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Collisional processes occurring within an atomic vapor can be conveniently described in
terms of collision kernels. The population kernel 8';;( v'-+ v) gives the probability densi-

ty per unit time that an "active" atom in state i undergoes a collision with a perturber
that changes the active atom's velocity from v' to v. For active atoms in a linear super-
position of states i and j, there is an analogous coherence kernel 8'~j( v'~ v ) (i&j) re-
flecting the effects of collisions on the off-diagonal density-matrix element p;J. In this
work, we discuss the general properties of the collision kernels which characterize a two-
level active atom which, owing to the action of a radiation field, is in a linear superposi-
tion of its two levels. Using arguments based on the uncertainty principle, we show that
collisions can be divided roughly into the following two categories: (1) collisions having
impact parameters less than some characteristic radius which may be described classically
and (2) collisions having impact parameters larger than this characteristic radius which
give rise to diffractive scattering and must be treated using a quantum-mechanical theory.
For the population kernels, collisions of type (1) can lead to a large-angle scattering com-
ponent, while those of type (2) lead to a sma11-angle (diffractive) scattering component.
For the coherence kernel, however, assuming that the collisional interaction for states i
and j differ appreciably, only collisions of type (2) contribute, and the coherence kernel
contains a small-angle scattering component only. The absence of a large-angle scattering
component in the coherence kernel is linked to a collision-induced spatial separation of
the trajectories associated with states i and j. Interestingly enough, the width of the dif-
fractive kernel, as measured in the laboratory frame, is found to be insensitive to the per-

turber to active-atom mass ratio. To illustrate these features, a specific calculation of
the kernels is carried out using a hard-sphere model for the scattering. The relationship
of the present description of collisions to that of traditional pressure-broadening theory in
which trajectory separation effects are ignored is discussed. It is explained why tradition-
al pressure-broadening theory correctly describes collision effects in linear spectroscopy,
but fails to provide an adequate description of some saturation spectroscopy and photon-
echo experiments in which velocity-changing collisions associated with the coherence ker-
nel play a significant role. An expression for the collisionally modified photon-echo am-
plitude is derived which clearly displays the role played by velocity-changing collisions as-
sociated with the coherence kernel.

I. INTRODUCTION

Emission and absorption spectra have tradition-
ally provided the blueprints from which most of
our data concerning the energy-level structure of
atoms and molecules could be derived. The preci-
sion of this data is limited by one's inability to
resolve structure that lies within the widths of the

various spectral lines. In low-density atomic va-
pors, the linewidth is determined mainly by the
Doppler effect (i.e., atoms moving at different
velocities absorb or emit Doppler-shifted frequen-
cies), although both the natural widths of the levels
and collisions within the vapor contribute some-
what. One of the most exciting achievements in
spectroscopy over the last decade has been the
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FIG. 1. Picture of a collision between an active atom
A and stationary perturber P. There is no obvious clas-
sical trajectory to associate with the atomic "coherence"

Pi2.

development of methods wherein the Doppler
width is partially or totally suppressed. The
development of these "Doppler-free" methods in

both time (e.g., photon-echo) and frequency (e.g.,
saturation spectroscopy) domain experiments has
been made possible in large part by the advances in

laser technology. With the removal of the Doppler
broadening, the line shapes increasingly reflect the
effects of collisional processes occurring in the va-

por. It is not surprising, therefore, that the pro-
gress in laser spectroscopy has been accompanied

by a renewed interest in understanding (1) the
manner in which collisions modify the line shapes
and (2) the extent to which laser spectroscopy can
be used as a probe of collisional processes in va-

pors.
In order to illustrate the role played by collisions

in atomic spectroscopy, we consider an ensemble of
two-level "active" atoms immersed in a low-density

vapor of "perturber" atoms. The levels of each ac-
tive atom (labeled 1 and 2) are coupled by a radia-
tion field. The active atoms undergo binary col-
lisions with the perturbers (active-atom —active-
atom collisions are neglected). The collisions are
assumed to be adiabatic in the sense that they pos-
sess insufficient energy to induce transitions be-

tween the active-atom's levels. Under these condi-

tions, one may seek to determine the manner in
which these elastic collisions affect the physical
observables associated with the active atoms.

The problem can be approached by investigating
in detail a collision between an active atom and a
perturber (Fig. 1). The active atom, which is

prepared in a linear superposition of its two levels

by a radiation field, generally experiences a colli-
sional interaction which is different for states 1

and 2. From a classical viewpoint, the collisional
interaction (acting analogously to a Stern-Gerlach
magnet) separates the populations (conveniently

represented by density matrix elements p&~ and p22)
along the distinct trajectories shown in Fig. 1.
Since the populations scatter independently, the

possibility of distinct post-collision trajectories
poses no conceptual difficulties. The scattering for
each state i (i =1,2) is determined by the differen-
tial cross section o;i8i =

~

f;(8)
~

for the elastic
scattering of an active atom in state i by a per-
turber atom. '

The populations p;;, however, are not the only
relevant quantities in considering the interaction of
radiation with matter. The polarization of the va-

por directly influences its absorptive and dispersive
properties. If the dipole moment operator of our
two-level atom is p, and if states 1 and 2 have op-
posite parity, then the polarization of the system is
proportional to (P) =p, ~2p2~+ p2~p~z, where p, ;J is
the ij matrix element of p and p,J is the ij density-
matrix element (i.e., p,J ——a;a&*, where a; is the state
i probability amplitude). Consequently, the absorp-
tive and dispersive properties of the medium are
influenced by collisional perturbations of the
"atomic coherence" pi2 (or p2i).

Collisions appear to affect p&2 in a particularly
simple way. Since the collision shown in Fig. 1

leads to a spatial separation of states 1 and 2, p&2

vanishes following the collision. Thus, using a
classical picture of a collision, one is led to distinct
trajectories for the populations p» and p22 and to a
vanishing of the coherence pi2.

While the classical picture of a collision given in
Fig. 1 is useful in providing some insight into the
effects of collisions on the various density-matrix
elements, it is not sufficient to obtain a total pic-
ture of the scattering. Using arguments based on
the uncertainty principle, we will show that, within
certain limits, the classical picture is valid for
small-impact parameter collisions. However, for
large-impact parameter collisions, the quantum
theory must be used. Quantum-mechanical effects
give rise to diffractive scattering contributions for
the populations and to nonvanishing values of p~z
following a collision.

The discussion of a single collision given above
would be appropriate to a crossed atomic-beam ex-
periment in which the center-of-mass energy is
constant for all collisions. In an atomic vapor,
however, the perturbers have some velocity distri-
bution which must be averaged over. For the va-

por, the quantity of interest is the collision kernel

W;;( v'~ v) giving the probability density per unit
time that an active atom in state i changes its velo-

city from v' to v in undergoing a collision with a
perturber. The corresponding rate for such colli-
sions is denoted by I;(v'). The kernel is propor-
tional to the differential scattering cross section
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averaged over the perturber velocity distribution
consistent with conservation of momentum and en-

ergy. For off-diagonal density-matrix elements,
one can also define a "kernel" W, 2l v'~ v ) and
"rate" I ~2( v'), although these quantities, now

dependent on f,f2, need no longer be positive de-

finite. Forrnal expressions for 8'iz( v' —+ v ) and
I ~2( v') have been given, ' but there has been, with

two recent exceptions, ' little progress in obtaining
a satisfactory physical interpretation or actual
evaluation of the "coherence kernel" 8'~2( v'~ v).
It is the purpose of this paper to provide a simple
physical picture of the scattering process that leads

to an intuitive understanding of the nature of
8'i2( v'~ v ).

It has already been noted that collisional pertur-
bations of p&z affect the absorptive properties of a
medium. Thus, one might imagine that collision
induced modifications of absorption or emission

line shapes are intimately connected with the
coherence kernel 8'i2(v' v). Since 8 ~2(v' v)
is strongly inAuenced by the trajectory effects
shown in Fig. 1, it appears that such trajectory ef-
fects are critical in calculating the effects of colli-
sions on spectral line shapes. However, it is well

known that traditional theories of pressure
broadening, which totally ignore trajectory effects
of the type shown in Fig. 1 and consider collisions
to produce only phase changes in p&2, have been

very successful in explaining most spectral profiles.
How, one may ask, can a theory that ignores tra-

jectory separation effects still produce correct re-
sults' It is a second purpose of this paper to pro-
vide an answer to this question.

[There is a range of experimental situations
where trajectory effects are known to be impor-
tant. In such experiments, however, the states in-

volved in the transition (usually vibrational, rota-
tional, or rf transitions) experience nearly identical
collisional interactions and, consequently, follow
the same collisional trajectory. Trajectory effects
lead to a narrowing of spectral lines in linear
spectroscopy and to a signal with a unique signa-
ture in photon-echo experiments. In this paper,
however, we shall be concerned only with situa-
tions where the collisional interaction for states 1

and 2 differs somewhat (the precise conditions are
given below) as is generally the case for electronic
transitions. Only recently has an experiment been
performed that clearly indicates the importance of
trajectory effects for an electronic transition. ' "]

In Sec. II, the uncertainty principle is used to
obtain a simple physical picture of the scattering.

It is shown that collisions can be divided roughly
into two regions. For small-impact parameter col-
lisions, the scattering can be given a classical in-

terpretation; the distinct trajectories for states 1

and 2 shown in Fig. 1 then lead to a vanishing of
p&2 following the collision. On the other hand, for
large-impact parameter collisions (leading to dif-
fractive scattering), the classical picture fails and a
quantum-mechanical calculation of pi2 is needed.
A specific evaluation of the coherence kernel and
rates is made in Sec. III using a model potential
based on hard-sphere scattering. The various
features discussed in Sec. II are illustrated by this
example. In Sec. IV, the role that the coherence
kernel plays in affecting various spectroscopic line
shapes is discussed. The reason for the success of
traditional pressure-broadening theories is ex-
plained in this section. Finally, a calculation of a
collisionally modified photon-echo signal is given
in Sec. V. The role played by trajectory effects is
clearly reAected in the expression for the echo am-
plitude.

For simplicity, the calculations carried out in
Secs. II—V are made assuming a high ratio of per-
turber to active atom mass. In Appendix A, the
calculations are extended to allow for an arbitrary
mass ratio. It is shown that the width of the coher
ence kernel is effectiuely independent of the ratio of
perturber to active-atom mass and depends only on
the active-atom mass and collision cross section.

It is implicitly assumed throughout this work
that an impact approximation is valid. All relevant
frequencies {e.g., collision rates, atom-field detun-

ings, Rabi frequencies) are assumed to be small in
comparison with the inverse duration time of a
collision. The validity of the impact approxima-
tion implies that only binary collisions need be
considered and that these collisions produce a time
rate of change for p,j. which is independent of oth-
er contributions to Bp;~/Bt.

II. QUALITATIVE PICTURE OF SCATTERING

Before discussing the effects of collisions on p&2

and the corresponding coherence kernel 8'&2( v'
~ v), it is instructive to review some aspects of
elastic scattering theory. Thus, we shall first con-
sider the elastic scattering of an active atom in
state i. To simplify the discussion we take the per-
turber as stationary (ratio of perturber to active-
atom mass much greater than unity), but the re-
sults of this section are perfectly general if all vari-
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ables are taken as those in the center-of-mass sys-
tem. Moreover, we neglect such effects as orbiting,
rainbow, and glory scattering which, although im-

portant in certain cases, ' are not particularly
relevent to the subject matter at hand.

A. Population kernel

The regions of validity of a classical picture of
scattering can be established by using the uncer-

tainty principle. Consider a collision characterized

by an impact parameter b leading to scattering at
an angle 8. For a classical picture to be valid, one
must have

khbh8 &1 . (2)

Setting hb =b and 68=8, one sees that conditions
(1) and (2) can both be satisfied provided

8)& 1/(kb) .

Let b; represent some characteristic range for
scattering by the perturber of active atoms in the
state i. For typical interaction potentials, it fol-
lows that a classical description of the scattering is
valid if

8»8,":—1/(kb;) . (4)

In fact, it is well known' that the quantum-
mechanical expression for the differential scatter-
ing cross section reduces to the corresponding clas-
sical one if condition (4) is satisfied (neglecting any
effects of rainbow scattering). Clearly, Eq. (4) is
meaningful only if kb; & l.

On the other hand, for 8 & 8; one can no longer
expect the classical picture of scattering to remain
appropriate. In an atomic vapor, k is typically of
order 109 cm ' and b; is of order 10 A. so that
8; =0.01« l. In effect, the angle 8; separates the
scattering into two distinct regions. For 8» 8";

(corresponding to collisions having b & b;), the
scattering may be described classically. For
8«8; (corresponding to collisions having b & b;)

hb &b, 68&8,
where hb and 58 are the uncertainties in b and 8,
respectively. On the other hand, it follows from
the uncertainty principle that 4p, 4b &A, where

hp, is the uncertainty in the transverse component
of the active atom's momentum. Since hp,
=m hu, =mud, 8=irikb, 8 [m is the active-atom
mass, k:mu/—A', and u is the active-atom speed],
the uncertainty principle requires that

the scattering may be considered diffractive in na-

ture and must be described quantum mechanically.
[For other than purely repulsive potentials, the
8 & 8; region also has (relatively weak) contribu-
tions from some collisions having b & b; ("glory
scattering"). ' As noted earlier, effects such as or-
biting or rainbow and glory scattering are neglect-
ed in this work. ]

The above results imply that the collision kernel
for elastic scattering in state i can be written as the
sum of two terms corresponding to classical large-
angle scattering and quantum-mechanical diffrac-
tive scattering, respectively. ' There is recent ex-
perimental evidence that supports this conclusion. '

B. Coherence kernel

We are now in a position to discuss the effects
of a collision on p]2. The interaction potential is
assumed to be state dependent and it is further as-
sumed that there are two characteristic lengths bi
and b2 associated with the scattering for states 1

and 2, respectively. For the sake of definiteness,
we take b2 & bi. The question to be answered is
the following: For what scattering angles, if any,
may a classical picture be used to describe the ef-
fects of the scattering on pi2?

The question must first be clarified since the cri-
terion we shall use to judge the validity of a classi-
cal picture is different than that used in the case of
single-state elastic scattering. Scattering for p]2
will be classified as "classical" if the trajectories
associated with the elastic scattering from states 1

and 2 are distinct and nonoverlapping (see Fig. 1).
A consequence of this classification is that pi2 is
zero following any classically described collision,
since the spatial overlap of states 1 and 2 vanishes
as a result of the collision.

An uncertainty principle argument can once
again be used to obtain the classical region. Let 8]
and 82 be the scattering angles associated with
states 1 and 2 for a collision having impact param-
eter b. The criterion for a classical collision is
then

~
82 81~ (5)

where 58 is the uncertainty in 8 for a collision
with impact parameter b. The restriction imposed
by the uncertainty principle is still given by Eq.
(2), which may be combined with Eq. (5) to give

I 82 81 I
»/(kb)

as the distinct trajectory condition.
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Equation (6) can be given a very interesting in-

terpretation in terms of a parameter appearing in
conventional theories of pressure broadening. An
active atom in state i sees a potential V(r) pro-
duced by a perturber, where r is the active-
atom —perturber separation. The scattering angle

0;, calculated assuming small-angle scattering, is

av;(r)
8; =v, lv= — f ' dt,

where the integral is along the time parameterized
collision trajectory r(b, v, t). Setting BV;/Bb
= —ab 'V; (a is the constant of order unity) and
substituting Eq. (7) into (6), one obtains the dis-
tinct trajectory condition'

f [V2(b, t) —Vi(b, t)]dt )K '=1 .
fi

(8)

kbgr )) 1 (10)

One is led to the following result. For scattering
angles corresponding to collisions having an im-

pact parameter b & b~, a classical picture is possi-
ble provided that Eq. (10) is valid. These classical
collisions result in a complete destruction of p&2

owing to the separation of trajectories for states 1

and 2. For diffractive scattering, corresponding to
collisions having impact parameters b )b&, a
quantum-mechanical calculation is needed. In this
case, p&2 does not vanish following the collision
(see Fig. 2). [Notice that the impact parameter
separating the classical and quantum scattering
domains differs somewhat for the populations and
the coherences. The b; associated with the popula-
tions may be calculated using Eqs. (3), (4), and (7).]

If kb~ & 1, a quantum-mechanical approach is
needed for all scattering angles. In this limit the
scattering is almost identical for states 1 and 2
(b~ ——0 for state-independent scattering) and there
is non-negligible spatial overlap of the state 1 and
2 trajectories. In this work, we assume that the in-

teraction potentials for the two levels differ suffi-
ciently to insure that Eq. (10) holds for most atoms

The value of b, denoted by b~, for which the left-
hand side of Eq. (8) equals unity is the Weisskopf
radius of pressure-broadening theory. Equation
(8) implies that the maximum impact parameter
for which the distinct trajectory condition holds is

b=b~, consequently, Eq. (6) is valid only for

b &bw

(distinct trajectory condition). The consistency of
the entire approach requires that

A ~
P

(b)

FIG. 2. Effects of collisions on p~~ can be roughly
visualized as shown in this figure when kb~ ——b~/k
&& 1. For collisions having impact parameter b & b~
(a), the trajectories for states 1 and 2 are distinct and
nonoverlapping following the collision, leading to a des-
truction of p&2. For collisions with b & b~ (b), scattering
is diffractive in nature. The overlap of the diffractive
scattering cones for states 1 and 2 leads to nondestruc-
tive velocity-changing collisions associated with p~2.

0
in the vapor. Typically b~-5 —10 A for electron-
ic transitions so that kb~-100)) 1.

The qualitative structure of the coherence kernel
Wi2(v'~ v) is now evident. In contrast to the po-
pulation kernels, the coherence kernel vanishes in
the large-angle scattering region owing to the
separation of trajectory effects. For diffractive
scattering, a quantum-mechanical calculation of
Wi2( v'~ v) is needed. Thus, the coherence kernel
is effectively nonzero for diffractive scattering
only. The consequences of this conclusion are dis-

cussed in Sec. IV.
In this section, a qualitative picture of the

scattering process was given. In Sec. III, a coher-
ence kernel is explicitly calculated assuming a sim-

ple form for the interaction potential. The calcula-
tion serves to illustrate the various features dis-
cussed in this section. The reader not interested in
the details of the model-potential calculation can
proceed to Sec. IV without loss of continuity.

III. MODEL-POTENTIAL CALCULATION

The qualitative properties of the collision kernels
discussed in Sec. II are relatively insensitive to the
form of the interaction potential. Therefore, for
the sake of simplicity, we assume that the state i
scattering potential can be represented as an im-
penetrable sphere of radius b; (with b2 )b& ). It
should be noted, however, that the calculations
presented below may easily be generalized to spher-
ically symmetric potentials of an arbitrary nature.
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To further simplify the calculations, we assume
that the perturber is stationary, although a general-
ization of the results of this section to allow for an
arbitrary active-atom-to-perturber-mass ratio is
given in Appendix A. This section is organized Rs

follows: A. The scattering amplitude for hard-

sphere scattering is given and an exponential ap-
proxlInation to it, valid for diffiactivc scattering, is
obtained. B. The collision kernel 8';;(v'~ v) and
the rate I;(v) for this scattering of populations are
calculated. C. The coherence kernel %II(v' —+v)
and the rate I &z( v) are evaluated. D. The coher-
cncc kcrncl and thc rate arc averaged ovci a tlRns"
verse velocity distribution to obtain a one-
dimensional kernel WII(v,'-+v, ) and rate I "II(U, )

that appear in theories of laser spectroscopy.

Using some simple properties of the spherical
Bcsscl fllllctlolls, ollc call show that I)t ls large and
varies linearly with I for I ~I.

~ =kbj and that
+~0 very rapidly for I pI j. Thus, for l &I., the

2l +Iterm containing 8 varies rapidly Rnd Rvcragcs to
zero (there is no point of stationary phase' ) while,

+1for i )II, (e ' —1)=0. Equation (13) may then
be approximated by'

L

f (8)=(Ilk) g (i+—)Jo((i+ —)8) .

By transforming the sum (14) into an integral, one
finally obtains'

fj(8)=ibjJI(kbj8)/8, 8«(kbj) 'j . (15)

The differential cross section

A. Scattering amplitude

The scattering amplitude for clastic scattering of
an active atom in state j by the perturber is

f (8)=—g (l+ —,)(e ' —l)P (cos8)
2sq

ik, ,
~he~e the Q are the elastic scattering phase shifts.
For hard-sphere scattering, the rj] are equal to

tan 'fjI(kbj)/nl(kbj)],

where jh and nh are spherical Bessel Rnd Neumann
functions, respectively.

If 8 pp (1/kbj )' (classical region), a standard
calculation using the method of stationary phase
gives 12 16

fj(8)= (bj/2)e '—, 8))(kbj)

(( (8)=—2kbjsin —.8
2

'

The differential cross section
~
fj(8)

~
=bj /4 is

just thc classical result for haI'd-sphcrc scattering.
Thus, for 8 ~p (kbj ) '~, one regains the classical
result, in agreement with the qualitative discussion
of Sec. II.

For small-angle scattering 8 gg 1, one can re-
place PI(cos8) by the zero-order Bessel function
Jo((l+ —, )8). ' With this substitution, Eq. (11) be-

comes

fj(8)= . g (i+ —,)(e ' ——1)Jo((i+—,)8) . (13)ik I

~
fj(8)

~
=bj [JI(kbj8)] /8

contains a central peak and smaller side lobes typi-
cal of the diffraction pattern produced by an
opaque object. Most of the scattering is contained
in a cone of half angle 8=4/kbj.

Equation (15) is valid not only in the diffractive
cone 8 & (kbj ) ', but also in a range (kbj )

'
& 8

& (kbj )
' jI. Inside the diffractive cone, Eq. (15)

can be approximated by

fj(8)= , ikbjexp—( , k b;8 ) k—bj—8&1 (16)

Although Eq. (16) is valid for diffractive scatter-
ing, if Eq. (16) rather than Eq. (15) is used in cal-
culating collision rates and one-dimensional colli-
sion kernels, the results may differ by as much as
20% from the true hard-spheres values. [The re-
sults differ because the calculations require integra-
tions in a range where Eq. (16) is not strictly
valid. ] Despite this discrepancy, we shall use Eq.
(16) in subsequent calculations, owing to its simple
analytical form. Given the spirit of this illustra-
tive example, the slight errors which are intro-
duced are not overly significant. For completeness,
however, results using the correct amplitude (15)
are given in Appendix B.

8. Population kernels

The population density in velocity space p;;(v, t)
satisfies a transport-type equation in which the col-
lision terms are of the form
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Bp;;(v, t) =—I;(v)p;;( v, t)
Bt

where N is the perturber density and 8 is the angle
between v and v'. The delta function ensures con-
servation of energy. The collision rate I;(v) is de-
fined as

+ f W;;(v'~v)p;;(v', t)dv'.

(17)
I';(u) = f W;;( v ~v')d v',

which, together with Eq. (18) yields

(19)

The first term on the right-hand side is the loss at
rate I;(v) of population density p;;(v, t), while the
second term gives the increase of p;;(v, t) resulting

from collisions which change the velocity from v'

to v. The collision kernel 8';;(v' —+v) gives the

probability density per unit time that a collision

changes the active-atom velocity from v' to v and

is related to the differential scattering cross section

by

W;;(v'~v)=Nu
i f;(v, 8)

i
u 5(u —u'), (l8)

I;(v)=¹o;(v),
where

~, (v)= f if, (u, 8) i'dn„

(20a)

(20b)

is the total elastic state i scattering cross section.
Equation (20) is in the standard form for a colli-
sion rate.

For hard-sphere scattering, the collision kernel,
obtained from Eqs. (12), (16), and (18) is

8';;(v'~v) = Nv '5(v —v')

b; /4, 8»(kb;)
{k b; /4)exp( —, k b; 8—2), 8 & (kb; )

(21)

It contains a part corresponding to classical scattering for 8&& (kb;) ' and the quantum-mechanical con-
tribution of diffractive scattering for 8&(kb; ) . The collision cross section, obtained from Eqs. (19)—(21)
is

0; =2mb;, (22)

a well-known result for hard-sphere scattering in the high-energy limit. The classical and diffractive scatter-

ing each contribute m.b; to the total cross section.
It is instructive to use the optical theorem and Eq. (18) to rewrite Eq. (17) in the form

3;; v, t = ——,[I;( )+uI;(v)]p;;(v, t)+Nv ' ff (v, 8)f; (v, 8)5{v u')p;;(v', t)d—v',
Bi

(23a)

where

I 1(u) =Nu (4v /ik) fj (u, O) (23b)

Bpip( v, t) = ——,[1,(v)+ I~z(v)Q&2(v, t)
Bt

and f(u, O) is a forward-scattering amplitude. In
general I;(v) is complex, but, for hard-sphere
scattering

+ f W„(v ~v)p~2(v', t)dv',

(2S)

I,.(v) =Nv(2mb, . )

is real.

C. Coherence kernel

(24) where

W, 2(v'~v)=Nvf~(v, 8)f2{v,8)v 5(v —v') .

(26)

The collisional time rate of change of the coher-
ence density is given by '

It may be noticed that Eq. (25) may be obtained
from Eq. (23) by the substitution f & (u, 8)
~f2 (u, 8). The "rate" I'~2(v) associated with the
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coherence kernel is defined by

I t2(u)= f W,2(v~v')dv'

=¹o~2(u),
where

(27b)

As predicted in Sec. II, the coherence kernel is
nonvanishing only in the diffractive scattering
domain.

Using Eqs. (27) and (30), one can derive a
velocity-changing coherence cross section and rate

ni2(u)= f fi(u, 8)fq(u, 8)d&, . (2g)

For hard-sphere scattering in the classical region
8 && (kbj ) '~, the collision kernel obtained from
Eqs. (26) and (12), is

Wi2(v'~v)=Nu '(bib2/4)5(u —u')e'~' ',

otg ——2irb ib2/(b i +b 2),

I i2(u) =¹oi2 .

(31a)

(31b)

For future reference, we also define a "total" cross
section u&z and rate I &2(u) by

X exp[ ——,k (bi+bq)8 ] . (30)

$(8)=2k(b2 b i )—sin(8/2) .

If k(bz —bi) »1, as assnmed, ~i2(v
varies very rapidly with v' and the integral term in

Eq. (25) averages to zero. Thus, effectiuery,

Wi2( v'~ v) is zero in the classical scattering re-

gion, a conclusion reached in Sec. II using the dis-
tinct trajectory argument. On the other hand, for
diffractive scattering 8 g (kb;), the collision ker-
nel obtained using Eqs. (26) and (16), is

8'i2(v'~v)= 4¹5(u —u )k bib2

o(z =o i2 —cia=«b i+be }/(b i+b2), (33a}

I (z(u) =¹of2. (33b)

[The corresIponding values of Wi2( v'~ v },nt2,
iri2, and os obtained using the scattering ampli-
tude (15) instead of (16) are given in Appendix B.
They differ at most by =20% from these values. ]

and a phase-interrupting cross section o(z and rate
I [z(u) by

D. One-dimensional coherence kerne1

A situation of practical importance in laser spectroscopy involves the interaction of atoms with one or
more single-mode laser fields. Assuming the fields to propagate in the +z direction, one is led to the con-
clusion that, in the absence of collisions, the density-matrix element p&2( v, t) may be factored as

a»(v &)=pi2(vt)wi2(u. &)

where v, is a velocity transverse to the z axis. The transverse component of the density-matrix element may
be taken as constant in time since it is unaffected by the atom-field interaction. While this is no longer
rigorously true when collisions occur, one might still assume Eq. (34) to hold to a first approximation. In
that case one can insert Eq. (34) into Eq. (25), and integrate over v, to obtain

dpi2(us~~) =—I i2(u, )pi2(u„r)+ f Wi2(u,
' ~u, )pi&(u,', t)du,',

where the one-dimensional kernel Wiq(u,
' ~u, ) is defined as

~i2(u,' ~u, )= f Wi2( v'~ v )pi2( vI )1vI d v, ,

and the one-dimensional total collision rate is I iq(u), =—,[I',(u, ) +I (u, )], where

I';(u, )= f I;(u}p,2(v, )d v, .

In addition, a one-dimensional velocity-changing coherence rate I ",q(u, } can be defined by

I'"'(u, )= f ",I'( )up(v, )dv, = f Wi2(u, u,')d; . (38)
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In order to carry out the calculations implicit in Eqs. (30}—(38), we assume p, 2( v, ) is described by a ther-

mal distribution

pi2(v, )=(m.u ) 'exp( —v, /u ),
where u is the most probable active-atom speed. Substituting Eqs. (30) and (39) into Eq. (36) and recalling

that k =mU/fi, one may obtain the coherence kernel

W'i2(u,
' —+u, )=—,N(nu ) '(bib2/It ) J u5(v —u')exp( —u 8 /u 8&)exp( u'—, /u~)dv, 'dv, , (40

where

i=A/u,

8v Sk /——(b i+bi) &( I,
2 2 2 r2 t2 I2

U =Up +Vz, U =V) +Uz (43)

cos8=v v'/U2 .

The integrals in Eq. (40) are not overly difficult to evaluate. Writing d v, =u, du, dP, and d v,
' =u,'du, 'di}},',

one can integrate Eq. (40) over v,
' to arrive at

8'i2(u,'~v, )=—,N(nu ) '(bib&/It ) J dip, I dye J u, du, u exp( u8—/u 8&)exp( u, /u—), (45)

where 8 is 8 evaluated at Ui =Uf +Uz —vz and terms of order (Uz —Uz )/u are neglected owing to the dif-

fractive nature of the scattering (8 & 8p gg 1). For 8 g& 1, one can use Eq. (44) to obtain

8 = +—(y —y')(Vz Vz )
(46

Ur U

After Eq. (46} is substituted into Eq. (45), the remaining integrals can easily be evaluated to yield the coher-

ence kernel

lYi2(uz ~vz)=¹Ti28p exp[ —{uz —uz ) /801l ] exp
—2l(u, —u,')u,'

l I u,
'

l u,'(u, —v,') l—+ +
8pu 2 u 8pu

where o i2 is given by Eq. (31). In terms of dimen-

sionless variables

P =Vz /u =Uz/

Eq. (47} may be written

W»(x,y)=Xo",;8v 'e " e '~ ~( —, +y'+
l xy l

) .

The coherence kernel (47) [or {49)],is centered at
x =(u, —u,

' )/8' =0 and has a width
l u, —u,

'
l

=»v «»f
I y I

& I. {If
I y I

»I the wi«»s
of order u 8v/ l y l

.) For
l y l

=
l u,

'
l
/u )) 1, the

kernel becomes exponential. The one-dimensional
coherence kernel is displayed in Fig. 3 for several
values of y. It is this type of kernel that one ex-

pects to encounter in laser spectroscopy experi-

ments.
[It is interesting to note that the kernel width

remains of order 8pu independent of the active-
atom-to-perturber mass ratio (see discussion in Ap-
pendix A). As the perturber to active-atom mass

ratio decreases, there is a decrease in the scattering
angle as measured in the laboratory frame relative
to that measured in the center-of-mass frame; how-
ever, this effect is exactly compensated by an in-
crease in the diffractive scattering cone in the
center-of-mass system [the scattering angle varies
as (reduced mass) '~ ]. Thus, the kernel width is
always of order 8vu cc [m (o'i2)'~2] '. A low-mass
active atom must be used to maximize the coher-
ence kernel width. The fact that the kernel width
increases with decreasing o.

~2 is reasonable; smaller
obstacles produce larger diffraction cones. ]

The various one-dimensional rates can also be
calculated. From Eqs. (38), (49), and (31) one finds
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r(,"(y)=r', (y) —r",',(y) =»,(y)~ f"

(b', +b,')
=Nu, (y)

b)+b2
(54)

IV. COLLISION KERNELS
IN LASER SPECTROSCOPY

0.5

2mb )b2
r",'(y) =», (y)~",'=», (y) $2+b2

where u, (y) is the value of v averaged over the
transverse velocity distribution, i.e.,

u, (y)=(nu )
' J dv, (u&+y u )'~e

= Iy I
+(~'"~&)e" [&—~'( Iy I )1

where 4 is the error function. From Eqs. (37),
(39), (24), (51), (32), and {33),one obtains

r, (y) =Xu, (y)~, =Xu, (y)(2~&,'),
r12(y) [rl(y)+ rz(y) l =».(y)012

=», (y)[m(b1+b2) j,

(52)

FIG. 3. One-dimensional coherence collision kernel
IV~2( v, ~v, ) as a function of x =(u, —u,

'
)/Ho@ for

several values of y =u,' /u. The kernel is in units of
Xo ~28o '( —+y ) so that 8'~2 ——1 at x =0. Only positive

x and y are shown since W~2(x, y) = W~2, ( —x,y)
= W)2{x,—y).

It remains to determine the manner in which the
collision kernels and rates modify the observables
which are measured in various experiments. The
reason for the success of traditional pressure-
broadening theories in explaining many types of
spectral line shapes will emerge naturally from this
discussion.

In order to observe the effects of population ker-
nels, the first step is to selectively excite (or de-

plete) a velocity subset of active atoms in state i.
This selectivity can generally be achieved by using
a narrow-band laser of frequency 0 to excite a
transition having frequency m. Only those atoms
with velocity v, =(0—~)/K, where K=Kz is the
laser propagation vector, will see a Doppler-shifted
frequency that is resonant with the transition fre-
quency. In this manner, one can excite a longitu-
dinal velocity subset of atoms with velocities v,
centered at (0—co)/E having a width in velocity
space of order uo ——y/K, where y is some effective
width (natural plus collision) associated with the
transition.

Collisions will now modify the population densi-

ty only if the collision-induced velocity changes
produced within the velocity-selected state's life-
time is greater than or of the order of uo. That is,
for collisions to produce noticeable effects, they
must significantly alter the velocity distribution
created in the excitation process. Typically,
uo/u =0.01, so that both large-angle and diffrac-
tive scattering can modify the population density.
The population density of the velocity-selected
state may be monitored by measuring the absorp-
tion of a second laser on the same or another tran-
sition containing the level in question. Such ef-
fects have been observed using both steady-state
and coherent transient' ' techniques. It might be
noted that collision-induced changes in population
densities can also be measured using a standing-
wave photon-echo technique.

Coherence kernel

It is much more difficult to detect the velocity
changes associated with the coherence kernel
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8'l2( v'~ v) than with the population kernel
8';;(v'~ v) owing to two factors. First, the coher-
ence kernei is limited to diffractiue scattering,
whereas the population kernel contains a large-

angle scattering component that is more easily

detectable. Second, the effective lifetime for coher-

ences is generally significantly smaller than that
for populations (see discussion below); consequent-

ly, there may occur too few collisions within the
coherence lifetime to produce a measurable effect.
Therefore, it requires some analysis to determine

the feasibility of measuring velocity changes asso-

ciated with the coherence kernel.
In thc rest frame of the active atom, the effect

of a laser field E=iEocosQ't is to produce a
"coherence" p&2( v, t) which essentially follows the
field dependence, i.e., pl2(v, t) =p&2( v, t)e+'" '.
The frequency Q' seen in the atomic rest frame is

equal to Q —Ev, for a laser field of frequency Q
and propagation vector E =Kz. Thus, p»(v, t)
varies as

—AU f
p)2(v, t)=p)2(v, t}e e

where pi2(v, t) is generally a slowly varying func-

tion of v and t. Assuming that pi2(v, t) can be
factored as in Eq. (34), one can substitute Eq. (55)
into Eq. (25) and average over v, to obtain

ap„(ug, t) —/It (tt —tt )t
I'~2—(u, )p~2(u„t)+ W~2(u,

' ~u, )e * *
p~2(u,', t)du,',

coll

which is the analog of Eq (35).
We wish to examine Eq. (56) as it app»es «

linear spectroscopy, saturation spectroscopy, and

photon-echo experiments. To do so, it is useful to
draw some general conclusions concerning Eq. (56).
First, there is always some effective coherence life-

time ~ associated with pl2 which is determined by

the natural and collisional widths of the levels, as

well as the width of the velocity distribution rep-

resented by p]2(U„t) (~ ' is approximately equal to
the linewidth observed in linear spectroscopy).
Second, the coherence kernel limits

~
u, —u,

'
~

to
values [see Eq. (47)]

Consequently, if E5tt r «1 and if p»(u,', t} is
slowly varying compared with W&2(u,

' ~u, }, the
in«grai term in Eq. (56) may be approximated by
I l2(u, )plq(u»t) if use is made of Eq. (38).2' Thus,
using Eq. (54), one finds

Bpi2(Ug, t) = —I'$2(u, )p ~2(u„t),
con

JPI'OUId8d

E5ur~~ 1;
dpi2 1 d8"i2(U' u, )

pig dUg 8'i2(U,
' ~u, ) dU,

'

I

Equation (58a) is precisely the equation used in

traditional pressure-broadening theories!7*" 3

%C are let to conclude that traditional pressure-
broadening theories give accurate results prooided
that Eq. (58b) is satisfied. Although the theory
presented in this work and traditional pressure-

broadening theories lead to the same formal result

when Eq. (58b) is satisfied, the interpretation of
the result is very different in the two theories. In
our case, it is the separation of trajectories that
leads to a destruction rate I f2(u) =¹bs is (recall

b~ the %eisskopf radius), while, in traditional
thcorics, it is large phase shifts for coBisions hav-

ing b g b~ which destroy p». Thus, despite the
fact thai the neglect of trajectory effects cannot bc
justified, one is still at liberty to use the results of
conventional pressure-broadening theories, provid-
ed that Eq. (58b) is valid. %e now analyze some

typical experimental situations to determine wheth-

er or not Eq. (58) can be used and to determine
under what conditions thc velocity changes associ-
ated with the coherence kernel may be detected.

Linear spectroscopy. In linear spectroscopy,
there is no velocity selectivity and pi2(v„t) is a
thermal distribution having width u. The effective
coherence time owing to this distribution is
r=(Ktt) ' at low pressure (leading to a width

'~u =Doppler width) and decreases with in-

creasing pressure. Under these conditions, Eq.
(58b) is always satisfied, implying that linear spec-
troscopy may be described using conventional
pressure-broadening theories. The net effect of
collisions is a broadening of the spectral profiles.
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Saturation spectroscopy. In saturation spectro-

scopy, one selectively excites a velocity distribution
of width uv ={y,2+I f2)/K, where y, z is the natur-
al width associated with the 1 —2 transition. The
effective coherence time, determined by the natural
and collisional decay of piq, is of order ~=(yip
+I fq) '. Thus, the width of p~2(v„t) compared
with that of Wi2(v,

' ~v, ) is roughly equal to
(y~2+I'f2)/Ebu, which may be of order unity at
low pressures (I f2 & y~2} but grows with increasing
pressure. The quantity K5uw is roughly equal to
&5u /(y~2+ I f2), which decreases with increasing
pressure. Consequently, Eq. (58b) may be margi-
nally violated at low pressures but should be valid
at pressures where 1 Jq » y~q. At low pressures,h

the velocity-changing effects could introduce dis-
tortions into the saturation spectroscopy line
shapes. In order to observe deviations from Eq.
(58a), systems having large K, ' small yi2, and an
active atom with low mass should be sought. An
attempt to observe velocity-changing effects on
optical coherences was recently carried out with Xe
as the active atom. Although the method used
produces line shapes that are sensitive to velocity
changes associated with optical coherences, the
value of K (infrared transitions) and the large mass
of the Xe active atoms were not ideal for observing
the effect. No direct evidence of the effects of
velocity-changing collisions associated with the
coherence kernel was found.

Photon echoes. The photon-echo experiment is
described in more detail in Sec. V. It turns out
that the second inequality in Eq. (58b) is always
satisfied. However, as described below, it is possi-
ble to arrange the experimental conditions such
that K5ur & 1. In this limit, Eq. (58a) is no longer
valid and the photon-echo signal reflects the effects
of velocity changes associated with the coherence
kernel Wiz(v,

' ~v, ). Recently, the first experimen-
tal evidence of this effect on an electronic transi-
tion was reported. ' '"

V. PHOTON ECHO

A. General features

A photon-echo experiment offers an excellent
method for monitoring the coherence pi2. In the

absence of collisions and spontaneous decay, the
photon echo signal is formed as follows-'' '

(1) At t =0, a short pulse of radiation (propaga-
tion vector K=Kz) creates a coherence

i(ru+Kv )(f —2T)
(59)

The dipoles, which dephased in the period
Og t & T, begin to rephase for t g T. At t =2T,
they are all in phase an an "echo" signal is emit-
ted. Any interference of this dephasing-rephasing
process or loss of pi2 owing to spontaneous decay
results in a decrease in echo amplitude. Thus the
photon echo serves as a sensitive probe of the
coherence pi2.

Spontaneous decay results in a decrease of p&q by
a factor exp( —yi2t) and a corresponding decrease
in the echo amplitude (y~2 is the natural width as-
sociated with the transition). The collisional time
rate of change of p~2 given in Eq. (35) also modi-
fies the echo amplitude. When the effects of both
spontaneous decay and collisions are incorporated
into the calculation, the resulting expression for the
echo amplitude produced at t =2T is

A(T)= f W(v, )A(v„T)dv, , {60a)

where

pi2(z, v„0)=CW(v, )e

where C is a constant.
(2) Between t =0 and t = T, the coherence

evolves freely as

—iKz i(ts)+Ku, )t
pi2(z, v„t)=CW(v, )e ' 'e

where co is the transition frequency. As seen in the
laboratory frame, this frequency is Doppler shifted

by Kv, . The Doppler shifts cause the dipoles to
dephase relative to each other.

(3) A second short pulse at t =T, also having
K=Kz, is chosen to produce a net effect of
changing the sign of the (co+Kv, ) phase fac-
tor. ' ' Thus, at time t =T, following the second
pulse, —i(co+Kv )T

p~2(z, v„T)=O'W(v, )e ' e

where C' is a constant. For t & T, the coherence
once again evolves freely as

—i(co+Ku )T i(ro+Kv )(t —T)
pi2(z, v„t)=C'W( v, )e ' e ' e

00
& (v„T)=&vexp —2y»T —2I'»(v, )T+2 f dt f dv,

' p'»(v, '
v, }cos[g(v, v,

'
)t] (60b)
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is the contribution to the echo amplitude from
atoms having velocity v, .

Before specifically evaluating Eq. (60b) using the
kernel (47), we can note several general features of
the result (60b). The width of the coherence kernel

W]z(v,
' ~v, ) is roughly 5u =u00((u. If

K5uT « 1, the velocity changes associated with
the diffractive scattering region produce effects too
small to be detected. In this limit, Eq. (60b)
reduces to

A (v„T)~pexp[ —2[ytq+ I (q(v, )]T],
E5u T« 1 (61)

where Eqs. (38) and (54) have been used. For
times T such that diffractive scattering effects are
negligible, the loss of echo amplitude arises from
spontaneous decay (y]q term) and the destruction
of p&z produced by the separation of trajectory ef-
fect [I']'p(u, ) term].

On the other hand, if k5uT & 1, the velocity
changes associated with the diffractive scattering
region lead to phase changes in p~q that are large
enough to further reduce the echo amplitude from
the value (61) produced by spontaneous decay and
separation of trajectory effects. In the limit that
E5uT » 1, the integral term in Eq. (60b) averages
to zero and the echo amplitude becomes

A (u T) =Apexp[ —2[ytg+ I'tp(vz)]T ]

E5uT » 1 . (62)

The reduction of echo amplitude is now caused by
spontaneous decay, separation of trajectory effects,

and diffractive coherent scattering. The rate of
echo decay, I ]z(v, ), in the long-time domain is
larger than the rate I']'q(v, ) in the short-time
domain.

As the pulse separation T is increased, the ef-
fects of diffractive coherence scattering on the
echo amplitude become more pronounced. For
E5uT » 1, every scattering event, on average,
contributes to the collisional exponential loss term
appearing in Eq. (62).

One may ask why the photon-echo method is
distinctly superior to saturation spectroscopy in re-
vealing these effects since the effective coherence
lifetime r=[y, &+I']'q(u, )] ' is the same in both
cases. The answer to this question lies in the way
in which the diffractive scattering affects the
respective line shapes. In saturation spectroscopy,
diffractive scattering produces corrections to
linewidths of order E5uv", since E5u~ is generally
less than unity the distortion of the line shape is
usually difficult to observe. In photon-echo experi-
rnents, however, diffractive scattering produces
corrections of order k5uT which may be arbitrarily
large. Of course, the effective coherence lifetime is
playing a role by reducing the signal strength by a
factor exp( —2T/v. ), which is much less than unity
when E5uT » 1. However, since echo signals are
intrinsically large, measurements in the region
where T/r & 5 are readily performed; such mea-
surements' " have led to a clear demonstration of
the effects of diffractive scattering on coherences.
The spectral resolution of echo signals obtained
with pulse separations T & 1/yiz is less than the
natural width associated with the 1 —2 transition.

B. Specific evaluation of echo amplitude

The integral appearing in Eq. (60b) is

sin[K (u, —u,
'

)T]I = I du,
'

Wtz(v,
' ~u, )

E(v —v )
(63)

If the dimensionless variables x =(v, —v,
' )/5u and y =v, /u =v,' /u given in Eq. (48) are reintroduced and

the coherence kernel (49) substituted into Eq. (63), one obtains

I(y, 8)=2NofzuT8 ' f dxe " ~~~( —, ~y +x ~y ~
)sin(8x)/x,

0

where

(64)

and 00 is defined by Eq. (42). The integrals are tabulated' and one may write Eq. (64) as

I(y 8)=Nuo'ipTY(y 8)
where

(65)

(66)
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Y(y,e)=2 g
n=0

2 y/2

2 2n+1 [2 D-(2 +1)(~2 Iy I
}+Iy ID-~.(~2 Iy I }] (67)

and D„ is a parabolic cylinder function. ' Combining Eqs. (60b) and (63)—(67), we obtain

A (yu, T)=Aoexp[ —2[y»+I &z(yu)]T+2Nuo", 'STY(y, e) I . (68)

Equation (68) must now be averaged over a Maxwellian distribution in yu to arrive at the echo amplitude
(60a). The integration must be done numerically. For illustrative purposes, we present two approximate
methods for performing this average.

Method 1. If only a narrow range of velocities is excited by the laser pulse such that
I y I

« 1, one can
set y =0 in Eq. (68) and use Eqs. (68), (60a), (51), and (53) to obtain the echo amplitude

A (T}=Aoexp( —2[y,p+Nu, (0)[o) —opge '~~(8/2)] I T), (69)

where 4 is the error function and u, (0)=urn/2 is the average value of U for u, =0. We note that

—2[y//+A, (0)(o(/+0 /ge /12)]T, e «1
in[A (T)/Ao]- '

—2[y»+Nu, (0}(cr]g—o]pv /e)]T, e» 1
t (70)

and recall that 6=EC5uT.
Method 2. If W(u, ) is a Maxwellian distribution having width u, the assumption Iy I

«1 no longer
holds. As a rough approximation, however, we can average the exponent in Eq. (68) over y rather than the
exponential. In this manner, one finds

A (T)=Aoexp —2 y»+¹cr» —o)p g
n=0

2

2

1

(2n + 1)(2n + 1)!!
(71)

where u =2a /v rr is the average speed and the sum is a representation of the generalized hypergeometric
function qFq( —,, 1;—,, —,; —8 /4). For small and large 8, Eq. (71) may be written

—2[y,z+¹(cr/q+a»8 /18)]T, 8«1
In[A (T)/Ao]- '

—2[y]g+¹( ]p
—» /2e)]T, e»1 .t vc 3/2 (72)

The results expressed by Eqs. (70) and (72) are of a quite general nature. s For 8« 1

in[A(T)/Ao]- —2y»T —2¹o'gT—2¹czoK'(5u)'T', K5uT «1
where c is a constant and u some effective average speed. The T dependence is a signature of velocity-
changing effects. For Bg& 1,

in[A (T)/Ao] - 2y»T —2¹o»—T 2c'¹o—»/K5u, K5uT» 1,
where c' is a constant.

To isolate the effects of collisions, we define a quantity

B(8)= —[in[A (T)/Ao]+2y&zT]/(2¹ofzT),

which will have asymptotic limits

I+c(o",'/o[ )8, 8« 1

B(e)- '
t

n~qlofq, 8&&1 .

The ratio of B(8) in the high- and low-8 limits is

9P= B(g)(g)) 1) o)2 (bi+b2)
B(8)(8« 1) n(q b ) +b~

(73)

(74)

(75)

(76)

(77)
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1

(2n +1)(2n +1)f!

where Eqs. (53) and (54) have been used.
As a specific example, we calculate 8 (8) using the approximation (71) (for which u =U) and find

2b ib2 8a(e)=1+,
b(+b2 „=o 2

(78)

In Fig. 4, 8(8) is graphed for several values of
(b] Ib2). For 8 && 1, B(8) asymptotically ap-
proaches the ratio A' given by Eq. (77). The ratio
9P=aIz/of& vaies from 1 to 2 as (b, /bz) varies
from 0 to 1. It should be noted that the general
conclusions reached in this section are model in-
dependent. In particular, the echo amplitude
varies as exp( —2I ]'2T) for short times (E5u T« 1) and as exp( —2I i2T) for long times
(K5QT» 1).

The curves shown in Fig. 4 are in qualitative
agreement with recent experimental results on pho-
ton echoes in Li perturbed by rare gases. "
Velocity-changing effects were also observed with
Na as the active atom; the Na mass is small
enough to give rise to a 5u large enough [Eq.
(57b)] to produce E5u T & 1 for the pulse separa-
tions in that experiment. ' In a coherent transient
experiment on an electronic transition of I2, only
the exponential decay of the echo amplitude typical
of the short-time domain was observed. The large
iodine mass leads to a small 5u [Eq. (57b)]; conse-

quently; K5QT may remain small for the time
scales used in that experiment.

VI. SUMMARY

When atoms that have been created in a super-

position state by a radiation field undergo elastic
collisions in an atomic vapor, two distinct types of
effects occur. There is a modification of both the

2— bl/b2

0.0
I I i I & i

IO 20 30
e

FIG. 4. Graph of B(6) which characterizes the
photon-echo signal [Eq. (78)] as a function of B=K5uT
for b&/b2 ——0, 0.5, 0.75. The small horizontal lines on
the right side of the graph indicate the asymptotic value
of B(e) as e

I

population-velocity distributions p;;(v, t) and the
coherence density pj(v, t) (1+j)produced by the
scattering events. The processes can be character-
ized by collision kernels W;;(v'~ v ) and
WJ.(v'~v), respectively. In this work, we have
discussed the population kernels W;;( v'~ v), but
have concentrated our efforts in obtaining a physi-
cal picture of the coherence kernel WJ( v'~ v).
To do so, we have considered a system of two-level
active atoms interacting with a radiation field and
undergoing collisions with perturber atoms. The
collision interaction experienced by the atom in
each state was assumed to differ appreciably, as is
usually the case for electronic transitions.

Using arguments based on the uncertainty prin-
ciple, we showed that collisions can be roughly di-
vided into two regions. Collisions having an im-

pact parameter less than some characteristic radius
may be described classically, while large-impact
parameter collisions, giving rise to diffractive
scattering, must be treated using a quantum-
mechanical approach. As a consequence of this re-
sult, the population kernel may be written as the
sum of a large-scale (classical) scattering term plus
a term containing the effects of diffractive scattering.

The collision-induced modifications of the atom-
ic coherences produced by these two types of colli-
sions are somewhat more interesting. For small-
impact parameter collisions, there are distinct
nonoverlapping trajectories associated with the
scattering for each atomic state. Since there is no
spatial overlap of states 1 and 2 following such
collisions, these collisions destroy p&2 and lead sim-

ply to a decay rate for p, 2. Quantum inechanical-

ly, the classical separation of trajectories is
represented by a rapid variation with angle of the
phase of the product of the amplitudes f,f2.
Large-impact parameter collisions, on the other
hand, lead to overlapping diffractive scattering for
the two states. Consequently, the coherence kernel

Wi2( v'~ v ) possesses a diffractive component only
arising from these large-impact parameter colli-
sions. The width of the coherence kernel is effec-
tively independent of the perturber to active-atom
mass ratio.

Trajectory effects are seen to play an important
role in determining the collision-induced changes
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in the coherence p&2. The coherence p&z is related
ta the atomic palarization, which, in turn, is
directly linked to the spectral properties of the
medium. It seems somewhat paradoxical, there-
fore, that traditional pressure-broadening theories,
in which separation of trajectory effects are
neglected and in which collisions are assumed to
affect only the phases of the optical dipoles, are so
successful in describing spectroscopic line shapes.
This apparent paradox was resolved in Sec. IV,
where it was shown that traditional pressure-
broadening may be used provided the velocity-
changes associated with the coherence kernel are
too small to be detectable in a given experiment.
Thus, although the interpretations are different in
the two approaches, the results can be identical. In
linear spectroscopy, traditional pressure-broadening
theory is always valid, if, as assumed, the collision-
al interaction differs appreciably for the two states
between which the optical transition occurs. Trad-
itional pressure-broadening theory is no longer ap-
plicable if the velocity changes associated with the
diffractive coherence kernel 8'12( v'~ v) can be
experimentally measured. Such effects should be
marginally observable in saturation spectroscopy
and have been observed for the first time in
photon-echo experiments. ' "

To illustrate various features of the problem, we

adopted a simple model of hard-sphere scattering
to describe the collisions. The results, however, are
quite general and can be easily extended ta arbi-
trary potentials. The hard-sphere madel enabled us
to obtain closed-form expressions for the various
collision kernels and rates. In addition, we used
the model to calculate an expression for the
photon-echo amplitude, which clearly indicates the

importance of velocity-changing collisions associat-
ed with 8'&2( v'~ v). If one uses a more realistic
interaction potential, the resulting expressions must
be evaluated numerically.

It should be noted that the semiclassical ap-
proach used in this work is valid only if the de
Broglie wavelength of the atoms (in the center-of-
mass reference frame) is much smaller that the
characteristic Weisskopf collision radius b~.
Moreover, any effects of orbiting or of rainbow or
glory scattering have been neglected. A rigorous
discussion of the validity of the semiclassical ap-
proach has been given by Avrillier, Borde, Picart,
and Tran Minh. A calculation is in progress
which is designed to determine the conditions
under which our general approach to calculating
the coherence kernel retains its validity.
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APPENDIX A

In Appendix A, the results of Sec. III are generalized to allow for an arbitrary perturber to active-atom

mass ratio. The collision kernel is given by '

'3

WJ(v'~v)=N — f dv', f dv, W~(v' —v,')5 v„—v,
' ——(v —v') u„5(u„—v„')FJ(u„',

~

v„—v,
'

i ) .

(A1)

The quantities appearing in Eq. (Al) are the product of scattering amplitudes in the center-of-mass system

Fgj.(u,',
i
v, —v,

'
i )=f;(v,'

I
v, vr I)fJ(u' I

v. —v' I
)—

the perturber velocity distribution

W~(v~)=(ms~) i.exp( u~/up), —

(A2)

(A3)
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where u~ is the most probable perturber speed, and the reduced mass p, . Equation (Al) represents the colli-
sion kernel in the center-of-mass frame averaged over the perturber velocity distribution consistent with con-
servation of momentum and energy.

Integrating Eq. (Al) over v', and setting

rl =(m/p)(v v'—),
one finds

WJ(v'~v}=N(m/p) f dv, W&(v' —v, +rl)5(u„—
~
v, —r)

~
)v, ~F~J(u„,rI) .

The angular integrals can be carried without too much difficulty ' '"' and one may obtain

W~J(v'~v }=N(mls) (2u)r) 'W~( , r)+—v')f qdq exp( qilu~—}Is(2qu, /up)F~((q + , r12)'~—,i))),

(A5)

u, =(uu'/
~

v —v'
( )sin8,

8 is the angle betw'een v' and v, and Io is a modified Sessel function.
~en the exponential approximation to the scattering amplitude (16) is used, one has

FJ(u„r)}=, k„b; b~ e—xp[ , k„(b;—+—bj)8,],
where

k, =pv, /fi

are the k vector and scattering angle, respectively, in the center-of-mass frame. Substituting Eqs. (Ag)—
(A10) into (A6) and assuming 8, ~& 1 (diffractive scattering region), we find

m b; bj exp[ n /(8uu, )—]
'3 22

WJ(v'~v)= — ' ', '
exp — + ",u, [v'+ —,'r)'+u' —(v' r)/r))'],

where

rl = (m /p, )( v v'), —

A,,=A/pu, ,

(8u)'=g&, /(b; +b; ) ((1 .

The various collision 1'ates defined by Eqs. (19), (27), (32), and (33}are easily calculated starting from Eq.
(A1). One finds

I;(u)=N u( )u( 2.ub},

I i2(u)=Nu, (u)[u(bi+b2)],

2m'b]bg
I iz(v) =Nu, (u) 2b2+I 2 (A 1sc)



(y4+y4)
I' f2(u) =Nu„(u) b2+$2

(A15d)

(A16a)

with

where u, (U) is the active-atom perturber relative speed averaged over the perturber velocity distribution, i.e.,

u„(uzz)= f Wz(vz)
~

v —vz ~
dvz

use * [1+2m'~ z '(1+2z )e* 4(z)]

[Note that as uz ~0 and p~m, one regains the results of Sec. III. If u ~0, and @~md (perturber mass),
W~~(v'~v)-I tq(U)5(v —v'), and u, (u~z)-u„(0)=2m '~~uz. ]

To obtain the one-dimensional kernel, one multiplies Eq. (A1) by W(v', ) and integrates over v, and v', .
The resulting integrals can be reduced to a triple integral ' ' ' of the form

W&J(u,
'

u, )=4~ ' p« f ds, f dq I dpe ~"~ ~"exp[ —« '(q + qo)]F,~(( qo+p +q )', ri),

p=u/u~ =(m~/m)'~

«=(1+P )/P,
s =( v —v')/u = s, +s,z,
f0=St ( 2 KS +pSz)

(A20)

(A21)

y =u,'/u .

%ith the kernel given by the exponential approximation (As)„Eq. (A17) may be integrated to give

8'~2(U,
' ~U, )= —,Acr ~2(HO) 'e

X [ [ , +P '+y'—+xy(1 P') x']—e [—I+4'(y »]-
+[—,+p '+y' —xy(1 —p ')—x']e~y[l —4(y+x)]+2m '~2xe ye "j,

x= ~U, —U,
' ~/(pu8t),

p=U /Q,

y'=py ="z/up ~

80——F00 .

(A24)

The kernel (A23) reduces to Eq. (49) in the limit p~ ca and has a width of order 80u for
~ y ~

(1. For
p~~ 1 and ~y ~

(1, the effective width of the kernel is of order p80u =«p80u =(1+p )'~ 8ou =80u. Thus,
regardless of the ratio ofperturber ro acriue atom mass -ratio, the kernel width (for ~y ~

(1) is of order

u80 ——2V 2Au /(b f +b2)'i

=2(2m)'i fi/m (o' )'i (A27)

This somewhat surprising result arises from the canceHation of two effects. As m~ /m (or p) decreases,
there is an increase in the size of the diffraction cone in the center-of-mass system [recall that 8, a: (p, u, )
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=(1+P )'~ 80]. This effect is compensated by a decrease in the scattering angle as measured in the labo-

ratory frame. Thus, the collision width depends primarily on the active-atom mass and total collision cross
section.

In Fig. 5, the kernel

W)p{O~Pu80x}=No)2(80) 'e ~" I( —,+P —x }[1—4(x)]+a. '/2xe

is plotted as a function of

(1+P )'i x =u, /u80 ——u, /5u

for several values of P. The P=0. 1 and P=10 curves correspond to asymptotic limits of the kernel for the
cases P« 1 and P» 1 respectively; thus the kernel width is seen to vary only slightly with P. In practice,
o' normally increases with increasing P, implying a corresponding decrease in the kernel width. Smaller col-
lision cross sections produce a larger diffractive-scattering cone.

The various one-dimensional rates are still given by Eqs. (A15) if one replaces u by u, and u„(u) by u, (u, ),
where u, (u, ) is the relative speed averaged over the perturber and transverse active-atom velocity distribu-

tions, i.e.,

u, (u, )= I W(v, ) Wz(v&) i
v —vz i

d vied v, ,

where

v = vg+Ugz .

Explicitly, ' one finds

u, {uy)=uz Py@{Py)+m ' e ~" I+n'j I dx e * j +cosh(2yx/vs)[1 —4{x/aPt)

APPENDIX 8

In Appendix 8, we derive expressions for the various collision kernels and rates using the amplitude (15)
for hard-sphere scattering instead of its exponential approximation (16). Moreover, the cross sections are
also calculated directly using Eq. (11) to illustrate the origin of the distinct trajectory approximation
k(bg —bi)»» 1.

Using Eqs. (A2) and (15), we find

Fgq(v„g) =b; b)H„Ji (k,b;8, )J](k,bJ.O, ),
where 8„ is given by Eq. (A10). If Eq. (81) is substituted into Eq. (A6) and the assumption 8,« 1 is used,
one may obtain [cf. Eqs. (Al 1)—(A14)]

(«q «) N Ill l I 1 J IQ J JQb b.u b. b.

p uprl u~k~ u~k„

)& [exp[ —( , r}+v' f/r}}2—juz]]u„. [u' + 4' +uz (v'. rl/rl) ], —

where rl=(mjp, )(v v). Equation (82—) reduces
to Eq. (All) if brllu„}t, «1.

The rate obtained from Eqs. (27), (Al), and (81)

where u, (u) is given by Eq. (A16). If k, (b2 b& )—
»» 1, the 8, integral can be replaced by an integral
from 0 to oo. In that case, for b&» bi, one finds'

I',1'(u) =Nu„(u) I dQ„b; bj8„J~(k,b;8, )

XJ](k,bj , ),

1,"J'(U) =Nu, (U)(mb; ) b; &bj .

Thus, the various cross sections and rates defined
in Eqs. (19) and (31)—(33) are given by (b2 & b& )
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I.O

~;,'=4 k '-g (1+—,
'

}[2sin'q(, "sin'g~P'
1=0

+ —, »n(2r)3 )sin(2t)I2')],

where

ri(u' ta=n '[j((kb, )/nt(kb;)] (88)

'0

FIG. 5. Graphs of the one-dimensionel kernel

W~&(O~u, ) as a function of (1+P')'~'x =U, /u80 for
several values of P=uiu~ =(m~/m)' . Notice that the

width of the kernel is essentially independent of )3, al-

though its shape changes somewhat. The kernel is in

units of No]2(8~) ' and is normalized such that
8')2(0~0)=1.

is the state-i hard-sphere scattering phase shift.
Using the properties of the spherical Bessel func-

tions, ' one can show that q'1"-0 exponentially for
I ~I.; so that the cos(2q1) terms average to zero.
One is left with

I.
g

——
khan

(assuming b; &b/). Equation (87) may be rewritten

as

L;

o,"J'=2rrk g 1[ 1 —cos(2riI") —cos(2ri&~')
1=0

o; =2mb;,
vc g. 20 ~2='fTv

~

cr)p ——m(b )+b2),2 2

h 2

and 1 (U) =NB„(U)oThe cros's. section 0')t can
differ by as much as 17% from that calculated us-

ing the exponential approximation to the scattering
amphtude [see Eq. (31)].

Integral expressions for the one-dhmenstonal ker-
nels and rates can be easily obtained using Eqs.
(36), (39},(Al), (Bl), and (27). Without explicitly
writing expressions for these quantities, we note
tha««»rge eno ugh P—v'

I
«

i v, —v,
'

I
it is

possible for the population kernel to have side
lobes and for the coherence kernel to go negative
(the exponential approximation always gives a posi-
tive kernel). This feature is already seen in Eq.
(82). Near the "center" of the kernel,

( u, —u,
'

~

g u 80, the exponential approximation (16) pro-
duces a collision kernel that has the same form as
the one calculated using the correct amplitude (15).

To finish this appendix (and article), we calcu-
late o &z directly from Eq. (11) without using the
assumption that k(bq —b~) pp 1. Using the defj.ni-
tion

o,j'——Re f f;(8)fj'(8)dQ

along with Eq. (11) for f;(6), one easily derives

+cos(gI"—tlI")] .

Again, using the properties of the Bessel func-

tions, ' one can show that the g'1 are large for
I &I; so that the cos(2q'1 ) terms average to zero.
One is left with

(811)

vl'( rl&" 1($2—P& )——1(tan—ft —tang& ), —

1(;=cos '(1/L;) .

Since I/I.; ~~ 1 for most I in the sum,

P.—tanP =——
2 21.; I

(&) (&)
l' (bz —b~)

k(bt b, )+—— —
kb, bz

Combining Eqs. (813) and (Bl1) and changing the

a,"J'. =4nk 2 g 1 sin'[(t)IJ' —t)(')/2] .
1=0

For i =j, Eqs. (89) and (811) yield o; =2trb;, the

quantum-mechanical result for high-energy hard-

sphere scattering. For i', one can approximate'~
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sum to an integral, one finally obtains

vc 2 4mb )b2 kb )(b2 —b) )

k {bp—b( )(4b2 —b( )
icos

2

(814)

If b2 ——b&, o.
&z

——2~b~, but for k{b2—b~) &&1,
o.&z-m.b &, in agreement with the result (B5b) de-
rived from diffractive scattering only T.hus, if
k(b2 —b~ ) && 1, diffractive scattering only contri-
butes to the coherence kernel.

~The perturber atoms are assumed to be nonreactive and

simply provide an effective scattering potential which

is different for states 1 and 2 of the active atom.
P. R. Berman, Adv. At. Mol. Phys. 13, 57 (1977), and

references therein.
P. R. Berman, Phys. Rep. 43, 101 (1978).

4S. Avrillier, C. J. Horde, J. Picart, and N. Tran Minh,
in Proceedings of the 5th International Conference on

Spectral Line Shapes, edited by B. Wende (de Gruyter,
Berlin, 1981), and (unpublished).

S. Avrillier, Doctorat D'Etat thesis, University of Paris,
North, 1978 (unpublished).

6An attempt to explain the coherence kernel for the

magnetic substates of a given level has been given re-

cently. See, J. L. LeGouet and P. R. Berman, Phys.
Rev. A 24, 1831 (1981).

7See, for example, R. G. Breene, Jr., The Shift and
Shape of Spectral Lines (Pergamon, New York, 1961);
M. Baranger, in Atomic and Molecular Processes, edit-

ed by D. R. Bates (Academic, New York, 1962),
Chap. 13; H. R. Griem, in Plasma Spectroscopy
(McGraw-Hill, New York, 1964), Chap. 4; J. T. Jef-
fries, Spectral Line Formation (Blaisdell, Waltham,
Massachusetts, 1968); I. I. Sobelman, Introduction to
the Theory ofAtomic Spectra (Pergamon, New York,
1972); S. Y. Chen and M. Takeo, Rev. Mod. Phys.
29, 20 (1957); J. Cooper, ibid. 39, 167 (1967).

For a discussion of this effect (often referred to as
"Dicke narrowing") [R. H. Dicke, Phys. Rev. 89, 872
(1953)], see P. R. Berman, Appl. Phys. (Germany) 6,
283 (1975), Sec. 5 and references therein.

P. R. Berman, J. M. Levy, and R. G. Brewer, Phys.
Rev. A 11, 1668 (1975); B. Comasky, R. E. Scotti,
and R. L. Shoemaker, Opt. Lett. 6, 45 (1981).
T. W. Mossberg, R. Kachru, and S. R. Hartmann,
Phys. Rev. Lett. 44, 73 (1980)~

R. Kachru, T. J. Chen, T. W. Mossberg, S. R. Hart-

mann, and P. R. Berman, Phys. Rev. Lett. 47, 902
(1981).

' See, e.g., M. S. Child, Molecular Collision Theory
(Academic, London, 1974), Chaps. 1 —5.

Population kernels of this type are discussed in A. P.
Kolchenko, S. G. Rautian, and A. M. Shalagin, Nucl.
Phys. Inst. Semiconductor Phys. Internal Report (un-

published).
'4M. Gorlicki, A. Peuriot, and M. Dumont, J. Phys.

Lett. (Paris) 41, L275 (1980)~

Equation (8) is strictly true only for smoothly varying
potentials for which the impulse approximation may
be used. For hard-sphere scattering, condition (8) is
replaced by k(b2 —b&) » 1.

' The stationary phase method is valid only if kbj8'» 1. This result may be obtained by using the
asymptotic expansion

Pi(cosg) -cos[(l +—)8—m /4]
[

and an approximation form for the phase shifts

gI =(l + —, )(P—tanP) —m./4,
valid for kbt » 1 [the angle P is defined by cosi3

=(I+ )/kb, —] The n.et phase appearing in Eq. (11)

becomes

P= —(I +—)(8—2P+2tanP)+sr/4 .

The point of stationary phase is given by (I +—)

=kbj cos(8/2) (classical result). If kb~0 &1 &&kbj8,
then the phase (() is a linear function of I and there is

no point of stationary phase (equivalently, the third
derivative term neglected in the stationary phase
method is not negligible). Consequently, Eq. (12) is

valid in the range 8» (kb, ) ', which is more limit-

ed than 0» (kb~)
i7I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,

Series, and Products (Academic, New York, 1965).
There is no point of stationary phase provided

kbj0 « 1, (see Ref. 16). This condition limits the
range of validity of Eq. (15).
If, for 0« 1, one expands PI(cos0) as

[Jo(x)+(6) /4)[(2x) 'Ji(x) —J (x)+ —xI (x)]]

(see Ref. 17), the leading correction to Eq. (14) can be
shown to be of order

k b-8 «(kb. ) i «1
where the first inequality follows from the condition
stated in Ref. 18.
In integrating the classical contribution over solid an-

gle, one must exclude a region 8&(kb;) ' '. This ex-

clusion leads to corrections of order (kb;) '« 1.
'For a smoothly varying potential, the condition



COLLISION KERNELS AND LASER SPECTROSCOPY 2S71

k (bi b—i ) » 1 would be replaced by Eq. (S).
~2For example, if atoms having a large v, are selected,

collisions can transfer some of this "heat" to the
transverse velocities.

~3C. Brechignac, R. Vetter, and P. R. Berman, J. Phys.
Lett. (Paris) 39, L231 (1978); Phys. Rev. A 17, 1609
(1978); P. F. Liao, J. E. Bjorkholm, and P. R. Her-
man, ibid. 21, 1927 (1980).

2~T. %'. Hinsch, I. S. Shahin, and A. L. Schawlom,
Phys. Rev. Lett. 27, 707 (1971);J. Brochard and P.
Cahuzac, J. Phys. B 9, 2027 {1976);P. Cahuzac and
X. Drago, Opt. Commun. 24, 63 (1978};T. %.
Mossberg, A. Flusberg, R. Kachru, and S. R. Hart-
mann, Phys. Rev. Lett. 42, 1665 (1979).

25R. Kachru, T. %'. Mossberg, E. %hittaker, and S. R.
Hartmann, Opt. Commun. 31, 223 (1979);T. %,
Mossberg, R. Kachru, E. %'hittaker, snd S. R. Hart-
mann, Phys. Rev. Lett. 43„851 (1979); see also J. L.
LeGouet and P. R. Herman, Phys. Rev. A 20, 1105
(1979), and references therein.

2sWe assume that
~

Q' —r0
~

i(Q'+co) g& 1, where r0 is
the transition frequency ("rotating-wave" or resonance

approximation}.
27Oming to the narrow width of the coherence kernel,

one can interchange v, snd v,
' at mill.

2sIf the condition k,bir » 1 is violated [see Eq. (A9) for
the definition of k„] owing to a very small perturber
to active-atom mass ratio (e.g., electron peiturbers),
then the neglect of trajectory effects can be justified.
However, if k,b~~p 1 as is assumed in this work, s
unified picture of the collisions mechanism is achieved

only when trajectory effects are incorporated into the
theory.

29For scattering potentials other than hard sphere, colli-
sions usually produce a shift as well as a broadening
of the profiles.

30J. L LeGouet and P. R. Berman, Phys. Rev. A 17, 52
(1978). In this paper, an approximation for the coher-
ence kernel, similar in spirit to the one derived in this
work, mas used.
Actually, it is combinations of the E's for the various
transitions mhich enter (see Refs. 2 and 3).

32P. Cahuzac, J. L. LeGouet, P. E. Toschek, and R.
Vetter, Appl. Phys. (Germany) $0, 83 (1979).

33See, for example, I. D. Abella, N. A. Kurnit, and S.
R. Hartmann, Phys. Rev. 141, 391 {1966);M. Scully,
M. J. Stephen, and D. C. Burnham, ibid. 171, 213
(1968); S. R. Hartmann, Sci. Am. 218, 32 (1968); C.
H. Wang, C. K. N. Patel, R. E. Slusher, and %'. J.
Tomlinson, Phys. Rev. 179, 294 {1969);R. L.
Shoemaker, in Laser and Coherence Spectroscopy,
edited by J. T. Steinfeld (Plenum, New York, 1978), p.
197; T. %. Mossberg, R. Kachru, S. R. Hartmann,
and A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
For simplicity, we take the pulse to be resonant with
the atomic transition, i.e., E =m/c.

35A. Flusberg, Opt. Commun. 29, 123 (1979).
A somewhat more careful evaluation of Eq. (60b) in
the limit E5uT py 1 gives

2 (U» T)=exp{ —2[yii+ I'ii(U, )]T

+2rrlt' 'Wig(v, -+U, )I .

The last term follows from Eq. (60b) if

cos E{v,—v,
'
}t dt

is replaced by m'E '5{v,—v,
'

).
A smooth Fourier-transform-limited pulse of duration
hv excites a velocity bandwith hv, =(EA~) '. If hw
is chosen such that Ku g hv ~~ T, only a fraction of
the Maxwellian distribution is excited.
Taking y =0 in Eq. (49) implies a Gaussian kernel.
Equation (69) agrees with a related calculation (Ref.
9) in which a Gaussian kernel was used.

39Rather than directly averaging the exponent in Eq.
(68), it is easier to perform the averaging in the ex-
ponent of Eq. (60b).
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