prove that the index inter-
change I~—I results in

Al+ )Al* —+ —Al ill,
and thus the terms can be combined as

&(t)= g~;,/l, [f(i) f'( i)]e'"'+c—.c. —
1

(2.37)

or

slg (T$ /T2 )w
I
J4 o

(6 2ko ) + l/T2+4g (Ti /T2)
I Ao I

IQ /P Q+IQ i/P (2.38)

The Doppler integral (2.15) of 8 (t) can be carried out by contour integration to give a result equivalent to
that of the rate equations,

+c.c. (2.39)

with
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a= (1+4g'TITS iAO i

)'
T2

I = —,(a+1/T2),

5=6)2~ —QPO s

Rlld N = 1 j(~S'kit) 1S tllC IIOrmR11ZRtlOII fRCtOi Of (2.15).
Thc behavior of (2.39) ls easily scen by consldcring only tlM central component with I =0 and thc two

sidcbands at ~o+0 with I =+1, which yields

T) Jo(M)JI(M)
(80(t) ) = —16ItNg EOE I w 5

T2 Ot

5' —(0/2)2+ I'
'2 2

5——+r 5+—+IQ 2 0
2 2

2

5+—+IQ

2

sinQt

EqIIRtIOII (p.43} displRyS diSpCtS1VC (111-pllRSC) Slid

absorptive (out-of-phase) power-broadened
Lorentzian line shapes of width I as shown in Fig.
1. The central resonance co2&

——mo, which occurs
when the laser is tuned to the peak of the Doppler
line shape, is purely dispersive. To understand the
SIdeband rcsonancc QPo=&2~ —0/2, note that tlM

pump must burn a hole in a packet shifted from
the Doppler peak by 0/2 in order that the coun-

terpropagating high-frequency sideband at
m2~+0/2 can come into resonance with the same
packet. Similarly, the resonance at mo ——u2&+0/2
occurs when the pump is displaced by —0/2 from
the Doppler peak. In contrast to the central
feature, the sidcbands show both absorptive and
dispersive line shapes, the latter being opposite in

sign from the central line.
Consideration of other terms ln (2.39) results in

a correction of (2A3) as well as higher-order reso-

Finally, the rate equations predict a beat signal
only in the forward direction, the direction of the
probe beam, Rs indicated by tlM 8 factor coIl-
tained in the signal field (2.33).

The absence of a beat in the backward direction
is easily understood, as thc rate-equation approx&-
mation completely neglects the coherent oscilla-
tions of the population. Therefore, the backward
travelling pump remains a single frequency field
wh1ch ls Incapable of producing R heterodyne beat.
In Sec. II E, this case is treated.

Finally, an experimental situation might arise
where both the forward and backward waves are
phRsc modulated. A similar CRlculRtlon to thc
above reveals that

(8(t)) = SiltNg~w TI—g ~A„' ~'A„ IA„e'"'

Pl —8 0
Q —l (fJ —&

2 T2
'2

+1/T2 5+ 0 +1/T2
+c.c. ,

which resembles (2.39).

D. Cohcrcncc effects

The rate-equation result (2.39) ignores coherence effects, i.e., sideband terms that coherently modulate the
population at frequency n Q. %hen coherence is included, beat signals appear in both forward and back-
ward directions and new resonances are found. %'c therefore return to (2.28) Rnd consider for the moment
only those terms omitted in the rate-equation calculation. %ith (2.28) and (2.22a), wc now obtain
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FIG. 1. Theoretical absorption (left) and dispersion (right) line shapes for a two-level atom interacting simultaneous-

ly with a pump field and a counterpropagating phase-modulated probe field which is detected. The frequency axis
5=csi~ —

co&& Solid curve: Eq. (2.55) which is equivalent to a rate-equation result. Dashed curve: the sum of (2.55) and
the coherence correction (2.56). Parameters: T~ ——1 @sec, x =5, 0=30 (2m radians @sec '), and F=1.72.

~ 3 0

P»(Z)= g'A„[Z iQ„+I/T—i+4g'~ArI
~

Ace(Z iQ )]
Z —i4+1/T2 „

g'A„'A„" A„'„' "(Z —'0„)T(0„'—0„"—0„)
In', m'I

' —1

x —' Z+ ' +4g'~A,'~'A~it(Z)
Z

(2.44)

In anticipating the Laplace transform, we first notice that T(0„'—0„-' ' —0„)/Z provides the only pole
that is not damped in the long-time limit. Secondly, our interest is restricted to terms that oscillate at lQ so

tg tl
that in (2.44) the operator T =T( —10). Thirdly, the amplitude product A„A„A„- contains the phase
factors

( k Its k m +k ~ jge'

where

k m=1,
I m —k m=0, {2.45)

as indicated in (2.5) and (2.6). Eight possible combinations of the values exist, but only three are relevant:

m =1, m'=1, m"=0 ~e-'™,
m =1, m'=0, m"=0 ~e'
m =0, m'=0, m"=1 ~e'

(2.46a)

(2.46b)

(2.46c)

where m =1 ~n =0 and m =0 ~n =+1, +2, . . . . Considering the case (2.46a) where the signal field
propagates in the direction of the probe bein, the Laplace transform of (2.44) evaluated at the pole Z =ilQ
gives the signal field E,+, (2.32), where
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4 0

~&0 )'&I'[iin —i2ku, +1/T, +4g'~AO )'A 00(iln —i2kv, )] '

5—lQ+i /T2

XA(')((iln i—2ku, ) 1+4g2 ~A(')
~

2

T2 (5—ku, ) +1/T2

Notice that the Doppler integral of (2.47) vanishes when the
~
Ao

~

term of the last line of (2.47) is neglect-
ed. This observation causes us to rewrite the last, large-parentheses expression as

'=1- 4g' ~A(~)
~

'T, /T,
(2.4

(5—kug) +1/T2+4g l~o I
T&/T2

Equation (2.47) then becomes

32ig (T~/Tq)w (Ao
~

A~

b —IQ+& /T2

X [an i 2kv, +—1/T, +4g'
~

/I 0 ~

'A~(an —i 2ku, )]-'

x[(5 ku, ) —+I/T2+4g ~AO
~

T)IT2]

The remaining steps follow the rate-equation calculation.
The coherence correction to the heterodyne beat signal (2.37) takes the form

32g (T~/T2)w e'"'~AO
~

z(5—ku, ) +1/T2+4g iAO i Ti/Tq

AOI(iln —i 2kv, }
X gA~' ~A~ —ln+2ku, + +4ig ~Au

~

~AOO(iln 2iku, }— —(l~ —1)~ +c.c.,

(2.50)

Ao~(an i 2ku, )= ——]0. 1 + 1

2 —lQ+ 5+~ /T2 kv, —5+i /T2

A00(i/Q —i 2k' )=— 1
~ + 1

2 —1Q+ 6+i /T2 —1Q+ 3kv, —5+i /T2

The appearance of 2kv, and 3kv, in the above resonance denominators suggests higher-order resonances.
However, these effects disappear on Doppler integration and would be observed only in the presence of a
third field as witnessed in previous studies. '~'

By contour integration, the Doppler integral of 8&(t) is

(8 (r) ) = — Ng w
~

A
'

~

e'"'
Ia Tz

x QAI' )A(
I

5—lQ/2+2iI
(5—1Q/2+iI +ia)

1Q . . 1Q . 1Q

2
+5+~a+) /2T] 5— +& I 5— +~a+~ I

2 2

—g ~AO ~
5— +il +ia/21Q

2
—c.c.(1~—1) +c c



The final result is the sum of (2.39) and (2.52),

(8(r) }=(8.(r)+8, (r) } .

Let us treat the case ( =0 and I =+ l again using the reduced variables and definitions

x=4g'r, r, ~W,'~', n=u'1+x,
I =-,'(1+v'I+x), Z;=2r, ,

Q=T20, 5=T25.

%e find

x I'0+i[5 +I —(0/2) ] i
&1+ [(5—0/2)'+I'][(5+0/2)'+I'] 5 +I'

(2.53)

(2.54)

(2.55)

where

05-—+ir
2

0
5——+iI +ia

2

Q .— — 0 .— . — 0 . . ~
— 0 .— .a

5——+iI 5——+i I +iu 5——+ia+i ——, 5——+i I +i—
2 2 2 2 2 2

The coherence correction (8~ }to the rate-equation result (8&& } is illustrated in Fig. 1 and is reminiscent of
Lamb-dip theories' "when coherence contributions are included.

For weak fields, the ratio of the coherence correction to the rate-equation contribution is

&8, } r,
4g'r, Z; ~W,

' ~'.
8up Ti

Thus, the rate equations are valid only when T2 ~g Ti and the fields are weak,

4g'~, 2;
I so ~

'« 1 .

E. The backward wave

Now consider beat signals that propagate in the backward direction, the direction of the pump field.
Analysis shows that case (2.46c) is quahtatively similar to the coherence correction of the beat signal pro-
pagating in the forward direction (2.46a) and is of higher order, being proportional to ~Au

~
. The dom-

inant beat signal in the backward direction corresponds to (2.46b) which we now discuss in detail. The
starting point is (2.44) and takes the form

y [Z 2iku, +1/r, +4g'—
~
a,'

~

'W~(Z —i 2ku, ))-'

XA„„-(Z 2iku, )[Z —i [2kv, —0(n' n—")]]—
g 1 Z i [2ku, —0(n—' —n ")]+1/T~

+4g ~g2,
'

~

'A "[Z i(2kv, Q—n'+Qn—")]J
'

(2.57)
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under the condition (2.46b).
To the lowest order of approximation, we drop the power broadening

i Ao
~

terms in the above denomi-
nators and perform the Laplace transform at the pole Z =2ikU, —iQ(n' —n") to obtain

2!kU t —i (7l —n )Qt
P12 g 0 ~ n n

Q( «i)+ ~ /TB,lf

X [ku, —5—(n' —n")Q —i /T&]

)&[(ku, +5 n "Q—+i/Tq) ' (ku,—+5 n'Q— i /T—q) '] .

Proceeding as in Sec. II C, the signal field

Es -&gP12

appears in the heterodyne beat expression

8(t)=E+E, +E E,+,
where we see that the pump field

E+(t)=doe
2ikv t

cancels the e ' factor of (2.58).
Upon Doppler integration of (2.59) and with the manipulations (2.35) and (2.36) to extract beats oscillat-

ing at e' ', we find that

5 ——(l +1) +1/T2+iQ . Q(l +1)
2 T2

'2

5——(i+1) +1/Tp
2

2

(l+1) +1/T2
2

+C.C. ,

where tang=1/(QT& ). To see the behavior of (2.60) in lowest order, we again select terms in l =0 and
l =+1 with the result

(8(t))= —16mg tuoN EuEiJq(M)Ji(M)
[1+(QT) )~]'/~

2

5+—+1/T2Q
2

2Q/T,
cos(Qt +q)

[(5—Q) +1/Tp][(5+Q) +1/Tp]

'2

5+—+1/T,Q 2

2

5 —(Q/2) +1/T2
2

5——+1/T2
2

5' —Q'+1/T,'
2 sin(Qt +y) .

[(5—Q)~+ 1/Tp][(5+ Q) + 1/Tg]
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Thus, the backward wave displays I.orentzian
line shapes of width 1/T2 in absorption and
dispersion when the resonance conditions
6=+0/2 and 5=+0 are satisfied. A plot of
(2.61) in Fig. 2 reveals that the 0,/2 and 0 reso-
nances are of opposite sign but are equal in abso-
lute magnitude. Unlike the beat signal of the for-

ward wave (2.43), the 5=+0 resonances are new

and the 5=0 resonance is missing. The beats ex-

pected in the forward direction have indeed been

observed" ' and the prediction (2.61) has just
been detected in this laboratory. ' '"'

III. SOLIDS

A. Two-level problem

-50 -40 -30 -20 -'IO 0 10 20 30 40 50

(3.1)

which replaces (2.1), propagates in the same direc-
tion as the probe field (2.2),

i (Opt —k2z) (t)E,(z, t)=E2e e' '+c.c. ,

A number of hole-burning experiments have
been reported recently in solid-state laser spectros-
copy. ' A pump field burns a hole which resides
in the ground-state population distribution long
after the field is removed. A weaker probe field
then follows and monitors the memory of the hole
in one or more transitions, revealing hyperfine
structure and potentially dynamic line broadening
effects. Since phase modulation is useful in this
application, ' we present the relevant theory.

The previous two-level formalism can be adopt-
ed except that the pump field

i (Q)t —k Iz)
Ei(z, t) =Eie +c.c. ,

where the indices are changed for convenience,
k=—ki-k2 Ao=E&e»d o=0 Since the
pump and probe occupy different time intervals,
the treatment is significantly simpler than Sec. II.
For the preparative stage, the equations of motion
(2.8) are now

dp)2

dt
=(ib i

—1/T2)p)2 —2igwE), (3.3a)

(3.3b)

I I I I I I I I

-50 -40 -30 -20 -10 0 10 20 30 40 50

5 (2~radians itrsac ")
FIG. 2. Theoretical absorption (upper curve) and

dispersion (lower curve) line shapes for a two-level atom
interacting simultaneously with a pump field and a
counterpropagating phase-modulated probe field, Eq.
(2.61). In this case the pump beam is detected, and be-

sides the 5=+0/2 resonances, new resonances appear
at 5=+0 due to the inclusion of coherence corrections.
Parameters: T2 ——1 @sec and 0=30 (2m radians psec ').

5;=co2i —0;+ku„ i =1, 2.
The steady-state solution, dp&2/dt =w =0, is

m„=m 1—0

is]+ I/T2+4g (E) [ T)/T2
. (3.&)

dp12

dt
=(ih2 I/T2)pr2 2igm—„+A—„e'" '

in the long-time limit t g& T2 with

(3.6)

For the probing stage, we obtain a perturbation
solution of
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j&z(t) = —2igut„g A„e'""'( id—q+in0+ 1/Tq), (3.7)

m„being given by (3.5). Contour integration of the Doppler-like integral of p12(t) followed by the manipu-

lations (2.35) and (2.36) yields the beat signal

T1(8(r))= Sin—w Ng [E, (

e'n'
T2CE

where

5' —(IQ/2) —i I IQ+ I
[(5'—10/2)'+ I'][(5'+10/2)'+ I'] (3.8)

5'=(Q1 —Q2)/2,

and a and I are defined by (2.40) and (2.41). This result has precisely the same form as the case of the
counterpropagating pump and probe beams, Eq. (2.39), except that the tuning parameter changes from the
off-resonance parameter 5=co21 —coo to the laser frequency difference 5' = (Q1 —Q2) /2. Hence, the beat sig-
nals will have the appearance of Fig. 1.

B. Three-level problem

In the spirit of the previous section, we now treat a three-level quantum system where two optical transi-
tions, 1~3 and 1~2, share a common lower level. In the preparation the pump field (3.1) first excites one
of the transitions, and thereafter, the probe field (3.2) samples the residual hole in the population distribu-
tion of level 1 in either transition. At first sight, it would appear that the three-level case offers nothing
new. However, careful analysis shows that the two transitions, as seen by the probe, do not exhibit the same
response.

For the preparative stage, the density-matrix equations of motion can be written as

dP21

dt
~ ~21P21 ~g1E1 (P11 P22)+~g2E1 P23 ~P21 &

P31

dt 3]P31—ig2E 1 (P1 1
—

IP33) +&g 1E1 P32 P31

dAP23 . . — . + )

dt
+23P23(g1E1P13+~g2E1P21+P23

P» ——y2[0»+y~33+ig, ( —E,+P»+E1 P»)+ ig2( —E,+P»+E, P»),

P22 gl( E1 P12+E1 P21) 3 2P22 s

P33 —~g2( E1 P13+E1 P31) $3P33 ~

The following matrix elements and definitions apply:

H;;=%co;, co,j.——co; —coj, i or j =1, 2, 3

H12 ——g1AE1, H13 ——g2M 1, H23 =0,
i (0&—kv )t

piq=pi)e ~J=12 or 13

621 ——Q1 —co21 —kvg,

431—Q1 C031 —kv,

~23=~32

We also assume that the system is isolated so that

(3.9)

(3.10)
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P11+P22+P33 s

and that the pump field resonantly excites one transition or the other, but not both simultaneously so that

we expect that

p»-o.
For simplicity, we assume that

g =g1=g2»d X='F2=3'3 .

In steady state, the solutions are

(s'„+r')(a,', +r')+a'(a,', + r '}
(b,'„+r2)(4,', +I')+2a'(5,', +6'„+2r2)+3a' '

(~xi+ r'}(~3i+ r'}+a '(~4+ r'}"=
(S,', +r2)(w'„+r )+2 2(a,', +a', , +2r )+3a

where

(3.11)

(3.12)

For the probing period, lowest-order perturbation theory yields the equation of motion

d 21

Ch
=i Z2,p2, ig g—A„'e '"n'w

)2 —I p2),

which has the long-time (t &~ T2 } solution

p2i(&)= ~g g w'A~.*e '""'

Similarly,

p3)(&)=p2((2~3),

where

1

—&n Q —
& h21+ I

h21 ——Q2 —CO21 —kV, ,

h31 ——Q2 —C031 —kVg .

Proceeding as before, the signal field is

E. — ~g(p~i+P»),

and the heterodyne beat is of the form

a (r}= g' g e'—"ta„,W,
'

N12
X —ilQ —ih21+ I

SS SS SS
N12 N13 N13+—il0+i h21 +I —ilQ —531+1 —ilQ+i h, +I

(3.13)

To carry out the Doppler integration, we consider the weak-field case

2 (h21+ I )+2(h31+I 2)

(h2 +P2)(h2 +P2)

w ~q ——(w ~2)(2~3), (3.14)

where power broadening is ignored by neglecting the a 2 and a terms in the denominators of (3.11) and (3.12).
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Upon the Doppler-like integration of (3.13), the final result is

g'.
I
E tI', „,(B(r))=4ni e'"'QAr+iAr' [4F&(h)+F,(Q 5—)+Fj(6+$)]+c.c
y

(3.1S)

with

—(IQ)'+ 6'+4I'+4i I IQ

[(IQ+6,)'+4I'][(IQ —b, )'+4I']
A=Q2 —Q),

5=c023 .

Equation (3.15) is shown in Fig. 3 for the case
I =0 and l = —1 and shares common features with
the copropagating beam two-level case (3.8). The
dispersion spectrum consists of a central triplet
feature at Q2=Q& and Q2=Qi+co23 while one
sideband appears as a triplet at Q2 ——Q~ —Q and

Q2 —Q] Q+c023 and the other sideband at
Q2 ——Q)+Q and Q2 ——Q]+Q +cop3. The absorp-
tion shows two triplets centered at Q2 ——Q~+Q,
corresponding to the dispersion spectrum, but now
the central feature is missing as in the two-level
case of Fig. 1. Also, the Lorentzian line shape has
a width of 2I due to the separate contributions of
pump and probe absorption.

Note that the central absorption components at
Q2 ——Q& +Q are four times as intense as the satel-
lite lines at Q2 ——Q~+Q+co23. Two factors contri-
bute to this ratio. First, the central component is
due to two transitions, 1~3 and 1~2, which are
excited at the same frequency due to the inhomo-
geneous broadening whereas the satellite lines are
single transitions. This effect contributes a factor
of 2. Second, the nonlinear response of a transi-
tion is proportional to the incremental change in
population [see Eq. (2.8a)]. If the population
change arising from hole burning is —5 for the
lower state and +5 for the upper state, the central
component intensity will be proportional to 25.
However, the satellite line involves a common
lower state with its contribution of +5 while the
excited state is not prepared and therefore does not
contribute. This effect provides the remaining fac-
tor of 2.

IU. FABRY-PEROT

We now calculate the response of a plane mirror
Fabry-Perot cavity to a phase-modulated laser

iUQi

I I l I I l I l

-100 -80 -60 -40 -2Q Q 20 4Q 60 80 100

I I I I I I I I

-100 -80 -60 -40 -20 0 20 40 60 80 100

6{2tr radians iisec ")
FIG. 3. Theoretical absorption (upper curves) and

dispersion (lower curve) line shapes for a three-level
atom interacting initially with a pump field of frequency
Qi and subsequently with a probe field of frequency 02,
Eq. (3.15). The frequency axis E=Q2 —Qi. Triplet
features appear where the central line is four times the
intensity of either satellite line. Parameters: 0=50 (2m

radianspsec '), I =0.25 @sec ', and co23
——10 (2n.

radianspcsec ').
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beam. This linear problem, which contrasts with
the nonlinear atomic case, is the basis of an impor-
tant method for precision laser frequency (phase)
locking.

The incident field, which strikes the mirrors at
normal incidence, is again given by (2.2), and the
transmitted and reflected field amplitudes are well
known' to be

1 —R
;,Eo

1 —Re'

1 —e'
Er —vR, a Eo,

1 —Re'

(4.1)

(4.2)

where 8 is the mirror's reflectivity and the phase
change for a double traversal of a cavity of spacing
d 1s

For a high-reflectivity cavity satisfying the con-
dition 1 —8 ~g 1, we approximate the phase factor
by

I I

-50 -40 -30 -20 - j0 0 10 20 30 40 50

e' —1+F5 . (4 4)

Recognizing that the cavity resonance condition is

5„=2ndco, /c =m2m. (m =0,1,2, . . .),
we rewrite (4.4) as

e' =e ' -1+i2nd'/c,i(5—5 )

where the tuning parameter

(4.6)

Substitution of (4.6) into (4.1) and (4.2) gives

I (I +id) E
g2+ p2 (4.8)

I ]

-50 -40 -30 -20 -'t 0 0 10 20 30 40 50

6(2vr radians iiisec )
(4.9)

with the linewidth defined by

2nd

The transmitted intensity then assumes the form

~2 12+A+ A iQt I +iAI

I —ill +c.c. , (4.10)
I

FIG. 4. Theoretical absorption (upper curve) and
dispersion (lower curve) line shapes for a Fabry-Perot
cavity subjected to a phase-modulated laser beam where
detection is in reflection, Eq. (4.12). The frequency axis
A=coo —cg, . The transmission line shape simply reverses
sign as (4.13) indicates. Parameters: 0=30 (2m

radians @sec '), and I'=1 psec

~here Eo has been expanded into its sidebands
through (2.3a) and we have retained in the sum
only the beat terms containing e' '. For the case
1=0 and I =+1, Eq. (4.10) reduces to
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Thus, three linear resonances appear (Fig. 4) at mo
——m, and mo ——e,+0, both in absorption and dispersion.

In contrast to the nonlinear atomic response, (2.43) for example, the central line provides a nonvanishing ab-

sorption signal, an effect which apparently has gone unnoticed. ' This central feature can disappear, how-

ever, when the absorption spectrum is not pure and contains a dispersive component when the phase angle 0
is given by

I —0tan8=

A similar calculation for the intensity of the reflected component shows that

(r +z')~r'+(~+n)'][r'+(~ —n)'] (4.12)

where we see that (4.11) and (4.12) are related by

~

F., ~

'= ——coa(l)(Q'/I'+1)'"
~
E,

~

'2 2

the role of higher-order coherence effects and the
appearance of new resonances.
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