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The photoionization of molecular nitrogen has been studied using a frozen-core

Hartree-Fock final-state wave function with a correlated intitial-state wave function. The

final-state wave function was obtained using the iterative Schwinger variational method.

The eA'ects of initial-state correlation were studied by comparing cross sections obtained

using a configuration-interaction-type initial-state wave function with those obtained using

a Hartree-Fock initial-state wave function. In this paper we compare our accurate

single-center expansion results with other theoretical results. %e find that earlier single-

center cross sections were not well converged with respect to their expansion parameters.

The results of the continuum multiple-scattering method and the Stieltjes-Tchebycheff

moment-theory approach are found to be in qualitative but not quantitative agreement

with the present results. %e also compare our computed total cross sections as well as

integrated target angular distributions with experimental results for photoionization lead-

ing to the X Xg, A H„, and 8 X„+ states of N2+. %e find generally good agreement,

which is improved by the inclusion of initial-state correlation effects, especially in the

resonant photoionization channel leading to the X Xg state of N2+. %'e also report in-

tegrated detector angular distributions for these three channels.

I. INTRODUCTION

The photoionization of molecular systems is a
topic of much current theoretical interest. ' As a
prototypical system, the photoionization of molecu-
lar nitrogen has been studied using several different

methods including the continuum multiple-scat-

tering method (CMSM), the Stieltjes-Tchebycheff
moment-theory approach (STMT), both in the
Hartree-Pock (HF) approximation ' and the
random-phase approximation with exchange
(RPAE) 5 and several numerical single-center ex-

pansion methods. The single-center expansion
methods applied to the photoionization of molecu-
lar nitrogen have treated the interaction potential
in several different ways. There have been static
and static-plus-orthogonalization calculations,
static-plus-model-exchange calculations, and exact
static-exchange calculations. ' Most previous
studies have attempted to obtain the continuum
solution for the final state using the frozen-core
Hartree-Pock (FCHF) approximation. The present
study is directed at obtaining accurate and con-
verged FCHF solutions for the final-state wave
function, using the body-fixed frame, fixed nuclei
approach. We compare our results with some of

the other theoretical results mentioned above and
with the experimental results of continuous source
experiments by Plummer et al." and Marr et al. '

using synchrotron radiation, and by Hamnett
et al. ' and Wight et al. ' obtained using an (e,2e)
technique.

We have considered the photoionization leading
to the X Xg, A H„, and 8 Xg states of N2+.
Both total and partial photoionization cross sec-
tions and angular distributions for these states are
reported. Following the suggestion of Wallace and

Dill, ' we give both the asymmetry parameter for
the usual integrated target angular distribution
(ITAD), denoted here by ph. , and the integrated

detector angular distribution (H3AD), denoted by

Pe. In combination with accurate FCHF final-

state wave functions, we have considered the effect
of initial-state correlation by comparing the results
obtained using both HF and configuration-inter-
action-type (CI) initial-state wave functions. The
difference between the dipole length and dipole
velocity forms of the cross sections is used to esti-
mate the remaining final-state correlation effects.

We solve the static-exchange continuum equa-
tions using the iterative Schwinger method. ' '
This method is essentially a single-center expansion
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technique comparable to the methods used by
Raseev et al. and Robb and Collins. ' The itera-
tive Schwinger method has been earlier applied to
the photoionization of H2 and CO2 (Refs. 18 and
19) as well as to electron-molecule collisions for the
e-H2, e-LiH, and e-CO2 systems. ' ' ' ' we find in
this study of the photoionization of N2 that the
iterative Schwinger method converges rapidly.

The present results are compared with the re-

sults of other single-center expansion methods. We
find that, for the shape resonance in the photoioni-
zation channel leading to the X Xg+ state of N2+,

the previous results of Raseev et al. and Robb
et al. ' are not well converged. In particular, their

peak cross section occurs at a photon energy of 31
eV which differs from the present result of 29 eV.
In this regard, we have determined empirically that
the energy of the peak cross section in this shape
resonance, for which the continuum function is of
a„symmetry, converges as

1
Emax Emax ~

I

where I is the maximum I included in the partial-
wave expansion of the continuum function. We
also compare our accurate static-exchange results
with the results obtained using the CMSM and
STMT methods. This comparison shows that
the CMSM and STMT results are qualitatively
similar to accurate static-exchange results but nei-

ther the CMSM nor STMT is in quantitative
(better than 10%) agreement with the present resu-
lts. Finally, the comparison with experimental
results" ' shows that the FCHF final-state model
reproduces the experimental cross section well ex-

cept in the energy regions where two-electron reso-
nances, such as autoionization, are important.

We find that the inclusion of initial-state correla-
tion brings the dipole length and velocity forms of
the photoionization cross section into better agree-
ment with experimental results. This result for
molecular systems is similar to that found by
Swanson and Armstrong for atomic systems. In
the region of the shape resonance leading to the
X Xg+ state of N2+, the combination of the corre-
lated intitial-state wave function and the FCHF
final-state wave function is found to be particularly
effective.

II. METHOD

A. Iterative Schwinger variational method

We compute the final-state photoionization wave
functions using the FCHF approximation. This

implies that the final state is described by a single
electronic configuration in which the ionic core or-
bitals are constrained to be identical to the HF or-
bitals of the neutral molecule. The Schrodinger
equation for the remaining continuum orbital is
then (in atomic units)

k2
V( )

k
(2)

where V(r) is the short-range portion of the
static-exchange potential, and k is the momentum
of the continuum electron. By using the FCHF
approximation, the final-state photoionization
problem is reduced to solving a single-particle po-
tential scattering problem.

The Schrodinger equation given in Eq. (2) is
equivalent to the Lippmann-Schwinger equation

%="=%-'-+'+ G"-"UQ --'',
k k k

(3)

where U(r) =2V(r), and G"+-' is the Coulomb
Green's function defined by

G"+-'= V +—+k +is
T

(4)

c(+) 2(r)=k 7r
g i'/k) +'(r)Y(' (Q-g), (5)
l, m

where P"+-' is the partial-wave Coulomb function
defined by

) +;,FI(y;kr )
Pki~ (r)=e '

Yi (Qi) .
kr

The function FI(y; kr) is the regular Coulomb func-

tion, with y= —1/k, and oI is the Coulomb phase
shift defined as oi ——arg[f'(1+1+iy)]

The wave function (II'k ', which represents the

ejected electron with momentum k, is then expand-
ed in the partial-wave series

%=(r)=—( ) ~ 2
k

7T

-1/21
i' kI '(r)YI' (Qg)

where an infinite sum over l's has been truncated
at I =lz. Computing the wave function in the
partial-wave form allows the dependence of the
scattering solution on the target orientation to be

c(+) .
The function 4k is the pure Coulomb scattering
function and is given in terms of its partial-wave
expansion as

' 1/2
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treated analytically. The Lippmann-Schwinger
equation for the partial-wave states is then

fkI '( l=0ki' '( }+& IG" 'Ulfki '& (g&

is obtained from the previous set of solutions S„
from

We solve Eq. (gi using an iterative procedure. '

The iterative method begins by approximating the
short-range potential by a separable potential of the
form

&-.
[

U '[-. )

X,XjER 0 S

x&-.
~

O'-'U ~X, &[I&-'],,
x&&J IUlkkI' '&.

&rfUfa;)[pU '];&a JUfr ),
i' j (9)

where R is some initial set of expansion functions
and [U ],J is the matrix inverse of UJ. Inserting
this approximation to U in to Eq. (8) allows the
Lippmann-Schwinger equation to be solved since
the kernel of the integral equation is now separ-
able. The solution to Eq. (8) with the potential

~o.
approximated by U is

( —)So ~( )

4k~

+ g & r
~

G"-'U
~

a }[D-']

D,J ——&a; i
U —UG" 'U

i aJ ) .

The use of a separable potential of the form given

in Eq. (9) to solve the Lippmann-Schwinger equa-
tion is known to be identical to the use of the
Schwinger variational expression, and hence
we call this method the iterative Schwinger varia-
tional method.

The iterative method is continued by augmenting
the expansion set R, of Eq. (9), by the set of func-
tions

0 ~O
~0 I ('

l(&mk~ (('kl2m~ ~ ~ ~ ~gkl m ]

which are the scattering solutions given by Eq.
(10), and where I& is the maximum I included in
the expansion of the scattering solution as given in

Eq. (7). Using this augmented set of functions, a
second set of scattering solutions

SI 5)~ I
= [ (('kl

~
m ~ ~ ~ ~ r 4l m ]

is obtained using Eq. (10). In general, the set of
scattering solutions at the nth iteration

S S„~.= [AP, AI"

This iterative procedure is continued until the wave

functions converge. %'hen the wave functions do
converge, it can be shown that they are solutions of
the Lippmann-Schwinger equation for the exact
potential U. '

B. Frozen-core Hartree-Pock static-exchange
potential

In this section we will discuss the form of the
static-exchange potential, obtained from the FCHF
approximation, which describes the interaction of
the ionized electron with the open-shell ionic
core. First consider the HF wave function of a
closed-shell molecule such as N2. The HF wave

function is simply written as a single Slater deter-
minant

q'= Idi&dip 4.&d.pI .

The photoionization final-state wave function in

the FCHF approximation, where the ionized elec-
tron is removed from orbital P„, is written as

q'k =(-, l'"I
I bi~kiP

+ I dirrkÃ

assuming that P„ is a nondegenerate orbital. Then
the correct single-particle equation for the continu-
um electron is obtained from

&54-„jH E~ 4-„)=0, —

5q'k =( —, l'"(
I di&((iP

+ 14'i~4'i& 5&k&4"& I ]

and where Eq. (17& holds for all possible 5$-„.
The electronic Hamiltonian can be written as
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w

H= g f(i)+ p —,
i=1 i&j ij

(19)

with

1 p Za
f(i) = ——,v; —g

fia
(20)

where Z are the nuclear charges, and N =2n is

the number of electrons. The one-electron HF
Hamiltonian can be written in this form as

(21)H""=f+ g 2J, —K, ,
i=i

where f is the one-electron operator defined in Eq.
(20), and J; and K; are the usual Coulomb and ex-

change operators. Thus the HF orbitals satisfy

H""P„=e„P„. (22)

If we assume that the orbitals Pk and 5/k are

not necessarily orthogonal to each other nor to the
orthonormal set of occupied HF orbitals, then Eq.
(17) can be expanded to give

o=&(P5&~)
I
H ~+J.+&. I Pkk &+2&50k

I kn &&A. IH —e+J. 14. &&4. 14-, &

+2&54k14" &&4. IH+J. IP4i, &+2&(P54 4) I
H+J.

I 4. &&4. 14k & (23)

where

n —1

H=f+ g 2J; —K;
i=i

and

(24)

form of the scattering equation is entirely equi-
valent to the standard undetermined Lagrange
multiplier form' ' '

(H e+J„—+K„)P-„=g A.;P;, (3o)

(25) where A,; are undetermined multipliers, and P-„ is

subject to the condition

The energy of the continuum electron is &P-„1$;)=0, i=1,2, . . , n . . (31)

e=E—E'"', (26j

where E""is the Koopman's theorem energy of
the ionic core

Ecore EHF —&n . (27)

The fact that P„ is an eigenfunction of H " [Eq.
(22)], reduces Eq. (23) to

0= &(P5$k) I
H a+J„+E„

I Ppk )—
+2(..—.) &5y-„I y. ) &y. I

y-„), (28)

0= & (P5$'k )
I
H —e+J„+E„

I
PQ'„)-(29)

which must hold for all 5/k. If we consider the

case where 5$ &
——P„, then it follows that if eQe„

then & P-„1$„)=0. Thus, if P'-„satisfies
( P2+ Vouch e)P 0

The potential V'"" is a generalized Phillips-
Kleinman pseudopotential

(32)

Secondly, the continuum solution must be con-
strained to be orthogonal to the doubly occupied
orbitals since, unlike in the electron-neutral
closed-shell HF scattering case, the continuum or-
bital and the occupied orbitals are not eigenfunc-
tions of the same one-electron Hamiltonian. Last-
ly, the general open-shell scattering problem would

require the solution of Eq. (23), but as we have
seen, since we are using the FCHF approximation,
the scattering equations can be simplified to yield
Eq. (29).

A scattering equation of the form of Eq. (2) can
be obtained from Eq. (29) giving

for all 5$'-„and with e+e„, then P-„=PP'-„satisfies
Eq. (28). So, solving Eq. (29) will give us the
correct continuum wave function in the FCHF ap-
proximation.

There are several points to note about Eq. (29).
First, Eq. (29) constrains the solution PP'k to be
orthogonal to the occupied orbitals. Thus, this

V'""=V LQ QL+QL—Q, —

where L, Q, and V are defined by

L= ——,V —e+ V,

(33)

(34)

(35)
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and The partial-wave matrix elements are then given by

I( „=(k)'~ (4; I r„ I +Ik( ) (41)

Thus, we us thc pseudopotential V'"" to treat both
the static-exchange interaction and the effects of
constraining the continuum solution to be orthogo-
nal to the occupied bound orbitals.

C. Photoionization cross sections and

asymmetry parameters

The photoionization cross section for going from
an initial bound state %'; to the continuum state
4'& k due to linearly polarized light in the dipo1e

length and dipole velocity approximations is pro-
portional to the square of the dipole matrix ele-

ments

I'- =(k)'"(q, Ir nIqI-„)

for the dipole length form, and

(k)1/2
&q'

I ~„ I q'y, ki

for the dipole velocity form, where

+(x+iy )/2'/ for @=+1,
z for p=O,

+( )+i --- /2 for p =+1,1/2

X

(42)

(43)

for the dipole length form, and

for the velocity form. In Eqs. (37) and (38), E is

the photon energy, n is the direction of polariza-
tion of the light, and k is the momentum of the
photoelectron. The factor of (k)' in Eqs. (37)
and (38) is required to change the normalization of

v—)
the continuum functions, 4& k, from momentum to
energy normalized. Thc doubly difFerential pho-
toionization cross sections in the body-fixed frame
is then

If the wave functions used to calculate the pho-
toionization cross section were exact cigenfunctions
of the electronic Hamiltonian, then the dipole
length and dipole velocity forms of the cross sec-
tion would be equivalent. Thus, the equality of
these two forms is a necessary but not sufficient
condition that the computed cross sections are ac-
curate. In this sense, the difference between the
length and velocity forms can be viewed as an esti-
mate of the minimum error in the calculation.

To treat the angular dependence of the cross sec-
tion on the target orientation, the dipole matrix
elements are expanded in terms of spherical har-
monics

' 1/2

QI( '„Yg' (Ag)F)„(Qs) . (40)
fmp

The total photoionization cross section averaged
over all polarizations and photoelectron directions
is then

~v 4+
3c . p

Note that for linear molecules we have

bm =m(%';) —m(.')=p+m(/),

where .' represents ion core and+ represents the
photoelectron. There are two other averaged pho-
toionization cross sections of interest as suggested

by %aliace and Dill. ' The first is the usual in-

tegrated target angular distribution (ITAD). The
ITAD corresponds to the photoionization experi-
ment where the target orientation is not resolved.

This is the form of the photoionization cross sec-
tion measured in the usual gas phase experiment.
%'hen the cross section in Eq. (39) is averaged over
all target orientations the ITAD is found to be of
the form

da'v o "
[1+pg' p2(cos8)] .

The angle 8 is the angle between the direction of
polarization of the light and the momentum of the
electron, and P2(cos 8) is the Legendre polynomial
of degree 2. The asymmetry parameter Pg is given

b 34
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pg' = 1/g&~ g ( —1) "I( 'q(II '
~ )'[(21+1)(21'+1)]'~(1100

~

20)
p imp,

1'na p'

X (ll'00
)
20)(11 pp—'

~

2p")(ll' —m —m '
~

2 —{M"), (49)

do ' a''
[1+ps' P2(cos 8)] .

dQ~ 4m
(50)

The angle 8 in this case is the angle between the
direction of the polarization of the light and the
molecular z axis. The asymmetry parameter Ps is

given by

P =[2D. (D, +D„)]-

III. RESULTS AND DISCUSSION

A. Final-state wave functions

The final-state wave functions used in this study
of photoionization are constructed using the FCHF
approximation. The bound orbitals in this approx-
imation come from the HF wave function of the
neutral molecule. We have constructed a HF wave
function for the neutral N2 molecule using a
double-zeta plus d functions contracted Gaussian
basis of the form (9s Sp 2d/4s 3p 2d). ' The d-
function exponents are 1.5836 and 0.4691 which
are the exponents appropriate to representing a
Slater function with exponent /=2. 20.36 The bond

where (j,j2m ~mq
~
j3m3) is a Clebsch-Gordan coef-

ficient. Note that the asymmetry parameter pg
depends only on the photon energy and that the
subscript k implies only that pk describes the dis-

tribution of the photoelectrons and not that pg
depends on their direction. The second averaged
photoionization cross section we will consider is
the integrated detector angular distribution
(IDAD). The IDAD corresponds to the experi-
ment where the target orientation is fixed in the la-

boratory frame of reference and the cross section is
then integrated over all possible directions of emis-
sion of the photoelectron. Wallace and Dill' have

suggested that the IDAD cross section would be
useful in determining the orientation of a photoion-
ized target in the laboratory frame. When the
cross section given in Eq. (39) is integrated over all
photoelectron directions, the IDAD is found to be
of the form

I

length was taken as 2.068 a.u. The HF energy for
this basis set is F.= —108.973 235 a.u. , and the
quadrupole moment for the neutral N2 molecule in
the basis set is 8 = —0.9923 a.u. (Ref. 36).

To compute the final-state continuum wave
function we must evaluate the various matrix ele-

ments given in Eq. (14). We have used a single-
center expansion approach to evaluate all such ma-
trix elements. ' ' The use of single-center tech-
niques implies that all functions (e.g., scattering
functions, occupied orbitals, 1/r &2,

6" ') are ex-

panded about a common origin (taken to be the
bond center for N2) as a sum of spherical harmon-
ics times radial functions. The radial integrals are
computed by putting the radial functions on a grid
and then using Simpson's rule. The angular in-

tegrals can then be done analytically. Actual cal-
culations use standing-wave boundary conditions
thus allowing radial wave functions to be represent-
ed by real-valued functions.

There are several parameters which describe the
maximum I included in such spherical harmonic
expansions. Using a notation similar to that of
Robb and Collins, ' ' we define our expansion
parameters as follows:

(1) I = maximum I included in the expansion of
scattering functions [I s of Eq. (14)], of the
Coulomb Green's function, and of the projection
orbitals [P; of Eq. (35)].

(2) I,'"= maximum I included in the expansion
of the scattering functions in the exchange terms.

(3) I "= maximum I included in the expansion
of the occupied orbitals in the exchange terms.

(4) I; "= maximum I included in the expansion
of the occupied orbitals in the direct potential.

(5) k~ = maximum I included in the expansion
of 1/r &2 in the exchange terms.

(6) A,
"= maximum I included in the expansion

of 1/r~2 in the direct potential (not including the
nuclear terms).

Also note that we always include terms up to
A, =2lm in the expansion of the nuclear potential.
We have expanded all radial integrands on a grid
of 800 points extending to r =64.0 a.u. The small-

est step size in this grid is 0.01 a.u. which is used
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out to r =2.0 a.u. The largest step size is 0.16 a.u.
For the purposes of this study we have grouped

the six parameters listed above as follows:

IBx Tft l & m

For all calculations on N2 considered here we have
fixed I " to be I "=16(1og), 10(2og), 10(3o.g),
15( lo „),9(2o.„),9(1~„). These values correspond
to having normalized the expansions of the various
orbitals to better than 0.99.

To study the general convergence in this system
we have intitially considered four sets of parame-
ters:

(A) I ",„=20,

(8) I"',„=30,

(C) I ",„=40,

(0) I"',„=30,

I'",'„=20,

I'".'„=20,
I'",', =30 .

O

D
OP

EA

0
)5 20 25 30 55 40

Photon Energy (eV I

FIG. 1. Convergence of the 3o.
g
—+kcr„photoioniza-

tion cross section of N2 with varying potential parame-
ters: ———parameter set A (I"",„=20); —-—- param-
eter set 8 (I"",„=30); parameter set C (I ".„„=40).
For all three sets I'",'„=20. These are results of noni-
terative calculations using the o„basis set of Table I in

Eq. {10). One megabarn (Mb) is 10 ' cm2.

We have used these four sets of parameters to cal-
culate the photoionization cross section in the
3o.g~ko.„channel of N2. This channel was

chosen since it contains a shape resonance which
makes the computed cross section more sensitive to
the parameters of the potential than in a non-

resonant channel. The results for parameter sets

A, 8, and C are shown in Fig. 1. On the scale

shown in Fig. 1, the cross section with parameter
set D cannot be distinguished from that of set 8.
The difference between sets 8 and C is less than
5% in the cross section. We consider the accuracy
of set 8 to be adequate considering the FCHF ap-
proximation within which we are computing these
cross sections. Thus, except where noted, we have
used this set of parameters with I,„=30and I,„
=20 for all other calculations in this study. A
more detailed discussion of the convergence of the
energy peak cross sections in the 3crg~ke„chan-
nel is given in Sec. III C of this paper.

The scattering basis sets, corresponding to the
set 8 of Eq. (10), which were used to obtain
scattering solutions of the various possible sym-
metries, are given in Table I. The basis sets are
constructed both from Cartesian Gaussian func-
tions which are of the form

y(p)a, l, m, n, A

=x(x —A„) (y —3 ) (z —A, )"e

centered at the nuclei, and spherical Gaussians of
the form

y(r )a, l, m, A

=&
I
r —A

I

e I= I'yl

centered at the expansion origin. We have exam-
ined the rate of convergence of the iterative
Schwinger variational method with basis sets of
this size. In Fig. 2 we present the results of pho-
toionization calculations in the 3ag~ko. „channel
using the o„basis set given in Table I. The cross
section without iteration [Eq. (10)] and from the
first iteration [Eq. (14) with n =1] are both given
in Fig. 2. The cross section obtained from the
second iteration is indistinguishable from that
given for the first iteration on the scale presented
in Fig. 2. Thus, for all other channels we have
only presented cross sections from the results of the
first iteration. We have assured the adequacy of
the basis sets for the other scattering symmetries,
given in Table I, by comparing the zero-iteration
cross section to the one-iteration cross section. In
all the other channels considered here, this differ-
ence is small and of the same order as that we have
obtained in the 3o.

g ~ko„channel.

B. Initial-state wave function

Swanson and Armstrong found that inclusion
of correlation effects in the initial-state wave func-
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TABLE I. Scattering basis sets used with the Schwinger variational expression.

Symmetry of
continuum solution

Type of Gaussian
functionb Exponents

Cartesian s
Z

Spherical 1 =0
1=2

16.0,8.0,4.0,2.0,1.0,0.5
1.0,0.5
2.0,1.0,0.5
2.0,1.0,0.5

Cartesian s
Z

Spherical 1 = 1

1=3
1=5

16.0,8.0,4.0,2.0,1.0,0.5
1.0,0.5
4.0,2.0,1.0,0.5
4.0,2.0,1.0,0.5
1.0,0.5

Cartesian x
XZ

Spherical 1 = 1

1=3

8.0,4.0,2.0,1.0,0.5
0.5
1.0
1.0

XZ

Spherical 1 =2
1=4

8.0,4.0,2.0,1.0,0.5
0.5
1.0
1.0

Cartesian xy
Spherical 1 =2

1=4

4.0,2.0,1.0,0.5,0.25
1.0
1.0

'These basis sets correspond to the set 8 of Eq. (10).
'The basis functions are symmetry adapted functions constructed from either Cartesian or
spherical Gaussian functions, as defined in the text, of the given type. Cartesian functions
are centered at the nuclei and spherical functions are centered at the bond midpoint.

c0
v 4-
4P

CA

0
l5 20 25 50 40

Photon Energy (eV)

FIG. 2. Convergence of the 3o~~ko„photoioniza-
tion cross section of N2 using the iterative Schwinger
method: ————,iteration zero using Eq. (10);
iteration one using Eq. {14).

tion while using only the FCHF approximation for
the final state, significantly improved the computed
cross section when compared to using only a HF
initial-state wave function. In this study we have
examined effects of initial-state correlation on the
computed photoionization cross sections of molecu-
lar nitrogen. As initial-state wave functions we
have used the HF wave function described in the
previous section and a CI wave function containing
"singles-plus-doubles" excitations.

In order to limit the size of the CI wave func-
tion, the virtual orbital space was taken to be a re-
stricted set of orbitals. The virtual orbitals were
obtained by performing a separated-pair-type MC-
SCF calculation. ' The orbital occupation in the
HF wave function is

(l~, )'(Z~, )'(3~, )'(l~„)'(2~„)'(l~ )'(l~„,)'.
(54)
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Note that we have performed the initial-state cal-
culations in D2~ symmetry. In the separated-pair
calculation the valence electron pairs are expanded

in orthogonal natural orbitals. The wave function
we used for N2 may be represented as

(1o'g) (2og »og, »ou) (3og,4og 3ou 4cru. 3m'~ 3~uy, 3mgx, 3mgy) (1u) (2~u 6~g.6ou) (1~~,1mgx, 2~~ 2m'gx }

(1~„y,1m~, 2m„y, 2m~ ) (55

where the orbital listed within each pair of
parentheses represents the natural orbitals of a par-
ticular pair function. The energy of this separated-

pair wave function for N2 is —109.054 489 a.u.
The orbitals in each pair function which are dou-

bly occupied in the HF approximation were not al-

lowed to vary from their HF form. This con-
straint made the evaluation of the photoionization
cross sections simpler since in matrix elements of
the form of Eqs. (41) and (42), this restriction al-

lows only the continuum orbital in the final state
to be nonorthogonal to the orbitals in the correlat-
ed initial-state wave function. Having only one

nonorthogonal orbital in the final state, causes the
configurations in the initial-state wave function,
differing from the reference HF configuration by
three or more spin-orbitals, not to contribute to the
photoionization cross section. Hence we have

chosen a linear combination of configurations
differing from the HF configuration by no more
than two orbitals to represent the correlated
initial-state wave function. The virtual orbital

space was taken to be the set of orbitals deter-

mined in the separated-pair calculation. %'e have

also restricted the calculation by requiring the lag
and 1o„orbitals to remain doubly occupied in all

configurations. The resulting wave function has
386 spatial configurations in D2I, symmetry, from
which 570 spin eigenfunctions are constructed.
The energy of this CI wave function is
—109.173 549 a.u.

C. Photoionization leading to the X X~+ state Of N2+

Photoionization leading to the X Xg+ state of
N2+ is of primary interest due to the appearance of
a shape resonance in the cross section. In the one-
electron picture used here this channel corresponds
to photoionization from the 3og orbital into a con-
tinuum orbital of either o.„or m„symmetry. The
maximum l included in the expansion of the
scattering solution [Eq. (7)] is I~ =7 for the contin-
uum solutions of o„symmetry and l&

——5 for con-

tinuum solutions of m„symmetry. The ionization
potential we used for this channel was IP=15.6

3~ 11

There have been several studies of the shape res-
onance in this channel using the FCHF approxima-
tion. ' ' Among these studies there is a disagree-
ment of about 3 eV in the position of the peak
photoionization due to the resonance. For the
3ag~ko„channel alone, Rescigno et al. obtained
a peak cross section at a photon energy of -28 eV,
whereas both Raseev et al. and Robb and Col-
lins obtained the peak cross section at -31 eV.
Figure 2 shows that the peak cross section in our
calculation is at -29 eV.

The discrepancy between our peak cross-section
energy and those of Raseev et al. and Robb and
Collins could be due either to the difFerent targets
used or the difFerent expansion parameters used.
To see if the difference in the targets is important,
we have performed a calculation in which we used
similar expansion parameters to those used by
Raseev et a/. For this calculation we have taken
as our expansion parameters l =13, l,'"=9, l "=7
for alii, l;"=50, A, '"=5, A, "=14. Using these
parameters we obtain the peak cross-section energy
at 30.7 eV. Thus, the difFerence between using a
target wave function constructed from Gaussian
functions as in the present study or from Slater-

type functions as in the studies by Raseev et al.
and Robb and Collins' is seen to be small. Thus,
most of the difFerence between the results of Raseev
et al. and Robb and Collins' and our present
results must be due to the lack of convergence of
the expansion parameters in the earlier studies.

In order to examine the behavior of the peak
cross section with respect to the l expansion used,
we have performed an additional set of calcula-
tions. The very small difFerence between the 8 and
D calculations discussed in Sec. IIIA indicates that
the exchange potential is converged with l'",'„=30.
Thus, the only variations in l that we will consider
here are those in l ",„. %e have thus performed
calculations with l'",'„=30 and
l ",„=34,38,42,46,50. %e have computed the



STUDIES OP Dh'rmRENTIAL AND TOTAL PHOTOIONIZATION. . .

photoionization cross section for the 3' ko„
channel at three photoelectron energies, 0.47, 0.50,
and 0.53 a.u., which corresponds to photon ener-

gies of 28.4, 29.2, and 30.0 eV. Using these three
energies we then used polynomial interpolation to
obtain the photon energy of the peak cross section.
%'e have plotted the resulting energies against
1/(I ",„) in Fig. 3. As can be seen from Fig. 3,
the peak energies fall on a straight line when plot-
ted against 1/(I ",„) . Thus, we have empirically
determined the relationship given in Eq. (1), i.e.,

1
max Emax ~

I

The extrapolated energy for the peak cross section

is then 28.7 CV.

%c bcllcvc that this functional dcpcndcncc of thc
resonance energy on I ' is due to the interaction
of resonant function of o symmetry, which satisfies
the appropriate cusp condition at a nucleus, and
the nuclear potential at that point. To test this
conjecture we computed the potential integral of an
s-type Slater function of exponent /=2. 0, which
has the correct cusp condition at its origin, with a
point charge at the center of the Slater function.
This integral was performed using a single-center
expansion about an origin 1.034 a.u. away from the
center of the Slater function. ' Note that this dis-
tance is the same as the distance from the expan-
sion center to the nuclei in nitrogen. The conver-

gence of this integral with /, „was also found to
obey the )aw given in Eq. (1), suggesting that this
1/I convergence could be general for all o shape
resonances, although we do not have a rigorous
proof of this. %C have also observed this rate of
convergence in the 4og ~ko.„photoionization res-
onance in CQ2. '9'b' Note that for resonances with
m&0 (n, 5, etc.) the convergence behavior wiil be
different, and one would expect these resonance en-

ergies to converge faster with increasing I than did
the g- resonance discussed here.

In Fig. 4 we give the total cross section leading
to the X Xg state of N2+. %e have plotted the
computed dipole length and dipole velocity cross
sections, using both the HF and CI intitial-state
wave functions, along with the experimental results
of PlumIner et al." and of Hamnett et a/. ' As in
studies of atomic photoionization by Swanson and
Armstrong, the correlated intitial-state wave
function brings the length and velocity forms of the
cross section closer together in better agreement
with the experimental results.

The feature at 23 eV in the experimental cross
section has been attributed to autoionization from

Rydbcrg states leading to the C X~+ state of

IO-
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& 28.85
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CIV
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50 46 42
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FIG. 3. Dependence of the energy of the peak pho-
toionization cross section on 1 ',„ for the 30g ~kcr„
channel of N2.

0
)5 20 30 35 40 45

Photon Energy (eV )

FIG. 4. Photoionization cross section for the produc-
tion of the X X+I state of N2+: HFI., in the dipole
length approximation using a Hartree-Fock initial-state
wave function; HFV, in the dipole velocity approxima-
tion using a Hartree-Fock initial-state wave function;
CIL, in the dipole length approximation using a
configuration-interaction intitial-state wave function;
CIV, in the dipole velocity approximation using a con-
figuration initial-state wave function; ~, experimental re-
sults of Plummer et al. (Ref. 11);8, experimental re-
sults of Hamnett et al. (Ref. 13).
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N2+. To obtain such autoionization features,
theoretically, one would have to include Anal-state
efFects not present in the FCHF model used here.

In Fig. 5 we present our computed ITAD and
IDAD asymmetry parameters. The efFect of
initial-state correlation on the computed P s is
small. Thus, for all the asymmetry parameters re-

ported here, we will only present our most reliable
results obtained using the CI initial-state wave
function. The computed ITAD asymmetry param-
eters agree well with the experimental results of
Marr et al. , ' except for the values around the
feature at 23 eV and at lower energies where au-

toionization features are iInportant. %C note that
there are no dramatic changes in the Pg values in

the resonance region in contrast to the significant

Pg efFects which have heen predicted 1n the 40's

~ko„photoionization resonance in I2.'9'b»43

The results for the IDAD asymmetry parameter
show that above the resonance energy the contribu-
tion from the ku„continuum channel drops ofF

rapidly leaving only the contribution from the kn.„
continuum.

(0) I TAO X

D. Photoionization leading to the A 'II„state of N2+

The photoionization channel leading to the
A H„state of N2+ corresponds in the one-electron
picture to ejecting an electron from the 1m„orbital
into a continuum ofbltal having og, Kg, of 5g sym-
metry. For the ionization potential of this channel
we have used IP=16.7 CV. '" The maximum I in-
cluded in the expansion of the scattering solution
[Eq. (7)j was 1„=6for continuum solutions of og,

and $ symmetries
There is a well-known difHculty associated with

using the FCHF approximation for the 1m„km&
channel. ' If the straightforward FCHF potential
is used, the photoionization cross section is un-

physically large as shown in Fig. 6(a). The poten-
tial used in this calculation was the usual singlet-
coupled potential for the m„keg configuration

V„= g(2J K)+2J— +J

+K + —K +2S~—S~',

where I and E are the usual Coulomb and ex-
change operators, and S' and S" are defined by

+, , +, ,I„, [~ (r»PN (r2)

and

0-
OP
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0
0
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FIG. 5. Photoionization asymmetry parameters for
the production of the X Xg state of N2+:
(a) ITAD asymmetry parameter Pp; (b) IDAD asym-

metry parameter P„-;,dipole length approximation
using a correlated initial state; ————,dipole velocity
approximation using a correlated initial-state wave func-
tion; , experimental Pk of Marr et al. (Ref. 12).

&' ' P+(r ~) =P (r ~) Id'r2 . (58)
(r2) *@+(r2)

The origin of the unphysical result presented in
Fig. 6(a) ls that thc HF potential glvcn ln Eq. (56)
places the strong valence m.~m* transition above
the ionization threshold. This transition then ap-
pears as a large feature in the photoionization pro-
file. If the appropriate o.~o.* correlations were in-
cluded in the final-state wave function, then this
transition mould be brought below the ionization
threshold in better agreement with experiment.
Instead of including final-state correlation in our
calculation, we have chosen to modify the HF po-
tential so that the m.~a* oscillator strength is re-
moved from the continuum. %'e have tried three
difFerent ways of removing this deficiency of the
HF potential.

The first two methods are based on the observa-
tion that if an appropriate representation could be
found for the m' orbital, then the continuum solu-
tions could be obtained using the singlet potential
given in Eq. (56), with the additional condition
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FIG. 6. Photoionization cross sections in the
lm„~keg channel of N2 using various forms for the
scattering potential: (a) unmodified potential compared
with modified forms; (b) expanded scale showing modi-
fied potentials;, the cross section obtained using
continuum solutions which are eigenfunctions of the
triplet Hartree-Fock potential; —- —-, using eigenfunc-
tions of the singlet Hartree-Fock potential constrained
to be orthogonal to a valence m eigenfunction of the
triplet Hartree-Fock potential; ————,using eigen-
functions of the singlet Hartree-Fock potential con-
strained to be orthogonal to a valence mg eigenfunction
of the singlet Hartree-Fock potential; ——-, using eigen-
functions of the unmodified singlet Hartree-Fock poten-
tial.

I

40

The eigenvalue of the ~g orbital in our valence

that the continuum solution be orthogonal to the
valence m' orbital. The orthogonality condition is
imposed by using the apprepriate Phillips-Klein-
man potential. We have obtained the valence m'

orbital using two methods. The first method used
was to obtain eigenfunctions of the singlet potential
using only a valence basis set. For this calculation
we used the same basis set as was used to obtain
the HF wave function. The eigenavalue of the mg

orbital using the singlet potential was 2.08 eV.
The second is to construct eigenfunctions of the
triplet potential

basis set for this potential was —10.15 eV. This
eigenvalue corresponds to an excitation energy of
6.49 eV for the transition to the A X„+ state N2.
Using the triplet m* orbital and projected singlet
potential was the original solution to this problem
used by Rescigno et a/. An alternative to using
the projected singlet potential is to use the triplet
potential given in Eq. (59) directly to obtain the
continuum solutions. The use of the triplet poten-
tial to solve the m~m. * problem has been used by
Padial et a/. in photoionization studies of CO2.
The photoionization cross sections obtained using
these three modifications to the FCHF approxima-
tion are presented in Fig. 6(b). We see that the
triplet orbital with projected singlet scattering po-
tential gives results very similar to those obtained
from the triplet scattering potential. The singlet
orbital with projected singlet scattering potential
does not seem to be as satisfactory as the other two
methods. This probably implies that the valence
singlet m* orbital has been contaminated by non-
valence contributions. The rest of the results for
this channel were obtained using the triplet scatter-
ing potential, which seems to be the simplest ap-
proach to avoiding the m~n. problem.

In Fig. 7 we present the cross sections for pho-
toionization leading to the A H„state. We give
results obtained using the dipole length and dipole
velocity forms of the cross section using both HF-
and CI-type initial-state wave functions. We com-
pare our results to the experimental data of Plum-
mer et a/. "and of Hamnett et a/. ' In this chan-
nel the effect of using a CI initial-state wave func-
tion is not very large. Inclusion of initial-state
correlation does bring the length and velocity cross
sections into slightly better agreement, however,
the eA'ect is not as large as we found in the channel
leading to the X Xg state of N2+. In the experi-
mental cross section the feature at 23 eV is again
due to autoionization from Rydberg states leading
to the C X~+ state of N+ "

The broad peaked shape of the cross section in
this channel is due to the 1m„~k5g channel. The
enhancement of the cross section in this channel is
examined in more detail in Fig. 8 where the cross
section and eigenphase sums of the l~„~k6g
channel are compared to those of the resonant
3o.

g
~ko.„channel. As can be seen from Fig. 8,

the peak of the lm„~k5g cross section is very
broad when compared to the 3o.

g ~ko„cross sec-
tion. Also, the eigenphase sums indicate that the
le„~k5 channel is not resonant. Thus, the non-
resonant energy dependence of the dipole matrix
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channel of N2. (a) comparison of photoionization cross
sections; (b) comparison of eigenphase sums;
3o —+ko„channel; ————,1m„~k5~ channel.

elements must determine the shape of the 1m„

~k5g photoionization cross section of N2 in much
the same manner as it does the shape of the
2p~kd photoionization cross section of Ne, as dis-
cussed by Cooper.

%e present in Fig. 9 the asymmetry parameters
for this channel. Once again our computed pg

20 25 30 35

Photon Energy (eV)

FIG. 9. Photoionization asymmetry parameters for
the production of the A II„state of N2+ (same designa-
tions as in Fig. 5).

agrees well with the experimental results of Marr
et al. ' The comPuted Ps, which is very near in

value to —1, reflects that the @=0contribution
(Irr„~kms) is very small.

E. Photoionization leading to the 8 X„+ state of N2+

In the one-electron picture, the photoionization
channel leading to the 8 X„+ state of N2+ corre-
sponds to ejecting an electron from the 20.„orbital
into a continuum orbital of oz or mg symmetry.
%'e used 18.8 eV for the ionization potential of this
state. '" The maximum I included in the expan-
sion of the scattering solution [Eq. (7)] was I& ——6
for continuum solutions of both o.

g and mg sym-
metry.

In Fig. 10 we present the calculated cross sec-
tions for this channel. In this case there seems to
be little differential efFect between length and velo-
city forms of the cross section on going from the
HF initial-state wave function to the CI wave func-
tion. %e also see in Fig. 10 that the present re-
sults are in fairly good agreement with the experi-
mental results of Plummer et al." and with those
of Hamnett et al.

In Fig. 11 we present the P's for this channel.
The agreement between the calculated pg and the
experimental points of Marr et al. ' is not satisfac-



STUDIES OF DIj'w I'.RENTIAL AND TOTAL PHOTOIONIZATION. . . 2585

30

25-
k

k kk
HFL

I I I

X Zg+A luau+ B ~u

X
3-

C:0
O
tu

Cfi

IA
Ch 2
O
o

HFL
CIL

HFV
CIV

O

u i5-
tu

CA

o

CIL
HFV
C IV

0
I5 20 25

I I

30 35

Photon Energy (eV)

40 45
0

l5 20 25 30 35

Photon Energy (eV)

40 45

FIG. 10. Photoionization cross section for production
of the B X„+ state of N2+ (same designations as in Fig.
4).

tory in this channel as it was in the other two
channels we have considered here. This difficulty
is probably due to the inadequacy of the single-

particle hole state used in the FCHF approxima-
tion for this higher-energy ionic state. A more ac-
curate treatment would necessarily include a better
representation of the final-state ionic wave func-
tion. The computed Ps reflects that at low energy

FIG. 12. Total photoionization cross section for the
production of the X X+, A 0„,and B X„+ states of
N~+ (same designations as in Fig. 4): k, total experi-
mental cross sections of Wight et al. (Ref. 14) corrected
to only include the contribution from these three chan-
nels using the experimental branching ratios of Hamnett
et al. (Ref. 13).

the main contribution to the cross section is from
the 2a„—+kog channel, and that at higher energy
the 2o„~keg channel becomes more important.

F. Total photoionization cross section of N2
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FIG. 11. Photoionization asymmetry parameters for
the production of the B X+ state of N2+ (same designa-
tions as in Fig. 5).

We have summed the cross sections discussed
above to obtain the total photoionization cross sec-
tion of Nq leading to the X X+, A II„+, and B X„+

states of N2+. These results are presented in Fig.
12 along with the total ionization cross sections ob-
tained by Wight et al. ' In order to make an ap-
propriate comparison with our total cross section,
we have corrected Wight's total cross section by
multiplying by the sum of the branching ratios, ob-
tained by Hamnett et al. , ' for the three channels
we have considered.

We can see from Fig. 12 that the effect of
initial-state correlation is to lower the length form
and not to alter appreciably the velocity form of
the cross section. The length form is now in excel-
lent agreement with experimental results except for
the 23-eV feature which we mentioned earlier. In
particular, the shape of the shoulder in the cross
section due to the 3crg~ko„resonance, as well as
the high-energy falloff of the cross section, are well

reproduced using the FCHF model with initial-

state correlation included.
It seems that the total calculated cross section is
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in better agreement with the experimental results
than are the individual partial channel cross sec-
tions. This is probably due to efFects of interchan-
nel coupling which might redistribute the oscillator
strength between different channels but does not
seem to greatly affect the total cross section.

6. Comparison with other theoretica1 methods

The partial cross sections for the three channels,
which we have considered here, have been studied
previously using the CMSM (Ref. 2) and STMT
(Refs. 3 and 4) approaches to photoionization. In
Fig. 13 we have compared our FCHF results ob-
tained in the dipole length approximation using a
HF initial-state wave function with results from
the CMSM and STMT methods. The three
methods are in qualitative agreement. The STMT
results seem to be within 10—15% of our single-
center results. The CMSM results are generally in
worse agreement with the single-center results than
are the STMT results.

IQ-

V. CONCLUSIONS

We have obtained photoionizatin cross sections
of N2 using a single-center expansion technique,
and examined in detail the effect of the truncation
of the single-center expansion on the energy of the
peak cross section in the 3o~~ko.„channel. We
found that the peak energy for this resonance con-
verged as 1/I . This rate of convergence was also
found in single-center expanded nuclear potential
integrals, where the orbitals involved were of o
symmetry, Thus the 1/I convergence may be a
general feature of o symmetry shape resonances.

The coupled integral equations resulting from
the single-center expansion of the Lippmann-
Schwinger equation were solved using the iterative
Schwinger variational method. We found that,
with an adequate initial basis set, the iterative
method converged to accurate static-exchange re-
sults in only one iteration.

We have used a frozen-core Hartree-Fock final
state with a correlated initial state to compute
molecular photoionization cross sections. This

combination gives a good representation of the
photoionization process except when two-electron
resonances are important. We feel that it is impor-
tant to obtain these accurate HF level final-state
solutions before attempting to treat final-state
correlation eiTects.
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