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The complex potential-energy function for nuclear motion in the Born-Oppenheimer

approximation for the lowest X+ resonance state of H2 has been calculated using the

complex self-consistent-field (CSCF) method which treats the incident and target electrons

equivalently. There is substantial disagreement among various determinations of the

complex potential function for the broad 'X„+resonance. The CSCF results agree best

with the potential used by Bardsley and Wadehra [Phys. Rev. Lett. 41, 1795 (1978)] to
compute dissociative attachment cross sections. The calculated width of the resonance as

a function of internuclear distance is in excellent agreement with the form used by Bards-

ley and %adehra while the real part of the CSCF potential agrees less well with their

function. It is suggested that correlation effects are important in determining the position

of the resonance and in determining the width at least near the internuclear distance at
which the resonance becomes a bound state.

I. INTRODUCTION

Resonances in electron-molecule scattering can
enhance the probabilities of vibrational excitation
and dissociative attachment and, in some cases,
dominate the cross sections for these processes.
For example, the prominant IIg resonance occur-

ring at about 2.5 eV in e-N2 scattering is a well

studied case of resonance enhancement of vibra-

tional excitation, and low-energy dissociative at-
tachment in e-H2 scattering which proceeds
through the broad X„+shape resonance is an ex-

ample of resonance enhancement of dissociative at-
tachment. The autoionizing states of molecules

through which Penning ionization proceeds are
also resonances (in dectron scattering from the
molecular ion), and the lifetime of such states is an

important factor determining the Penning ioniza-
tion cross section. In spite of the central role reso-
nances can play in collision processes there have
been relatively few ab initio calculations of the en-

ergies and lifetimes of molecular resonances. '

The simplest information from which the
resonant contribution to vibrational excitation can
be approximately calculated is that required by the
"boomerang model" of Hirtwistle and Herzenberg
and Dube and Herzenberg or by the "energy
modified adiabatic approximation" of Nesbet,
namdy, the complex potential-energy surface for
nuclear motion in the resonance state. For a dia-

tomic molecule this potential E,~(R) depends on
the internuclear distance R and is generally denot-
ed

E,~(R)=Eg(R) —i I (R)/2,

where Eq{R) is the (real-valued) position of the
resonance and I (R) is the width. More elaborate
theories require a nonlocal complex potential in

place of the local one in Eq. (1).
Dube and Herzenberg point out that to repro-

duce the experimental vibrational excitation cross
section in a case for which the boomerang model is
applicable it may be necessary to have a represen-
tation of E,~{R)accurate to about 10 ao. That
is to say that, because the vibrational excitation
cross section is sensitive to details of the potential
surface on the scale of the wavelength for nuclear
motion, it is necessary to locate critical features
such as classical turning points to within less than
one wavelength. Certainly if such accuracy is to
be obtained in an gb initio calculation —even for
the simplest case—it will be necessary to have
methods for computing the complex energies of
resonance states which make those calculations no
more difficult than the calculation of the real ener-

gies of bound states. In this paper we present the
calculation of the complex potential-energy curve
for the lowest-energy shape resonance in electron-

H2 scattering, the X+„state, in which all three
electrons are treated on a precisely equal footing in
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a self-consistent-field (SCF) calculation on Hz
As we have shown in previous publications, ' '"
the SCF equations have solutions with complex en-

ergies for shape resonance states, and these solu-

tions can be found using complex basis functions

in the complex self-consistent-field (CSCF)
method. These calculations include a substantial

portion of the response of the target because the

target orbitals (only the log in this case) are calcu-

lated in the field of the inrident electron and thus

can "relax" in its presence. A previous calculation

on the Hg resonance state of N2 suggests that
for closed-shell molecular targets the CSCF ap-

proximation can provide accurate results, particu-

larly for the width of the resonance.
If the accurate ab initio calculation of molecular

resonance parameters is to become commonplace it
will be necessary to develop methods which ad-

dress this problem with all the power and Aexibili-

ty of conventional bound-state ("quantum chemis-
try") calculations. The effects of electron correla-
tion on the width, for example, may be subtle and,
since the correlation problem is a formidable one
even in bound-state calculations, we cannot afford
to introduce many additional computational diffi-
culties into the molecular resonance problem. The
CSCF calculations presented here provide a logical
starting point for configuration interaction (CI)
studies of the X+„resonance in e-H2 scattering.
Most of the computational problems associated
with complex basis function calculations are asso-
ciated with the calculation of one- and two-

electron integrals and have been overcome effec-
tively at this point, so the additional effort re-

quired to perform CI calculations on this small

system is not major.
The X+„stateof H2 dissociates to H+ H

and therefore, since H is a bound anion, the reso-

nance state of H2 must become a bound state as
R increases. In Sec. IV me mill present the CSCF
description of this change from resonance to bound
state. Part of the motivation for these calculations
was to determine if the solution of the CSCF equa-
tions is a continuous function of R as the change
from resonance to bound state occurs, and to
develop procedures for finding solutions in the
transition region.

The outline of this paper is as follows. In Sec.
II we present a brief description of the CSCF
method. In Sec. III me discuss some of the corn-
putational details including the basis sets employed
and the location of complex stationary points.
Section IV presents our numerical results and com-

pares them with empirical and theoretical results
of other workers, including the recent work of
%adehra and Bardsley. ' Finally, in Sec. V we
discuss further applications and extensions of the
CSCF method for molecular systems.

II. THE COMPLEX SCF METHOD

Since the CSCF approach has been described
elsewhere' "in detail me will limit the discussion

here to a brief summary of the theory and a few

essential computational details. The original

development' of the CSCF method was motivated

by the use of dilatation analyticity in atomic reso-

nance calculations. ' ' The idea was based on the
fact that the Schrodinger equation for an atomic

system in which the coordinates of all the electrons

have been scaled according to ra re'~ has a well-

defined, discrete solution at complex resonance en-

ergies. Furthermore, the wave function corre-

sponding to such a complex energy solution is
square integrable. Therefore one should be able to
construct the Hartree-Fock approximation to these
discrete resonance states. For the case of a shape
resonance, for which a one-configuration trial
function is adequate, this is true at least in princi-

ple, and for Feshbach resonances we can find SCF
approximations to the resonance wave functions if
we employ a trial wave function consisting of at
least two configurations. In either case the most
important point is that we are locating the reso-
nance pole of the S matrix directly in the SCF or
Hartree-Pock approximation.

However, it has become increasingly clear since
the original CSCF calculations mere performed
that there is a more general way to think about
this problem —one which suggests far more effi-
rient computational procedures as well. Instead of
beginning with the Schrodinger equation for the
complex-scaled Hami1tonian H(( r;e'~) ) one can
begin with a generalized variational expression,
which makes use of the original, real-valued Ham-
iltonian, but in which complex variations in the
trial wave function are allowed. In other words,
the complex resonance energies are the complex
stationary points of a suitably chosen function-
al."""An important point here is that the dual

space—the left hand side of the matrix elements

appearing in our functional —is not the complex
conjugate of the direct space. The equivalence of
this approach to the complex-scaling method has
been discussed in the context of numerical calcula-
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tions previously, ' '" and various related mathemat-
ical points concerning molecular applications' '
and connection with the virial theorem' have also
been discussed in the literature.

The complex variational approach to SCF and
CI calculations is known in its various manifesta-
tions as the method of complex basis functions".
Without this approach it is extremely difficult, if
not impossible, to perform complex calculations on
molecular systems to locate electron scattering res-
onances in the Born-Oppenheimer approximation.

To obtain the appropriate working equations for
CSCF calculations on molecules we begin with an
open-shell energy expression (expectation value of
the real-valued Born-Oppenheimer Hamiltonian)
like that suggested by Roothaan. ' We will write
this expression in terms of the spatial orbitals P;i,
which will be the solutions of the CSCF equations.
The subscript i is the shell index, k, labels the ir-
reducible representation, and a distinguishes
members of the irreducible representation A,. The
energy expression is

1

Ecscr gN——;xh;; + —, g NON&q(appal„J gJ„,big)„——K;g~p},
lk i' pc

(2)

where N;~ is the occupation of the ith shell of A, symmetry and a~~j& and b&~~„arecoupling coefficients.
This energy expression is different from the usual bound-state expression only in the definition of the matrix
elements. If d~ and d& denote the degeneracy of symmetries A, and p, , the one-electron, Coulomb, and ex-
change matrix elements are defined without complex conjugation as follows:

h;; =di ' g J P;i (r)hP;i (r)d r, (3a)

Jjijp=

(&id'�

) g I I pi~(ri )pj'pp(rq )ri2'pi (ri )p~&ii(rt )d rid rq
a,P

Kijq (did')——'y I f pi (r~)g~„p(r2)r~q'P~„p(r~)P;i (ri)d r&d'ri .
a, P

(3b}

(3c)

I =EcscF—g e; dz I P;i (r)P i (r)d r, (4)

where e,j is the complex symmetric matrix of
Lagrange multipliers. The derivation of the work-

ing SCF equations proceeds from this point on-
ward in the same manner as in the usual bound-
state case except that we allow arbitrary complex
variations in the orbitals P;i .

Expanding the CSCF orbitals in a discrete basis
produces matrix equations precisely analogous to
those of bound-state SCF calculations but with
matrix elements over basis functions defined
without complex conjugation as in Eq. (3). Choos-
ing the functional as we did in Eq. (4) leads to
complex symmetric Fock matrices. Some numeri-
cal detail of the calculations will be discussed in
the following section. We will note here, however,
that all schemes for reaching convergence in a
real-valued SCF calculation are not necessarily
equally successful in the complex SCF case. We

To obtain an appropriate variational functional we

must add a set of Lagrange multiplier terms to the
energy expression in Eq. (2) to constrain the orbi-
tals to remain orthogonal to one another. The
variational functional I is then

I

have no clear indication that, for example, "one-

Hamiltonian" methods such as that of Davidson
and Stenkamp are superior to "two-Hamiltonian"

approaches such as that of Roothaan. ' However,
it is very clear from our experience that in the
two-Hamiltonian approach one must choose the
open-shell coupling coefficients [a&tii and bite in
Eq. (2)] such that the (open-shell) orbital occupied

by the incident electron does not experience a po-
tential due to itself. Although such potential terms
in the open-shell Fock matrix have no effect at
convergence, we find they ensure that convergence
to a complex resonance state is difficult to achieve.

III. COMPUTATIONAL PROCEDURES

The first and most important step in the im-
plementation of the CSCF method is to choose an
appropriate basis in which to expand the orbitals

P;i, i.e., to choose the space in which complex
variations will be carried out. Experience in calcu-
lations on atomic shape resonances' "has shown
that it is sufficient to use complex basis functions
only for the orbital which describes the scattered
electron. In the case of the Hq X+„shape reso-
nance that orbital is the ko.„orbital of our
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trial function. In the first CSCF calcu-
lation on a molecule it was found that it is suffi-
cient to employ complex basis functions only for
the diffuse part of the basis. In our calculations
those complex functions are Gaussians of the form

X (r)=E(a8—2)( g )
' ' —A '

g

where A is thc vcctoi of coordinates of thc ccntc1
of the function, N(a8 ) is the normalization con-
stant, and 8=e'~ is a complex-scaling parameter
which all of the complex Gaussians in a given cal-
culation have in common. The basis used here is
thus a combination of real Gaussians for the target
orbitals snd real and complex Gaussians for the
continuum orbital. More generally speaking, our
prescription is to include diffuse complex Gauss-
ians only in the symmetry k of the continuum or-
bital, so that if there are target orbitals of the same
symmetry they mill pick up small contributions
from the complex functions. Of course all of the
coefficients in the expansion of target and continu-
um orbitals src allowed to take on complex values.

The reasons for the choice of Gaussians located
at real position A, but with complex exponents
u8 scaled in this particular fashion is explained
in detail in Refs. 21, 22, and 17. Other choices are
possible, but choosing all the basis function to have
the form shown in Eq. (5), or the direct application
of coInplcx scaling to all of thc clcctron1c coordi-
nates, has been shown to result in numerical insta-
bilities in many-electron systems. '

The complex intcgrals and SCF codes used in
the calculations presented here were based on sym-
metry adapted integrals and SCF codes developed

by R. M. Pitzer and kindly provided by him.
The two-electron integrals and multicenter nuclear
attraction integrals involving complex Gaussians
can bc reduced to cxp1'cssions contaln1ng error
functions of complex argument which me compute
using Gautschi's algorithm.

The basis set we used in these calculations is an
extension of the (8s, 2p) Gaussian basis given by
Lie and Clementi. 5 The three s functions with
largest exponents werc contracted using the coeffi-
cients given by Lie and Clementi, and an addition-
al s function with exponent equal to 0.029 12 mas
added. The contracted basis centered on the nuclei
is thus (7s, 2p), and these functions were used in

both og and o„symmetries. This real basis mss

augmented with a set of 15 complex I', Gaussians
with exponents whose moduli [a in Eq. (5)] are
given by

n =0, . . . , 14.

These functions mere centered at the middle of the
molecule and used only in o„symmetry. To avoid
linear dependence problems at internuclear dis-

tances less than 1.7ao, the three complex I', func-
tions with largest exponents were removed and the
tmo most diffuse s functions mere included only in

the oz orbital. It should be noted that the three P,
functions with largest exponents contributed rela-
tively little in the calculations in which they merc
included.

The complex-scaling factor 8 in Eq. (5) plays a
role in these calculations quite analogous to the
complex-scaling factor 1n a complex coordinates
calculation, and me therefore treat it as a nonlinear
variational parameter. ' ' To make this nonlinear
variational calculation s more efficient process we
make use of a numerical analytic continuation of
E~cF(8), the CSCF energy as a function of 8. %C
begin by solving the complex SCF equations at
several (typically four or five) values of 8=e'"
with y real valued. From these values me con-
struct a rational fraction 6 approximation to
Ecscp(8)

Ecscp(8)—P„(8)/Q (8),
where P„(8)and Q (8) are polynomials and the
rational fraction reproduces the computed values
of ECSCF(8) exactly. % c then Inakc usc of this ra"
tional fraction to find the stationary point at which

(dEcscF (8)/d 8)e ——0 .

In practice we find that dEcscp(8)/d8 is very
sInall over s range of 8 in s calculation employing
s large basis sct, and that R value of 8 for which
Eq. (7) is satisfied to within 10 a.u. is easily
found by applying a steepest-descent algorithm to
the magnitude of the derivative. In this wsy we
often find that 8,t„hssa modulus slightly dif-
ferent from 1. Figure 1 shows s typical "8 trajec-
tory" and resulting stationary point.

Finally we will comment on the techniques in-
volved in converging a CSCF calculation to self-
consistency. First of sll, as noted in Sec. II the
open-shell coupling coefficients must bc chosen so
that the continuum orbital does not experience s
potential duc to itself. To start s calculation when
no first guess is Rvsilsbles w'c begin by us1ng the
SCF wave function of the target to construct the
static-exchange potential for electron scattering in
our basis of real snd complex Gaussians with 8



COMPLEX POTENTIAL-ENERGY FUNCTION FOR THE X+. . .

Im (F)
Q. U.

-.088-

R=1.7 a.u.
50'

~ 5 I I I I
)

r s I I
(

I I & ~0

-.090-

35

4Q

I

-1.0366 -1.0364
Re (E,) a. u.

1

-1.0362 -1.036Q

FIG. 1. E~cF for the X„+state at 8 = 1.7ao as a
function of the scaling parameter 8=e'" for various
values of y. Im denotes the stationary point from Eq.
(7).

fixed. Diagonalizing the static-exchange Hamil-
tonian in that basis generally produces a solution
for a continuum orbital which exhibits localization
and clearly represents the resonance orbital, With
that orbital as first guess for the resonance orbital
and the neutral target orbitals as first guesses for
the rest, we have found that simple iteration
without extrapolations or level shifting converges
readily. Once the CSCF solution is found at one
value of 8, the orbitals from that solution can be
used to form a good first guess for those at other 8
values. In the calculations presented here we used
both this technique and also found that we can fol-
low the bound H2 wave function at large internu-
clear separations into the resonance region at
smaller internuclear distances by using the results
at one internuclear distance to start the CSCF cal-
culation at another. Very near (within 0.05ao} the
point where the width becomes nonzero conver-

gence requires appreciably more iterations than in
other ranges of internuclear separation.

Iv. REsm Ts o~ esep CAr.cUI.ATIoNS
ON THE ~X+ SHAPE RESONANCE

We have performed CSCF calculations as
described in Secs. II and III on the X+„stateof
H2 at internuclear distances between 4.0 and
1.4a0. There have been several empirical deter-
minations of the X+„complex potential' ' and
one ab initio calculation of the real part of the po-
tential. Nesbet has noted that there is remark-
able disagreement among these calculations, partic-
ularly for the real part of the potential.

Our results for the width function 1 (R } are

0

FIG. 2. Width as a function of internuclear distance
from CSCF calculation (+ ) and from Ref. 12 {curve 2)
and Ref. 27 (curve 3). (o ) is the theoretical result of
Ref. 31.

compared with the empirical determinations of
Wadehra and Bardsley'2 and Chen and Peacher 7

in Fig. 2. Our results are in excellent agreement
with the results Wadehra and Bardsley' obtained
for the width by fitting the dissociative attachment
cross section. Wadehra and Bardsley constrained
their width function to vanish at 3.0c, and the
CSCF width goes to zero between 2.80 and 2.81 in
our calculations. On the other hand the older
Chen and Peacher determination of the width
from the isotope effect in dissociative attachment
is in poor agreement with the Wadehra and Bards-
ley result and with ours. Also shown in Fig. 2 is
the result of Moiseyev and Corcoran, ' which was
obtained by a CI calculation using complex coordi-
nates with the coordinates of all three electrons
scaled. Scaling all the electronic coordinates leads
to numerical instability in general, and the varia-
tion of the energy as a function of the scaling
parameters in the Moiseyev and Corcoran calcula-
tion is far more severe than that shown in Fig. 1.
Considering the accuracy with which the CSCF
method predicts the width of the II resonance in
N2, it is surprising that the effects of correlation
might affect the width as much as the Moiseyev
and Corcoran calculation suggests. Clearly, fur-
ther study will be necessary to resolve this
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discrepancy.
In Fig. 3(a) we compare the real part of the

CSCF energy for H2 with other empirical and
theoretical results, and also the SCF and exact
values for the H2 ground-state curve. The SCF
and CSCF results are shifted upward by the
neglect of correlation energy. The empirical results
of Chen and Peacher and those of Wadehra and
Bardsley' show remarkable disagreement with one
another and with the early stabilization calcula-
tions of Taylor and Harris and Eliezer, Taylor,
and Williams. In Fig. 3(b) the H2 curves are
shown shifted to coincide at 3.0ao. Although the
CSCF curve agrees best in shape with that of
Wadehra and Bardsley, ' it is difficult to draw a
definite conclusion on the basis of that compar-
ison. The Eliezer, Taylor, and Williams stabiliza-
tion calculation included mainly target correlation
but did allow the oz orbital to respond somewhat
to the presence of the continuum electron. It is in-

teresting to ask if the sharper minimum in their re-
sults arises predominantly from target correlation
since the CSCF calculations, which also include
response of the 0.

~ orbital but not target correla-
tion, do not show such a sharp minimum. Again,
more work is necessary to resolve these discrepan-
cies.

Figures 4—7 demonstrate various aspects of the
transition from the X+„bound state of H2 at
large distances to the resonance at smaller internu-
clear distance. In Fig. 4 we show an enlargement

of the crossing region which reveals that the CSCF
curve for H2 crosses the SCF curve for H2 nearly
0.lao before the imaginary part of the CSCF ener-

gy becomes appreciably nonzero.
On the same graph we show an ordinary real-

valued SCF calculation on H2 performed with the
large basis of diffuse functions (with 8=1) that are
used in the CSCF calculations. Very near the
point where the imaginary part of the energy in
the CSCF calculation becomes nonzero, the 0„or-
bital energy in the real-valued SCF calculation goes
through zero. That orbital becomes very diffuse
and an attempt to follow the SCF calculation in
this large basis to smaller internuclear distances re-
sulted in an H2 solution which is essentially the
H2 SCF wave function with a nearly zero energy
cr„orbital.

In the CSCF calculation the O.„orbital energy
need not ever have a value of exactly zero and
moves out into the complex plane without reaching
that point, as is shown in Fig. 5. The orbital
remains quite well localized in the process. The oz
orbital energy also becomes complex as the bound
state becomes a resonance and that movement near
the crossing point is shown in Fig. 6. Additional
discussion of the SCF description of the crossing
region" together with several other examples of the
bound state to resonance transition will be given in
a future publication.

Figure 7 shows how the modulus of the o„orbi-
tal, plotted along the internuclear axis, changes

- P.9

Re(E)

Re(E)

-l.2 ~ \ I I I I I I ~ ~ I I j

2
R R

(0) (b)
FIG. 3. (a) SCF energy for H2 ( ) and real part of CSCF energy for H2 (R.). Curves 1, 2, and 3 for H2 are

from Refs. 30, 12, and 27, respectively, and (o ) is from Ref. 31. The lowest curve 1s the exact ground-state potential
for H2 of Kolos and %olniewicz (Ref. 32); (b) Hq potentials shifted to coincide at g =3.Qgo.
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—0.0 I

- 0.02

—I.QIQ
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FIG. 4. SCF potentials in the crossing region: (&)
CSCF for H2, (~) SCF for H&, (+ ) real-valued SCF
for H2 as described in text.

-0.04
—0.22 —0.20

Re(E)
—0. I8

FIG. 6. Same as Fig. 5, but for og orbital energy.

0.005

0.002---

O.OOI

2.90
0—0,0 I 5 - 0.0 I 0 —0.005 0.005

Re(E)
FIG. S. Trace in the complex plane of the o„orbital

energy from CSCF calculation as a function of internu-
clear distance near crossing point.

with internuclear separation R. At large E. the or-
bital is well localized and has as its only prominent
feature the cusps at the nuclear positions. At
R =2.8ao it begins to become more diffuse, and by
8 =1.7ao has become exceedingly diffuse in accor-
dance with the large width of the resonance
(4.9 eV) at that point. All of the calculations
which were done to form Fig. 7 were performed

with the same value of the scaling parameter 8.
Changing the scaling parameter can change the en-

velope of the wave function at larger values of the
electronic coordinates but cannot change the quali-
tative trend shown in Fig. 7.

V. DISCUSSION

%e have presented a description at the SCF level
of the lowest X~+ resonance in electron-Hz scatter-
ing. Our complex energy for this state is the loca-
tion, in the Hartree-Fock approximation, of the
corresponding resonance pole of the S matrix in
the Born-Oppenheimer approximation. Compari-
son of our results with empirical determinations of
the complex potential in terms of simple functional
forms, and comparison with the two other ab initio
theoretical results which are available, clearly
shows that even for this relatively simple three-
electron problem, the location of the resonance
pole of the S matrix in the Born-Oppenheimer ap-
proximation as a function of internuclear separa-
tion is not accurately known.

It was pointed out in Sec. IV that even though
our CSCF calculations using a large basis set al-
most undoubtedly give accurate values of the ener-

gy in the Hartree-Fock approximation, uncertain-
ties in the other two ab initio theoretical calcula-
tions prevent us from drawing conclusions about
the effects of correlation on the position and width
of the resonance. However, the limited CI calcula-
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1.85
2.00
2.10
2.20
2.35
2.50
2.65
2.75
2.85
3.00
3.25
3.50
4.00

—1.03091
—1.032 96
—1.034 37
—1.035 32
—1.035 75
—1.03608
—1.035 35
—1.03420
—1.03023
—1.027 11
—1.023 82
—1.01876
—1.01321
—1.007 50
—1.00362
—0.99994
—0.99655
—0.99266
—0.989 67
—0.98411

0.2987
0.2758
0.2581
0.2339
0.2142
0.1785
0 1AA.A.

0.1302
0.0913
0.0705
0.0530
0.0318
0.0161
0.0056
0.0012
0.0
0.0
0.0
0.0
0.0

—1.132 74
—1.13121

—1.126 17

—1.091 35

—1.07034

—1.03851

—1.01304
—1.00328
—0.98915
—0.96703
—0.94675
—0.91146

TABLE I. The real part of CSCF energy for X+ res-

onance state of H2, the width from the CSCF calcula-

tion, and SCF energies for Hq using the same og basis
as in the CSCF calculations. All CSCF results are at8„„in Eq. (6), and atomic units are used throughout.

get" would consequently be complex. For this
reason we present the SCF and CSCF energies in
Table I without any modifications. Generaliza-
tions of the procedures used in Ref. 33 to give a
rcfcrcncc cncrgy arc under investigation.

In spite of the problems and questions we have
outlined, the CSCF method is a promising ab initio
approach to the calculation of the complex energies
of resonance states which are adequately approxi-
mated by a single-configuration wave function.
The CSCF method is only slightly more difficult
to implement than ordinary bound-state SCF cal-
culations and should be applicable to the low-

energy metastable anions of many small organic
moleculcs. In addition, CSCF calculations pro-
vide a logical starting point for complex CI calcu-
lations on resonances. Finally we note that accu-
rate calculations of the complex potential for H2
are of particular interest in light of Nesbet's re-
cent suggestion that the complex potential model
may not accurately describe the dynamics of nu-

clear motion in the case of such a broad shape res-
onance.

to the presence of the incident electron. It is not
clear that this procedure is valid in CSCF calcula-
tions because all the orbitals have some complex
component and the energy of the "polarized tar-
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