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The theory of interaction of atoms and molecules with radiation confined in a cavity is

presented. The effect of the confinement on the field commutation relations is examined

and the modified commutation relations are derived for an arbitrary cavity. It is shown

that a canonical transformation on the minimal-coupling Hamiltonian for such systems

leads to a new Hamiltonian containing explicitly neither the interatomic nor the atom im-

age potentials. The new multipolar Hamiltonian is used to calculate energy shifts of an

atom and a pair of atoms near a conducting wall. Changes in the rate of spontaneous

emission from an excited atom are also evaluated.

I. INTRODUCTION

In recent years there has been considerable in-

terest concerning the behavior of atoms and
molecules near conducting surfaces. Theoretical
analyses of the electrodynamics have been based on
the minimal-coupling Hamiltonian. In this formal-
ism, the electronic motions are coupled to the elec-
tromagnetic field through the vector potential. In
addition to this coupling, the interaction Hamil-
tonian contains Coulomb terms representing elec-
trostatic interactions between charges and with
their images. It is well known that with the use of
the multipolar form of the Hamiltonian in conven-
tional electrodynamics, all interactions are mediat-
ed by transverse photons. The transformation from
the minimal to the multipolar form eliminates the
interatomic Coulomb interactions leaving only the
intra-atomic electrostatic binding energies. ' In
general, calculations of processes involving atoms
and radiation are simpler with the multipolar
Hamiltonian than with the minimal coupling. In
this paper we examine the effect of the cavity im-

ages on the transformation between the Hamiltoni-
ans, and show that this simplicity still holds. In a
recent paper, Barton has remarked that for an
atom near a wall the two Hamiltonians lead to
identical forces, although no formal demonstration
of the equivalence was given. In the present work
the equivalence becomes evident when viewed in
terms canonical transformations.

The basic theory is outlined in the next section
and the generalized field commutation relations are
derived for an arbitrary cavity. As pointed out by
Milloni, the commutation relations for the case of

a single conducting wall are different from those
for free space. In addition to the transverse 5 func-
tion depending on the separation between the field

points, there are now additional terms depending
on the separations between the field points and
their images. The role of the images in the
minimal-coupling formalism is discussed in Sec.
III. In Sec. IV the canonical transformation of the
minimal-coupling Harniltonian to the multipolar
form is described. It is shown that the image
terms are completely removed by the transforma-
tion. The presence of the images is entirely felt by
the mode functions for the radiation field in the
cavity. In the final section, the multipolar formal-
ism is applied to energy shifts of polarizable bodies
and spontaneous emission rate for an excited atom
near a conducting wall.

II. COMMUTATION RELATIONS FOR
ELECTROMAGNETIC FIELDS CONFINED

IN A CAVITY

The quantum theory of a free electromagnetic
field in a cavity with conducting walls is most con-
veniently approached by expanding the electromag-
netic field in terms of standing waves. The expan-
sion coefficients oscillate sinusoidally and quantiza-
tion is effected by promoting these coefficients to
quantum operators subject to the standard commu-
tation relations. Let f' '(r) form a complete set of
orthogonal transverse modes for the cavity. These
satisfy the equations

V-f' '(r)=0,
V X V X f' '(r)+(k' ') f' '(r)=0,
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and are subject to the condition

n)& f' '(r)=O

at the boundary. The label A, characterizes the
mode. The electric and magnetic field expansions

4m

V

b(r) = V X a(r)
' 1/2

4m.= —C
V g q~ V' X f ' '( r ),

A

where the normalization factor has been chosen
such that

f' '(r). f' '(r)dr=5~~* .
V

Since the p's and q's are canonically conjugate vari-
ables, the commutation relations for the fields are

[e; (r),aj(r ')]=4nih' c—g f '(r)f~' '(r ') . (7)

Noting that for r and r ' within V

[f(JL)( )f(k)( I
) + (X)( ) (k)( I )] g Q( I)

V
l J fl 8J gJ

5J5(r —r ') =5;J(r —r ')+5~ (r —r '),
~here the g's form a complete orthonormal set of longitudinal mode functions, we write (7) as

Since the g' 's are longitudinal mode functions, they can be written as

q y(A. )( ~)
(g)( ~) c

where the P' 's form a complete set of scalar functions satisfying

q2y(A)(r)+(k(A))2y(iL)(P) ()

Hence the commutator (10) is

4m.ikc5,~(r —r ')+ikcV;VJ.
f

r —r'f
y(k)(~r)y(A l(r ~)

y ~ (k(A/)2

The second term in (13) which represents the boundary contribution can be expressed in terms of a distribu-
tion 8 exterior to the cavity. For this purpose we define the function

y~ ~py

(14

where 8( s; r ') is chosen such that, as a function of s, it is zero inside the cavity, and also that X(r;r ), as a
function of r, vanishes at the boundary. The symbol V emphasizes the fact that the integration over s is
outside the cavity. Hence

ikcV;VJ
1
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For r and r ' in V, it is evident that X satisfies

V X(r;r ') = —4rr5(r —r '),

and that the P's obey

(16)

—gP'"'(r)P' '(r')=5(r —r') . (17)

Hence

V ~ (k(x))z
=0, (18)

which implies, since both terms are zero at the boundary, that

(19)

Thus the commutation relations for the electromagnetic fields confined in a cavity are

~t
[e;(r),ai(r ')]=4Irihc5IJ(r r') —ihcV—;VJ f ' d s .

r —s
(20)

We illustrate this general result by considering
the special case of a rectangular parallelepiped
where the field points are near one wall. For this
case it is clear that

Using (22) we get

(24)

Therefore

/r —or'/
(21)

i9(s;r ')= —5(s —err '), (22)

where car ' is the point corresponding to the reflec-
tion of the point r ' in the wall. If we denote the
image point of r '

by r, we have the explicit rela-
tionship

1=op Vg Vk
/r —or'/

4ncrzk5—)„~(r or ') .—

(25)

I
fg =AT()P~

where, for example, if the wall is z =0,

(23) Since r and err ' are never coincident, the longitu-
dinal 5 function is equal to the negative of the
transverse 5 function; thus

[e; (r),az(r ')]=4nik[5;~(r r') o~—kg;(r—or ')] .—

(26)

When the wall is z =0, we have

[e„(r),a„(r')]=4nihe[5 (r r') 5 (—r r—)], —

[e„(r),a~(r ')]=4tri Ac[5~(r r') 5~(r r—)], — —

[e,(r),a, (r')]=4nihc[5 (r r')+5 (r r—)], etc. , —

which are essentially the results of Milloni. It may be mentioned that an alternative route to (26) is
through the use of the explicit forms of the mode functions for a rectangular box.

(27)
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III. HAMILTONIAN IN MINIMAL
COUPLING FORM

Quantum electrodynamics deals with the interac-
tion of radiation with charges, and the Hamiltoni-
an for the combined dynamical system can be writ-
ten as

VCoulomb E dr
8~ v

where

f PV'P dr,

component of the electric field and is given by

(30)

H =Hkin +Hrad +Hint + VCoulomb (28) ~( ) f P( )

~Ir —rI

H;„,= g p a(q)
electrons

2

2mc
(29)

Vc,„l, b is the contribution from the longitudinal

where Hk;„ is the kinetic energy of the charges,
H„d is the second-quantized Hamiltonian for the
radiation field, and H;n„which represents the cou-
pling of the electrons with the radiation field, is

p(s)
(31)

p(s)= f p(r')8(s;r )dr'.

Thus,

(32)

In Eq. (31) p(r ') is the charge density and p( s ) is
the fictitious charge distribution external to the
cavity (image charges) ensuring that P(r) vanishes
at the conducting boundary. In fact, from (14) it
follows that

Vc,„l, b
—— f p(r) —4m. f p(r ')5(r r')dr—4' f—p(s)5(r —s)d s dr

8m

p(r)p(r ") „ i p( s )p(r)
v v

(33)

The first term in (33), ignoring self-energies, represents the electrostatic interactions between the real charge
and may be partitioned into intra- and interatomic interaction terms in the usual manner. The second term
represents the interaction between the real charges and the induced surface distribution, we call this V;,g, .
Thus the Hamiltonian is

H =Hatoms +Hrad +Hjnt + Vinter + Vjmage (34)

We illustrate this result for the case of an atom near a wall. Denoting the position vector of the atom by
R, the charge distribution of the atom and the image distribution are given by

p(r)= —e +5(r —q )+Ze5(r —R), (35)

p(s )=e +5( s —q ) —Ze5( s —R),
a

(36)

where q is the position vector of electron a and q is the position vector of the image. Substituting for p
and p in (33) we get, ignoring self-energies,

2 1 2 1
Vcoulomb Ze g +e g + Vimage ~

a I qa R
I a(p I qa —qp I

(37)

where

(38)
z p 1 1 e 1

v, „,= —— +-,ze'g =-, Ze'g
IR—q. I

a
I q.—RI «)g

I q.—qigI

If
I
R

I
»

I q —R I, the expression for image can be expanded in a multipolar series, the leading term be-

ing
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[5j i
R—R

i

—3(R—R);(R—R)j],
2 ~R —R]'

where the dipole and its image are given by

j7= —e g(q —R), (40)

p, =e g(q —R)= tr—p .
a

(43)

where

It is important to note the presence of the factor of —, in (39) in contrast to the expression for the potential

energy between two real dipoles. In the early work of Lennard-Jones on the attraction of an atom to a met-
al surface, this factor was not included which led to twice the correct value for the interaction energy, as was
later pointed out by Bardeen.

For a pair of dipoles at Rq and R~, the above results may be generalized to
8

p; pj [Kg —K
Vinter = ~ Pij (42

I Ra —R~ I

p; pi [K —K„) l p; pj (K —K )

Vimage= ~ ~ ~ 3Pij
" " + ~ 3Pij

iRa —Ra
i

p p (K„—K ) 1 p;p) (K —K„)+ —. - -,Pij +. - -,PijR„—Ra
I

~ IRa —R„
I

Ptj —(5,j —3R;Rj) . (44)

IV. CANONICAL TRANSFORMATION
TO MULTIPOLAR HAMILTONIAN

The new field commutation relations do not affect
the transformation of Hk;„+H;„„'hence, as in ear-
lier work, ' we have

The transformation of the minimal coupling
Hamiltonian to the multipolar form is effected
through the generator

(Hkin+HiIIt) Hkin+Hmag +Hdia ~

where

H, g
———f m(r) b(r)dr,

(47)

H „],——e 'He' (46)

where p(r ) is the polarization field for the atoms.
%e apply the same transformation to the Hamil-
tonian (34), with the fields obeying the new com-
mutation relations (20):

Hd;, ———, f 0(r, r'):b(r)b(r')drdr'.

m(r) and O(r, r ') are the magnetization and di-
magnetization fields, respectively.

The transformation of H„d gives a series which
terminates after three terms:

e-"H„,e"=H„„——p;(r)[a (r»H-d ]d r
Ac

f f p;(r)pj(r ')[a;(r), [aj(r '),H„d]]drd r '.
2(Ac)

To evaluate the commutators, H„d should be expressed in terms of the canonically conjugate fields H(r )

and a( r ), namely,
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H„q= f [[4n'cII(r)]i+[V)&a(r)]i]dr .
8

(51)

Expressing the commutator between the vector potential and its conjugate in terms of the mode functions for
the cavity as in (52),

(52)

and using the completeness relation for the transverse vector functions

(53)

we have

(54)H~~ ———— p;(r)[a;(r),H s]dr =41rc p(r) II(r)dr .

This result represents the generalization of the interaction Hamiltonian used in quantum optics. Rewriting
(54) in terms of the displacement field d (r) and using the electric dipole approximation for the polarization
field p ( r ), we have

(ed)
H~~ ———p. d

Using (54), the last term of (50) becomes

f fp;(r)pj(r ')[a;(r), IIJ(r ')]drdr ' .

(55)

(56)

For the commutator in (56) it is convenient to use the alternative form to (52), namely,

[II;(r),ai(r')]= ih 5,J(—r r') —V;V—' f (57)

Hence (56) is

r —s
(58)

(59)

=2m f ip(r)i dr ——f f dsdr. (60)

To obtain (60) from (59) we have used the relations

V.p(r) = —p(r) (61)

p(s)= f p(r')8(s;r')dr'

= f pj(r ')Vj 8(s;r ')dr ' .

Collecting all the contributions, we have for the new Hamiltonian,

H =HI)OIIIs+HFIg+HPP) +Hogg +Hg

+V~„„,+V~,s, +2m f ~ p (r)
~

dr

i f f P(r)P(s)d d
v P(r —s

(62)

(63)
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The interatomic part of 2n f ~ p (r)
~

dr cancels

exactly the V;„„,term as in the conventional mul-
tipolar transformation. In addition, we now have
the exact cancellation of the V;,g, term since the
last term of (63) is the negative of the V;,g, in the
original Hamiltonian. Thus the new Hamiltonian
is

HmII]t =Hatpms +Hrad +Hpo]

sary.
We give below two general relationships which

are used in the calculations in this section. For r
and r ' near one wall but far away from others, the
sum off '(r)fj '(r ') for a given k is

gf (A)( )f (A. )( i) (8 k k )
i k ( r r—')

po]

(m ~))
il (~jlklkj )e'

+Hmag+Hdia s (64) (66)

where H„, , includes the one-center, field-
independent terms. We emphasize the fact that, in
contrast to the minimal-coupling Hamiltonian (34),
the multipolar form (64) does not make any expli-
cit reference to the image charges. The effect of
the confinement in the cavity is completely ac-
counted for by the use of the appropriate field
modes f' '(r).

gf(A)( )f(x)( I) 8).
( I)

V ~

—o.;l5ij(r —o-r ') . (67)

When the sum is carried over k as well, we have

V. APPLICATIONS

The simplest shape of a cavity for calculations is
the rectangular parallelepiped (x =a,y =P,z =y),
which has the mode functions

f, = v 8e„cosk,x sink~y sink, z,
f„=v 8ersink„x coskry sink, z,
f, =v 8e, sink x sinkry cosk, z .

(65)

The unit v~tor e, defining the field polarization, is

normal to k. We consider, for the purpose of illus-

tration, the case of atoms near one of the walls of
the parallelepiped, say z =0, but sufficiently far
away from the other walls that their effects may be
ignored. It is straightforward to generalize the cal-
culation to include these additional effects if neces-

A. An atom near a conducting wall

Hatom +Hrad I (68)

where p is the electric dipole moment operator
and R is the position vector of the atom. The
leading contribution is of second order and the en-

ergy shift of the atom in state
~

r ) is

In his examination of the inadequacy of the
two-level model for an atom interacting with radia-
tion, Barton has calculated the energy of interac-
tion between an atom and a wall using the
minimal-coupling formalism. As our first applica-
tion, we consider this problem and show how the
energy shift may be calculated in a simple way us-

ing the transformed multipolar Hamiltonian. In
the electric dipole approximation the Hamiltonian
is

(O, r
~

—tu. d(R)
( s, 1~)( l~,s (

—)((, d(R)
)
r, 0)

hE, =
s, )( E,—(E, +Rck' ')

The matrix elements are calculated using the mode expansion analogous to (4) with the f's given by (65).
We have

(69)

(70)

where Ack„=E, —E,. The energy shift contains the usual self-energy terms in addition to the interaction
energy with the wall. Using (66) the identification is immediate: The first summand in (66) leads to the
self-energy term and the second to
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U(R)=2ng. p; p&'"o;I f „„(5I, k—ik, )e'"'"
(2~)3

2—sr +P;"pj'" ,f (5;, —k;k, )e'" O

(k,„)=—gp; Is,j"(5;,V V—;V;) (71)

where Q=(R —oR) and the gradients are with respect to Q. We note that Q=
l Q l

=2L, where L is the

shortest distance to the wall z =0, and the direction of Q is n normal to the wall. For k,„y0, as for exam-

ple when
l

r ) is the ground state of the atom, the interaction energy (71) becomes

sr

U(L)= —g [(51 3n—;nj)[f(2k„L)+(2k,„L)g(2k„L)]+(5& n;nj—)[2k,„L—(2k,„L)2f(2k,„L)]),
(2L)

(72)

where

f(z) =Ci(z)sinz —si(z)cosz,

g (z) = —Ci(z)cosz —si(z)sinz,

We note that in the near-zone limit, i.e., for k,„L« 1, f(z)~rr/2, and g (z)~lnz, so that as expected
-rs sr

U(L)~ , g —(5;1—3n;nj) .
(2L)

On the other hand, in the far-zone limit k„L && 1,
—rs sr

U(L)~ —g (5J 2n;nj—) .
ksr (2L )

In terms of the electric dipole polarizability (76) of the atom,

~ ~ ls "I'
s Esr

This limit becomes the known result,

(73)

(74)

(75)

(76)

U(L) =— 3' a
8~ L4 (77)

When the atom is in an excited state, some of the virtual transitions are downwards and the corresponding
k„s are negative. For such a case, the sum over s in the energy expression may be divided into two parts:
one with k„&0, giving results as above, and the other with k„&0. The latter contribution is

ik Qke dk dQ
(78)

s(k „&0)

—rs sr(5 V2 V V )
f(lksrlQ)

s(k „&0)

cos(
l
k„

l
Q)

(79)

sr

3 j (5& —3n;nj )[f(2
l
k„

l
L)+2

l
k,„ l

Lg (2
l
k,„ l

L)]~ s(k„&0) (2L)

+(5& n;nj)[2
l

—k,„ l
L —(2l k,„ lL) f(2

l
k„ lL)]J

—rs sr

+ g [(5J. 3n;nj)[cos(2
l

k—,„ l
L)+(2

l k„ l
L)sin(2

l
k„ l

L)]
s(k „&0)

+(51 n;nJ )[(2
l
k,„ l

L) c—os(2
l
k,„ l L)] I . (80)
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The modulating term, the second summand of (80), may be interpreted as the retarded resonance interaction
between the transition dipoles and their images.

B. A pair of atoms near a conducting wa11:
eA'ect on the

interatomic potential

In addition to the attractions calculated in the previous subsection, there are interatomic eAects due to the
presence of a metal surface near a pair of atoms. We evaluate these energies when the atoms are in their
ground states and compare them with the well-known London and Casimir-Polder potentials. As before, we

employ the electric dipole approximation and use the Hamiltonian

H=Hq+Hg+H„d —p(A) d (Rq) —p(B).d (Rg), (81)

where Rz and R~ are the position vectors of the atoms A and B.
The energy shift due to the coupling of the atom to the electromagnetic field is evaluated correct to fourth

order in a manner similar to that used for retarded dispersion interactions. From the graphs shown in Fig.
1 and their reflections, we obtain

f;S

(A, ) (k')I )( I ) f ( )(kR )f(k((R )f(lU(R )f(k)(R )
A, , A, ;0 a

(82)

where D, 's are the appropriate energy denominators. For example,

D; = —(E"+Acp)(E„+Acp')(Acp+Acp') . (83)

We confine our calculations to two regions of physical interest, namely, the near-zone (London) and the far-
zone (Casimir) limits. In these limits the calculations are considerably simpler than the general case because
the energy denominators can be approximated as follows. In the near-zone, the dominant contributions arise
when p,p &&k,k; it is therefore sufficient to consider graphs (iii) and (iv) of Fig. 1 and their reflections.
For these graphs the denominator is —Acpkcp'(Ack +Ack ). In the far-zone, p,p' «k, k and graphs
(i), (ii), and their reflections make the dominant contributions; for these graphs the energy denominator is
—Ack~kck (Acp+Acp').

We first consider the near-zone limit for which the energy shift is

E= —16
P; (A)P (A)Pk'(B)P( (B)

(E +EB )

X
2 g f '(Rg )fk (Rg ) g fj~ '(Ra )fI (RB)

V

IJl (~)PJ (~)Pk (B)Pl (

(E"+E&)

X [5'k «)—0 &mk «) ]['5J'((R)—(Tp &n(«) ] (84)

where (67) has been used for the sum over the modes; also R=R~ —Rz and R=Rz —Rz. The term

depending only on R is

PI (A)P ~ (A)Pk (B)PI (B) (5I'k —3R[Rk )(5 I —3Rj RI )
(85)

which may be written in terms of atomic polarizabilities (76) as
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1 a(A)a(B) En Em A A
5 5ki"(5 k 3R—Rk)(51 3R—RI .) ~

R6 (gA +EB) &J & & J J

Defining an average transition energy

A B

E=2
„,, (E„"+E,.)

we obtain the London dispersion potential between the atoms:

3 -a(A)a(B)

The term depending only on R is UL,„d,„(R). The remaining terms depending on both R and R are
summed to give

p,"(A)pj (A)pk'(B)p('(8) (5g, 3R;R—k)op(5„I 3R„R(—)
(EA +EB) R R

which, in terms of the atomic polarizabilities and E, is

—a(A)a(8)
UL,„d,„(R,R)=E

3 5~J5ki(51, 3R;Rk)o—j„(5„I 3R„R()—
4R R

=E (3 sin E+3sln 6—2),-a(A)a(B)
4R R

where e and e are the angles that R and R make with n.
In the far zone, where R is larger than transition wavelengths, the energy shift is

~= —16 Pic
p;"(A)pj (A)pk'(8)pf'(8)

P, S EmEso

1 f '(R„)fk '(Rg)fj '(A)fi '(Rg)
X

2 pp (p+p')

Using (76) for the atomic polarizabilities and (66) for sum over the field polarization directions, (91) becomes

kg= —@+&a(A)a(8)f f [(5a —p pk)e'~ —cr; (5 k
—P~P )ek' ju+u'

&[(5k p'pi )e'" "—

—a (5k —p pk)e '~p' R dpdp
leaf 2l Pl

(2 )6

The term depending only on R is the Casimir asymptotic potential

23 a(A)a{B)
C

Similarly, the term depending only on R is Uc„;;,(R ). The RR-dependent term may be written as

„Pica(A)a(8)cr „(5 kV VVk)(5„—kV —V„Vk)f,e'~'"dpdp'dQdQ'
8m P+7

(A) (B) ($ P2 P g )($ P2 P P )
RR(R+R)

which, after straightforward diAerentiation, gives
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ULEE;m;T(R, R)= f—ic, , [R sin s+5R Rsin e8 a(A)o.'(8)
8 8 (R+E)

+R R (6+sin E+stn 6)+5RR sin 6 +R stn E] .

We note that when the interatomic separation vector is normal to the plane this simplifies to

48 a(A )u(8)
RR(R+R)'

These potential energies depending both on R and R are a consequence of the interactions between the fluc-

tuating dipoles of one atom with those of the other as well as with the induced fluctuating currents in the
conducting plane.

C. Spontaneous emission by
an excited atom in the presence

of a conducting wa11

In the previous applications we have calculated the eAects of a conducting wall on energy shifts. %'e now

consider a diferent type of process, namely, spontaneous emission. The matrix element for emission from an
atom in state

~
m ), using —p.d (R), is

1/22~k ENPf (g)(~R)
V

(97)

which when used in the Fermi golden rule gives for the total rate

82O OSO

I = f g f '(R)fJ '(R)dQ .
27TRc po]

(98)

In (98), m( =E,/fi) is the circular frequency of the emitted light. Using (66) for the sum over polarizations,
we get

fflO PlfO

pg pj 6)
(5; —k;k. )dQ —o;I (5()—klk) )e'"'" 'dO (99)

~~O ) 2 3 ISO tflO

o (5 kk )e"" " —dQ
3A 2~

The first term is the Einstein A coefficient and the second represents the effect of the wall. This term is

2 t 3 sin2kL cos2kL sin2kL

(2kL)' (2kL)' (2«)

sin2kL cos2kL sin2kL

(2kL)' (2kI. )' (2«)

In the near zone this is

g
I u, .n I'~'

3~3 3~3

which, for a randomly oriented dipole, is —A /3 so that the total rate is

2
I =—A3 (103)



E. A. POWER AND T. THIRUNAMACHANDRAN 25

On the other hand, for an oriented dipole two spe-
cial orientations are of interest, namely when the
dipole is parallel or normal to the wall. The rates
are

r=o,
(104)

r=u.
When the dipole is normal to the wall, the dipole
and its image form a Dicke pair so that the emis-

sion rate is doubled; when the dipole is parallel to
the wall it is out of phase with its image so that
the emission is forbidden. As the distance L in-

creases, these selection rules are weakened and in

the far-zone limit the rate becomes, as expected,
the Einstein rate.

VI. CONCLUSION

(iv)

(v) (vi)
FIG. 1. Time-ordered graphs for dispersion interac-

tion.

We have shown how the standard procedure for
obtaining the multipolar Hamiltonian from the
minimal-coupling form can be extended to systems
confined in a cavity. In addition to the well-

known cancellation of the interatomic Coulomb in-

teractions which occur as a result of the transfor-
mation, the Coulomb image energies that are
present in the minimal-coupling Hamiltonian are
also eliminated completely. The interaction terms
in the resultant Hamiltonian are all one center in
character; interactions between atoms are mediated

by transverse photon exchange. The applications
given in this paper demonstrate the versatility of
the new Hamiltonian.
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